
Fuzzy Constructive Heuristics

José A. Moreno Pérez and J. Marcos Moreno Vega

Dpto. de E.I.O. y Computación
Centro Superior de Informática
Universidad de La Laguna
38271 La Laguna, Santa Cruz de Tenerife, Spain
jamoreno@ull.es, jmmoreno@ull.es

Abstract. We consider the design of fuzzy constructive heuristic algorithms for
solving combinatorial problems. The fuzzy technology is used in constructive heuris-
tics to select the item to be included in the solution and to stop the search. This
is done by considering fuzzy sets of promising elements and satisfactory solutions.
The procedures that implement several of these algorithms were tested on moderate
and large size instances of a well known cutting problem. These procedures show
better performance than the best known heuristic for them.

1 Introduction

In a constructive method an element is iteratively added to an initially empty
structure until a solution of the problem is obtained. The choice of the item
to be included in the partial solution is based on one or several heuristic
evaluations that measure the convenience of considering the item as belonging
to the solution. The heuristic functions depend on the problem and also on
the knowledge of the decision maker about the problem.

The heuristic functions are used to intelligently guide the process of
searching for solutions with high quality. If the evaluation of an element
depends on the items already in the solution, the function and the method
are adaptive. In addition to the heuristic function, it is necessary a strat-
egy to select the elements. One of the most known strategy is the greedy rule,
which selects the element that optimizes the heuristic function. However, this
strategy shows poor performance in most cases.

In some cases, after knowing the evaluation of an element, the expert pro-
vides comments like: high recommendable element, quite good item, acceptable
enough element, etc. In those cases, it is possible to construct fuzzy sets of
elements from which to choose the element to be included in the solution.

One of the most relevant questions, with a high effect on the quality of the
solutions, is the stopping criteria applied. As indicated above, the usual ex-
pressions are: acceptable solution, good enough solution, etc. The construction
of a fuzzy set from the desirable situation, allows us to design appropriate
stopping criteria.

2 José A. Moreno Pérez, J. Marcos Moreno Vega

In this paper we introduce the fuzzy constructive methods and design
fuzzy stopping rules. Moreover, we show the performance of the proposed
method on a well known cut problem.

2 Fuzzy Constructive Methods

Let E = {e1, e2, ..., en} be the set of elements to be included in the solution
and f an adaptive heuristic function. The functions that evaluate the elements
are such that better elements have smaller values. Let X denote the structure
that stores the obtained partial solution so far, and then T = E − X is the
set of elements not included in the partial solution.

The pseudocode of a classical constructive method with the greedy strat-
egy is shown in figure 1. The main drawback of the greedy strategy is that,

Procedure Greedy Constructive Method
begin

X = ∅;
T = E;
repeat

Evaluate(f(e) : e ∈ T);
e∗ = arg mine∈T {f(e)};
X = X ∪ {e∗};
T = T − {e∗};

until (X is feasible);
return X;

end.

Fig. 1. Greedy Constructive Method

in general, it provides low quality solutions. It is true even if an improvement
procedure (a local search) is applied to the obtained solution.

Let us assume that there is a membership function µ(.) that evaluates
the degree of belonging of an element e ∈ E to the set of best elements. The
membership function µ(e) of an element e depends on its heuristic evaluation,
f(e). Then the set of best elements E∗ of E is constructed by:

E∗ = {e ∈ E/µ(e) ≥ α},

i.e., E∗ is the α-cut of µ (α ∈ [0, 1] is fixed by the decision maker).
Therefore, the pseudocode of the fuzzy constructive method that we pro-

pose is as shown in figure 2.
In this pseudocode, by Choose(e ∈ E∗) we mean the method used to

determine the element e ∈ E∗ that is included in the partial solution X.

Fuzzy Constructive Heuristics 3

Procedure Fuzzy Constructive Method
begin

X = ∅;
T = E;
repeat

Evaluate(f(e) : e ∈ T);
Generate(E∗);
Choose(e∗ : e∗ ∈ E);
X = X ∪ {e∗};
T = T − {e∗};

until (X is feasible);
return X;

end.

Fig. 2. Fuzzy Constructive Method

Some alternatives for this method are the equiprobable sampling in E∗ or
the proportional sampling in E∗. They are:

Equiprobable sample:

Pr(choose e) =
1

|E∗| .

Proportional sample:

Pr(choose e) =
µ(e)∑

e∈E∗ µ(e)
.

Note that, in contrast to the classical constructive method, several executions
of the fuzzy constructive method will provide different solutions. In that way,
the probability of getting high quality solutions increases.

Figure 3 shows the iterated fuzzy constructive method. It includes an im-
provement method after each execution of the fuzzy constructive procedure.
In this pseudocode, Improving Method(X,X ′) returns an improved solution
X ′ obtained from X.

The improving method applied in this procedure can be, for example,
Fuzzy Adaptive Neighbourhood Search (FANS) [7], but can also be a crisp
procedure like any local search.

3 Fuzzy Stopping Rules

Ideally, the search process must finish when the optimal solution of the prob-
lem is found. However, this stopping criterion is not applicable in real sit-
uations, since the optimal solution is unknown. Therefore, a real stopping
criterion is to finish the search when a high quality solution that satisfies the
preference of the decision maker is met.

4 José A. Moreno Pérez, J. Marcos Moreno Vega

Procedure Iterated Fuzzy Constructive Method
begin

Fuzzy Constructive Method;
Improving Method(X, X ′);
X∗ = X ′;
repeat

Fuzzy Constructive Method;
Improving Method(X, X ′);
if (X ′ is better than X∗) then

X∗ = X ′;
until (stopping rule);
return(X∗);

end.

Fig. 3. Iterated Fuzzy Constructive Method

For many problems, the quality of the solution can be measured by some
characteristics. These characteristics indicate that the reached situation is
acceptable, good enough, difficult to improve, ... These situations are deter-
mined by a set of variables that characterize the quality of the solution. Using
these variables, some fuzzy sets of solutions are used to provide appropriated
fuzzy stopping criteria. The criteria consist of stopping the search when a
solution of these fuzzy set is met.

4 The non-guillotine rectangular two-dimensional
cutting problem

The two-dimensional cutting problem consists of determining the optimal
cut of a single sheet into a set of small pieces of given shapes and sizes. In
the rectangular two-dimensional cutting problems, the stock sheet and the
small pieces have rectangular shape. The optimality of the cut is given by
the amount of space used or the waste material. In other problems, given
the number of small pieces with economical values, the solution consists of
selecting pieces to cut in order to maximize the total value. These problems
appear in relevant commercial and industrial application areas, where one or
several big sheets of wood, cloth, paper or metal have to be cut in a large
number of small pieces (see, for example, [1] and [3]).

The non-guillotine rectangular two-dimensional cutting problem [4], [5]
is formulated as follows. Given a rectangular sheet of a fixed width w and
unlimited high, and a set of small rectangles

R = {R(w1, h1), R(w2, h2), . . . , R(wn, hn)},
given by the lengths of their sides, determine the way to cut all the pieces
in a sheet with minimum total height. In this problem the cuts can be of

Fuzzy Constructive Heuristics 5

(a) (b)

Fig. 4. Rectangular cutting problems. (a) Non guillotine cutting. (b) Non-
guillotine rectangular two-dimensional cutting problem

non-guillotine type and the objects can be rotated. The guillotine cuttings
are those that go from one edge of the stock rectangular sheet to the opposite
edge. In a non guillotine cutting, this is not true (see figure 4(a)). Obviously,
each small piece has to be with one of its sides parallel to the fixed edge of
the stock sheet in the optimal cut. Thus, the values wi and hi are named the
width and high of the pieces and can be rotated 900. At least one of the two
sides, wi or hi, of each rectangle is assumed to be smaller than the width w.

4.1 Contour

A partial solution is given by the position of the bottom-left corner of each
small rectangle (and the boolean variable to know if the piece is rotated or
not). The solution is feasible if there is not an overlap between two rectangles.
The rectangles are obviously shifted down in order to minimize the total
height wasted. The partial solution determines the waste of space determined
by the fixed width side, the unlimited edges and an upper piecewise rectilinear
contour as shown in figure 5. In addition, not useful areas called trim loss
can be generated (see the partial solution obtained after the insertion of the
rectangle 4 in figure 5).

Let us assume that R = R1 ∪ R2, where R1 is the set of rectangles
already packed in the partial solution and R2 = R\R1 the set of remainder
rectangles to be packed.

6 José A. Moreno Pérez, J. Marcos Moreno Vega

1 2

3

4
5

(ylow−1, x
low−1
1

, x
low−1
2

)

(ylow, xlow
1 , xlow

2)

(ylow+1, x
low+1
1

, x
low+1
2

)

Fig. 5. Contour

Consider the upper envelope of the set of rectangles already included
in the partial solution. This envelope is given by a sequence of segments,
C = (s1, s2, ..., sc), where each segment si is given by the height and the
position of the extremes, i.e., si = (yi, xi

1, x
i
2). The contour C verifies x1

1 = 0,
xc

2 = w and, for 1 ≤ i < c − 1, xi
2 = xi+1

1 . Then,

C = {(y1, x1
1, x

1
2), (y

2, x2
1, x

2
2), ..., (y

c, xc
1, x

c
2)}.

Let slow = (ylow, xlow
1 , xlow

2) be the segment with small height; i.e. such that
ylow = mini=1,...,c{yi}.

Let us assume that the width of any not packed rectangle is the side closer
to the size of the lowest segment wlow = |xlow

2 − xlow
1 | of the upper contour.

We can do this assumption since otherwise a simple rotation of the object
will provide this hypothesis.

Since we want to obtain the packing with smallest height, we can de-
sign several natural constructive ways in which the rectangles are packed in
the segment with smallest height C. Among all the possible alternatives, we
describe three of them that also take into account other partial objectives.

4.2 Sets of best rectangles

Consider the situation shown in figure 5 where the lowest segment is slow =
(ylow, xlow

1 , xlow
2). The next and before segments are

slow+1 = (ylow+1, xlow+1
1 , xlow+1

2)

and
slow−1 = (ylow−1, xlow−1

1 , xlow−1
2).

Let us assume, without loss of generality, that the heights of these segments
are such that ylow ≤ ylow+1 ≤ ylow−1.

Fuzzy Constructive Heuristics 7

From the segment slow = (ylow, xlow
1 , xlow

2), there are several ideal sit-
uations that could be achieved by the inclusion of a new rectangle. A very
good situation appears if we can include a rectangle with width equal to slow.
Another very good situation appears if the height of the included rectangle
is close to ylow+1 − ylow or to ylow−1 − ylow (see figure 5). Therefore, there
are three notions of ideal situations that are used to build fuzzy sets of best
rectangles. The membership functions of these sets are as follows.

The first fuzzy set of best rectangles corresponds to those that most fit to
the width wlow. Let α1 ∈ [0, 1] be a fit threshold given by the decision maker.
Then the membership function of any object e = R(w, h) ∈ R2 is given by:

µ1(R(w, h), α1) =




1
α1

(α1 − wlow + w) if wlow − α1 ≤ w ≤ wlow

0 otherwise

This membership function defines the first fuzzy set E1 of the best elements
on the universe of the not packed rectangles.

A second fuzzy set of best rectangles, E2, is obtained by considering the
set of not packed rectangles such that, if one of them is packed on slow it will
provide a segment with height close to ylow+1 (see figure 5).

Let α2 ∈ [0, 1] be a second fit threshold provided by the decision maker.
Let the second membership function of an object e = R(w, h) be given by:

µ2(R(w, h), α2) =




1
α2

|α2 − ylow+1 + ylow − h| if |ylow+1 − ylow + h| ≤ α2

0 otherwise

Similarly, consider the set E3 of the not packed rectangles such that, if one
of them is packed on slow the corresponding segment has height very close to
ylow−1.

Let α3 ∈ [0, 1] be a third fit threshold provided by the decision maker.
Let a third membership function of an object e = R(w, h) be given by:

µ3(R(w, h), α3) =




1
α3

|α3 − ylow−1 + ylow − h| if |ylow−1 − ylow − h| ≤ α3

0 otherwise

We have three rules for selecting the new rectangle to be included in the
partial solution. These rules consist in selecting a rectangle from E1, from
E1 ∩ E2 and from E1 ∩ E3. With the first rule, from the list

L1 = {R(w, h) ∈ R2 : µ1(R(w, h), α1) ≥ 0},

8 José A. Moreno Pérez, J. Marcos Moreno Vega

an element is chosen to be packed in the partial solution. For the second rule,
from the list

L2 = {R(w, h) ∈ L1 : µ2(R(w, h), α2) ≥ 0},

an element is chosen to be packed in the partial solution. Finally, for the
third rule, from the list

L3 = {R(w, h) ∈ L1 : µ3(R(w, h), α3) ≥ 0},

an element is chosen to be packed in the partial solution.
In any case, if the corresponding list Li(i = 1, 2, 3) is empty, we take from

R2 the rectangle that better fits to slow. If such rectangle does not exist,
we rebuild the contour C replacing the segments slow and slow+1 by a new
segment s = (ylow+1, xlow

1 , xlow+1
2). The area between xlow

1 , xlow
2 , ylow and

ylow+1 is wasted.

4.3 Fuzzy stopping rules for the cutting problem

Besides the objective value, there are other values that can be used to evaluate
the quality of a solution for the non-guillotine rectangular two-dimensional
cutting problem. Some of them are the total area of trim loss and the shape
of superior contour.

Ideally, we want to pack the rectangles in such a way that the total area
of trim loss is zero and the upper contour is smooth enough.

Given a solution X with objective value f(X), let TrimLoss(X) be the
total area of trim loss of X and Shape(X) be the average distance of the
upper contour to the total height of X. This average distance is computed
by:

Shape(X) =
1
c

c∑
i=1

|f(X) − yi|.

Let β1 ∈ [0, 1] a value fixed by the decision maker. The set of solutions with
an acceptable trim loss is given by the following membership function µ4. Let
X be a solution, then:

µ4(X,β1) =




1
β1

(β1 − TrimLoss(X)) if 0 ≤ TrimLoss(X) ≤ β1

0 otherwise

Let
S1 = {X : µ4(X,β1) ≥ 0}.

Similarly, let β2 ∈ [0, 1] be another value fixed by the decision maker. The
set of solutions with a smooth enough contour is given by the membership

Fuzzy Constructive Heuristics 9

function µ5. This membership function for a solution X is given by:

µ5(X,β2) =




1
β2

(β2 − Shape(X)) if 0 ≤ Shape(X) ≤ β2

0 otherwise

Let
S2 = {X : µ5(X,β2) ≥ 0}.

The proposed stopping criterion combines the above sets of solutions. The
search stops when a solution of S1 ∩ S2 is reached.

5 Computational experiments

The computational experiments were performed in two phases. In the first
phase, the values of the parameters that define the fitness of the rectangles
were determined. Then, the proposed constructive methods were compared
with the best known procedure for solving the problem. In a second phase,
the performance of the three constructive methods to solve moderate and
large size instances of the problem was analyzed.

5.1 Tuning the parameters

We have three constructive methods obtained by using the lists of best rect-
angles L1, L2 and L3. Let FCM1, FCM2 y FCM3 denote these methods.
The stopping rule used (see figure 3) was to fix the number of iterations of
the loop to niter = 40.

To fix the parameters (αi, i = 1, 2, 3) that control the fitness of the
rectangles to the lowest segment, randomly generated packing problems were
solved. Several values for αi, i = 1, 2, 3 where fixed and each method was
run 5 times for the instances generated. The output variable was the average
objective value in the niter executions of the loop.

For each parameter three levels were taken: α1 = 0, 0.1, 0.2, α2 = 0, 0.1, 0.2
and α3 = 0, 0.1, 0.2 (with α2 = α3). Therefore we considered the treatments
Tα1 , Tα1,α2 and Tα1,α2,α3 .

We applied the Friedman nonparametric test to analyze the data (see
[2]), since the previous normality and variance equality tests were negative.
When the null hypothesis of equality between treatment was rejected, we
applied the Friedman multiple comparison tests ([2], page 274) to obtain the
significative difference between treatments.

In tables 1 and 2 we show the p-value associated with the Friedman statis-
tic for the problem. In addition, for those problems where the null hypothesis
of the equality between treatments was rejected, we show the treatment with

10 José A. Moreno Pérez, J. Marcos Moreno Vega

the smallest average value and, when the test did not give significative dif-
ferences, we also show the treatment with the second smallest average value
(between round brackets).

From the results of the tests we conclude:

1. FCM1: the appropriated value for α1 is 0; i.e., that corresponding to the
best fit;

2. FCM2: the values of the parameters depend on the size of the problem.
For problems with 200 or more rectangles, the treatment that gives the
best performance is T0,0, with the only exception n = 200, w = 60 and
hopt = 100. For problems with 100 rectangles, there is not a clear con-
clusion, since it could be chosen between the treatments T0,0 and T0,0.2.
We selected T0,0.2 taking into account the number of times that both T0,0

and T0,0.2 appear as the best or second best treatment. For n = 50, the
ties is even more clear if we compare the number of times that a treat-
ment appears as the best one. Then, taking into account the second best
treatment, we selected T0,0.1.

3. FCM3: using the above arguments it follows that, for problems with 200
or less rectangles, the recommended choices are α1 = 0 and α2 = α3 =
0.2. For problems with 300 rectangles, the choice is α1 = α2 = α3 = 0.

5.2 Comparative

To compare the efficiency and the efficacy of our proposals with respect to
Simulated Annealing that uses the Bottom-Left (SA+BL) strategy (see [4]),
we used the test bed described in [4] (the data of these instances can be found
in [6]). It is a bed of 21 instances arranged in 7 categories of 3 instances.

In the first four columns of table 3 we show the characteristics of these
problems. The fifth column shows the best objective value and the compu-
tational time (in minutes) needed by SA + LB. The values have been taken
from [4]. From columns 6 to 8 we show the best objective values obtained
with FCM1, FCM2 and FCM3. For these methods we do not show the
computational time because it was insignificant.

The first notable improvement in the performance is shown by the con-
siderable decreasing in the running time when we use any of our proposals.
For instance, to the category C7 it goes from 4181 minutes to a insignificant
time. In addition, the efficacy of FCM1, FCM2 and FCM3 is comparable
or better than that of SA + BL. Among the three proposals, the best per-
formance is, in general terms, FCM3. This behavior can also be seen in the
results obtained for problems with bigger sizes (see table 4).

5.3 Results for large instances

Table 4 shows the results obtained on random instances with large sizes. The
three first columns show the number of rectangles, the width of the sheet and

Fuzzy Constructive Heuristics 11

Table 1. Significance levels (p-value) for the equality among treatments and best
treatments (between brackets, second best one)

n w hopt FCM1 FCM2 FCM3

50 30 45 p-value 0.008 0.000 0.000
treatment T0 T0,0.1 T0,0 (T0,0.2)

60 p-value 0.022 0.005 0.244
treatment T0 T0.1,0.2 (T0,0.1) =

60 90 p-value 0.022 0.026 0.001
treatment T0 T0.1,0.2 (T0,0) T0.1,0 (T0,0.2)

100 p-value 0.819 0.000 0.000
treatment = T0,0.2 (T0,0.1) T0.1,0 (T0,0.2)

90 120 p-value 0.007 0.002 0.010
treatment T0 T0.1,0 (T0,0) T0,0.2

150 p-value 0.022 0.001 0.156
treatment T0 T0,0.1 =

100 50 70 p-value 0.007 0.001 0.000
treatment T0 T0,0 (T0,0.2) T0,0 (T0,0.2)

110 p-value 0.007 0.000 0.000
treatment T0 T0,0.2 T0,0.2 (T0,0)

80 90 p-value 0.022 0.003 0.032
treatment T0 T0,0.1 (T0,0.2) T0,0 (T0,0.2)

140 p-value 0.007 0.001 0.009
treatment T0 T0,0.2 T0,0.1 (T0,0.2)

100 180 p-value 0.022 0.003 0.000
treatment T0 T0,0 T0,0 (T0,0.2)

200 p-value 0.247 0.000 0.000
treatment = T0,0 T0.1,0 (T0,0.2)

the optimal objective value. The last three columns show the best average
objective value in 5 runs of FCM1, FCM2 and FCM3. From these results
we conclude that FCM3 is slightly better than FCM1 and FCM2, and the
good performance of FCM1, FCM2 and FCM3. As indicated above, the
time required is not significant.

5.4 Stopping rule

To evaluate the quality of the proposed stopping rule, randomly generated
instances of the cutting problem were solved using FCM3. Each instance
was solved 5 times. Table 5 shows the best average objective values and the
average number of iterations for those runs. Three values for the parameter
β1 and two values for β2 were fixed. For β1 we use 0.05A, 0.03A and 0.02A
where A is the total area of the rectangles

A =
n∑

i=1

wihi.

12 José A. Moreno Pérez, J. Marcos Moreno Vega

Table 2. Significance levels (p-value) for the equality among treatments and best
treatments (between brackets, second best one)

n w hopt FCM1 FCM2 FCM3

200 60 100 p-value 0.074 0.004 0.001
treatment T0 T0.2,0.2 T0.1,0.2 (T0.2,0.2)

130 p-value 0.007 0.000 0.000
treatment T0 T0,0.2 (T0,0) T0,0 (T0,0.2)

100 90 p-value 0.007 0.000 0.000
treatment T0 T0,0 T0.1,0.2 (T0,0.2)

140 p-value 0.022 0.000 0.000
treatment T0 T0,0 T0,0.1 (T0,0.2)

200 150 p-value 0.015 0.000 0.000
treatment T0 T0,0 T0.1,0 (T0,0.2)

200 p-value 0.022 0.000 0.000
treatment T0 T0,0 T0,0 (T0,0.2)

300 80 150 p-value 0.022 0.000 0.000
treatment T0 T0,0 T0,0

200 p-value 0.007 0.000 0.000
treatment T0 T0,0 T0,0

140 120 p-value 0.022 0.000 0.000
treatment T0 T0,0 T0,0

200 p-value 0.022 0.000 0.000
treatment T0 T0,0 T0,0.1 (T0,0)

200 200 p-value 0.007 0.000 0.000
treatment T0 T0,0 T0,0

280 p-value 0.022 0.000 0.000
treatment T0 T0,0 T0,0

The two values for β2 are β2 = 3 and β2 = 1.5. From the results obtained we
conclude that:

1. For a fixed value of β1, better solutions were obtained by decreasing β2.
2. The best objective values were obtained for small values of the parameters

β1 y β2.
3. The number of required iterations is small enough. This indicates that

the constructive method FCM3 provides solutions of high quality.

References

1. Bischoff, E.E., Wäscher, G. (1995) Cutting and Packing. European Journal of
Operational Research 84 , 503-505

2. Daniel, W.W. (1990) Applied Nonparametric Statistics. PWS-Kent Publishing
Company, Boston

3. Dyckhoff, H. (1990) A Typology of Cutting and Packing Problems. European
Journal of Operational Research 44 , 145-159

Fuzzy Constructive Heuristics 13

Table 3. Best objective values and required times in minutes (average values for
category)

Category n w hopt SA + BLF FCM1 FCM2 FCM3

C1 16 or 17 20 20 objective 20.8 22.6 22 22

time 0.7

C2 25 40 15 objective 15.9 17 17 16.33

time 2.4

C3 28 or 29 60 30 objective 31.5 33.66 35.33 33.66

time 4

C4 49 60 60 objective 61.8 62.66 64.33 63

time 33

C5 72 or 73 60 90 objective 92.7 94.33 94 93

time 115

C6 97 80 120 objective 123.6 125.33 124.33 124

time 382

C7 196 or 197 160 240 objective 249.6 247 245 246

time 4181

Table 4. Random instances: average objective values

n w hopt FCM1 FCM2 FCM3

50 50 50 52 52 51.8

50 40 60 62.6 63.4 62

100 50 50 52 51.4 51.2

100 50 75 76.8 77 77

200 100 100 101.4 102 101.8

200 120 160 163 162.4 163

500 100 200 202.2 202.8 202.6

500 150 200 202.2 202 202

700 250 320 322.6 323 322.6

700 250 400 403.2 403.6 403

14 José A. Moreno Pérez, J. Marcos Moreno Vega

Table 5. Stopping rule: average objective values and iterations

β1 = 0.05 β1 = 0.03 β1 = 0.02

β2 = 3 β2 = 1.5 β2 = 3 β2 = 1.5 β2 = 3 β2 = 1.5

n w hopt

50 40 60 objective 63.2 62 63.4 62.2 62.6 62

iteration 3.6 16.6 3 21.8 4 10.2

50 50 50 objective 51.8 51.8 52 51.4 52 51.6

iteration 1.4 4.2 1.8 11.8 9.8 16.8

100 50 50 objective 52.4 51.8 51.8 52 51.6 51.8

iteration 1 1 1 1.8 1 1.8

100 50 75 objective 77.2 77 77.4 77 77.4 76.8

iteration 1.2 2 1 1.4 2 2

200 100 100 objective 102 102 102.2 102 102 102

iteration 1.2 1.4 1 1.2 1 1.4

200 120 160 objective 163.4 62.4 162.8 162 162.8 162

iteration 1.8 10.6 2.2 13.2 7.6 10.8

4. Hopper, E., Turton, B. (2001) An Empirical Investigation of Meta-heuristic and
Heuristic Algorithms for a 2D Packing Problem. European Journal of Opera-
tional Research 128 , 34-57

5. Hopper, E., Turton, B. (2001) A Review of the Application of Meta-Heuristic
Algorithms to 2D Strip Packing Problems. Artificial Intelligence Review 16,
257-300

6. OR Library. http://mscmga.ms.ic.ac.uk/jeb/orlib/stripinfo.html)
7. Pelta, D., Blanco, A., Verdegay, J. L., (2002) Fuzzy Adaptive Neighborhood

Search: Examples of Applications In this same volume

