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Abstract

Variable Neighborhood Search (VNS) is a recent and effective metaheuristic for
solving combinatorial and global optimization problems. It is capable of escaping from
the local optima by systematic changes of the neighborhood structures within the
search. In this paper several parallelization strategies for VNS have been proposed
and compared on the large instances of the p-median problem.

Résumé

La Recherche à Voisinage Variable (RVV) est une métaheuristique récente et ef-
ficace pour la résolution de problèmes d’optimisation combinatoire ou globale. Elle
permet de quitter un optimum local par des changements systématiques de structures
de voisinage à l’intérieur de la recherche. Pour cet article plusieurs stratégies de paral-
lélisation de RVV sont proposées et composées sur de grandes instances de problème
de la p-médiane.
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1 Introduction

A combinatorial optimization problem consists of finding, the minimum or maximum of a
real valued function f defined on a discrete or partially discrete set. If it is a minimization
problem, it can be formulated as follows

min{f(x) : x ∈ X}. (1)

Here X is called solution space, x represents a feasible solution and f the objective function
of the problem. An optimal solution x∗ (or a global minimum) of the problem is a feasible
solution where the minimum of (1) is reached. That is, x∗ ∈ X has a property that
f(x∗) ≤ f(x), ∀x ∈ X. A local minimum x′ of the problem (1), with respect to (w.r.t.
for short) the neighborhood structure N is a feasible solution x′ ∈ X that satisfies the
following: f(x∗) ≤ f(x), ∀x ∈ N(x). Therefore any local or neighborhood search method
(i.e., method that only moves to a better neighbor of the current solution) is trapped when
it reaches a local minimum.

Several metaheuristics, or frameworks for building heuristics, extend this scheme to
avoid being trapped in a local optimum. The best known of them are Genetic Search,
Simulated Annealing and Tabu Search (for discussion of these metaheuristics and oth-
ers, the reader is referred to the books of surveys edited by Reeves [26] and Glover and
Kochenberger [9]). Variable Neighborhood Search (VNS) ([23, 24, 12, 13, 14, 15]) is a
recent metaheuristic which exploits systematically the idea of neighborhood change, both
in the descent to local minima and in the escape from the valleys which contain them.

Hence, VNS proceeds by a descent method to a local minimum, then explore a series
of different predefined neighborhoods of this solution. Each time, one or several points
of the current neighborhood are used as starting point for a local descent method, that
stops at a local minimum. The search jumps to the new local minimum if and only if it is
better than the incumbent. In this sense, VNS is not a trajectory following method (that
allows non-improving moves within the same neighborhood) as Simulated Annealing or
Tabu Search.

The application of parallelism to a metaheuristic can and must allow to reduce the
computational time (by a partition of the sequential program) or to increase the exploration
in the search space (by the application of independent search threads). In this survey,
several strategies for parallelizing a VNS are considered. We analyze and test them with
large instances of the p-Median problem. The next section describes the basics of the
VNS metaheuristic. Several parallelization strategies for VNS are analyzed in Section 3.
In Section 4 analyze the characteristics of the VNS applied to solve p-median problem.
Computational experiments and conclusions are presented in Sections 5 and 6 respectively.

2 The VNS metaheuristic

The basic idea of VNS is a change of neighborhoods in search for a better solution. VNS
proceeds by a descent method to a local minimum, then explores, systematically or at
random, increasingly distant neighborhoods of this solution. Each time, one or several
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points within the current neighborhood are used as initial solution for a local descent.
One jumps from the current solution to a new one if and only if a better solution has
been found. So VNS is not a trajectory following method (as Simulated Annealing or
Tabu Search) and does not specify forbidden moves. Despite its simplicity it proves to be
effective. VNS exploits systematically the following observations:

• A local minimum with respect to one neighborhood structure is not necessary so for
another;

• A global minimum is a local minimum with respect to all possible neighborhood
structures.

• For many problems local minima with respect to one or several neighborhoods are
relatively close to each other.

This last observation, which is empirical, implies that a local optimum often provides
some information about the global one. This may for instance be several variables with the
same value in both. However, it is usually not known which ones are such. An organized
study of the neighborhood of this local optimum is therefore in order, until a better one is
found.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions are
simple and require few, and sometimes no parameters. Therefore in addition to providing
very good solutions, often in simpler ways than other methods, VNS gives insight into the
reasons for such a performance, which in turn can lead to more efficient and sophisticated
implementations.

Variable neighborhood descent (VND) is a deterministic version of VNS. It is based on
Fact 1 above, i.e., a local optimum for a first type of move x← x′ (or heuristic, or within
the neighborhood N1(x)) is not necessary one for another type of move x ← x̃ (within
neighborhood N2(x))). It may thus be advantageous to combine descent heuristics. This
leads to the basic VND scheme presented in Figure 1.

Another simple application of the VNS principle is reduced VNS. It is a pure stochas-
tic search method: solutions from the pre-selected neighborhoods are chosen at ran-
dom. Its efficiency is mostly based on Fact 3 described above. A set of neighborhoods
N1(x), N2(x), . . . , Nkmax(x) will be considered around the current point x (which may be
or not a local optimum). Usually, these neighborhoods will be nested, i.e., each one con-
tains the previous. Then a point is chosen at random in the first neighborhood. If its
value is better than that of the incumbent (i.e., f(x′) < f(x)), the search is recentered
there (x ← x′). Otherwise, one proceeds to the next neighborhood. After all neighbor-
hoods have been considered, one begins again with the first, until a stopping condition is
satisfied (usually it will be the maximum computing time since the last improvement, or
the maximum number of iterations). The description of the steps of Reduced VNS is as
shown in Figure 2.

In the previous two methods, we examined how to use variable neighborhoods in descent
to a local optimum and in finding promising regions for near-optimal solutions. Merging the
tools for both tasks leads to the General Variable Neighborhood Search scheme. We first
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VND method

1. Find an initial solution x.

2. Repeat the following sequence until no improvement is obtained:
(i) Set ℓ← 1;
(ii) Repeat the following steps until ℓ = ℓmax:

(a) Find the best neighbor x′ of x (x′ ∈ Nℓ(x));

(b) If the solution x′ thus obtained is better than x, set x← x′ and ℓ← 1; otherwise,
set ℓ← ℓ + 1;

Figure 1: Variable Neighborhood Descent Method

RVNS method

1. Find an initial solution x; choose a stopping condition;

2. Repeat the following until a stoping condition is met:
(i) k ← 1;
(ii) Repeat the following steps until k = kmax:

(a) Shake. Take (at random) a solution x′ from Nk(x).

(b) If this point is better than the incumbent, move there (x ← x′), and continue
the search with N1 (k ← 1); otherwise, set k ← k + 1.

Figure 2: Reduced Variable Neighborhood Search Method

discuss how to combine a local search with systematic changes of neighborhoods around
the local optimum found. We then obtain the Basic VNS scheme of Figure 3.

The simplest basic VNS is sometimes called Iterated Local Search [20]. The method
gets by a perturbation a neighbor of the current solution, makes a local search from it
to a local optimum, and moves to it if there has been an improvement. The steps of the
simplest VNS are obtained taking only one neighborhood (see Figure 4).

If instead of simple local search, one uses Variable Neighborhood Descent and if one
improves the initial solution found by Reduced VNS, one obtains the General Variable
Neighborhood Search scheme (GVNS) shown in Figure 5.

Then a C code for the simple version of sequential Variable Neighborhood Search is
shown in Figure 6.

This code of the VNS can be applied to any problem if the user provides the initialization
procedure initialize, the shake shake, the local search local search and the function
improved to test if the solution is improved or not.

For those problem consisting on selecting a fixed number p of items from an universe
U = {u1, ..., un}, the local search and the shake based on the interchange moves can also
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BVNS method

1. Find an initial solution x; choose a stopping condition;

2. Repeat until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood of x (x′ ∈
Nk(x));

(b) Local search. Apply some local search method with x′ as initial solution; denote
with x′′ the so obtained local optimum;

(c) Move or not. If the local optimum x′′ is better than the incumbent x, move there
(x← x′′), and continue the search with N1 (k ← 1); otherwise, set k ← k + 1;

Figure 3: Basic Variable Neighborhood Search Method

VNS algorithm

1. Initialization:

Find an initial solution x. Set x∗ → x.

2. Repeat the following until a stoping condition is met.

(a) Shake:

Take (at random) a solution x′ in N (x).

(b) Local Search:

Apply the local search method with x′ as initial; denote x′′ the so obtained local
optimum.

(c) Improve or not:

If x′′ is better than x∗, do x∗ → x′′.

Figure 4: Simple Variable Neighborhood Search Algorithm

be implemented using a function exchange also provided for the user for his problem. A
solution S is represented by an array S = [ui : i = 1, ..., n] where ui is the i-th element
of the solution, for i = 1, 2, ..., p, and the (i − p)-th element outside the solution, for
i = p + 1, ..., n.

The usual greedy local search is implemented by choosing iteratively the best possible
move among all interchange moves. Let Sij denote the solution obtained from S by inter-
changing ui and uj , for i = 1, ..., p and j = p + 1, ..., n. The pseudocode of the local search
is in Figure 7.

The code C for the sequential local search (SLS) is shown in Figure 8.
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GVNS algorithm

1. Initialization.
Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used
in the shaking phase, and the set of neighborhood structures Nℓ for ℓ = 1, . . . , ℓmax

that will be used in the local search; find an initial solution x and improve it by using
RVNS; choose a stopping condition;

2. Main step.
Repeat the following sequence until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking.
Generate a point x′ at random from the kth neighborhood Nk(x) of x;

(b) Local search by VND.
(b1) Set ℓ← 1;
(b2) Repeat the following steps until ℓ = ℓmax;
· Find the best neighbor x′′ of x′ in Nℓ(x

′);
· If f(x′′) < f(x′) set x′ ← x′′ and ℓ← 1; otherwise set ℓ← ℓ + 1;

(c) Move or not. If this local optimum is better than the incumbent, move there
(x← x′′), and continue the search with N1 (k ← 1); otherwise, set k ← k + 1;

Figure 5: General Variable Neighborhood Search Method

Sequential VNS Algorithm
1: initialize(best sol);

2: k = 0 ;

3: while (k < k max) {
4: k++ ;

5: cur sol = shake(best sol,k) ;

6: local search(cur sol) ;

7: if improved(cur sol,best sol)

8: best sol = cur sol ;

9: k = 0 ;

10: } /* if */

11: } /* while */

Figure 6: Sequential Variable Neighborhood Search Algorithm
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Local Search

Initialize S′

Repeat

S ← S′

S′ ← arg min{Cost(Sij) : i = 1, .., p, j = p + 1, ..., n}

Until Cost(S′) = Cost(S)

Figure 7: Local Search

Sequential Local Search
void seq local search(sol cur sol)

{
1: init sol = cur sol ;

2: while improved(cur sol,init sol))) {
3: for (i=p;i<n;i++)

4: for (j=0;j<p;j++) {
5: exchange(init sol,new sol,i,j) ;

6: if improved(new sol,cur sol)

7: cur sol = new sol

8: } /* for */

9: } /* while */

} /* seq local search */

Figure 8: Sequential Local Search Pseudocode

The Shake procedure consists of, given the size k for the shake, choosing k times two
points at random, ui and uj ; ui in the solution and uj outside the solution, and performing
the corresponding interchange move (see Figure 9).

The C code for the shake procedure is in Figure 10.

3 The parallelizations

The application of parallelism to a metaheuristic can and must allow to reduce the compu-
tational time (by the partition of the sequential program) or to increase the exploration in
the search space (by the application of independent search threads). In order to do it, we
need to know the parts of the code of an appropriate size and that can be partitioned to
be solved simultaneously. Several strategies for parallelizing a VNS algorithm have been
proposed and analyzed in the literature (see [8, 4]). The parallel VNS heuristics reported
were coded in C (using the OpenMP, a model for parallel programming portable across
shared memory architectures) in [8] and in Fortran 90 (using MPL) in [4].

Using the OpenMp, pseudocodes very similar to a C programs were obtained as adap-
tation of codes originally written for serial machines that implement the sequential VNS.
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Shake

Repeat k times

Choose 1 < i ≤ p and p < j ≤ n at random

Let Sij ← S − {vi}+ {vj}

Do S ← Sij

Figure 9: Shake Procedure

Sequential Shake
void seq shake(sol cur sol)

{
1: init sol = cur sol ;

2: for (r=0;r<k;r++) {
3: i = rnd % p ;

4: j = p + rnd % (n-p) ;

5: exchange(cur sol,new sol,i,j) ;

6: cur sol = new sol ;

7: } /* for */

} /* seq shake */

Figure 10: Sequential Shake Pseudocode

The OpenMP is based on a combination of compiler directives, library routines and envi-
ronment variables that can be used to specify shared memory parallelism in Fortran and
C/C++ programs (see [35]). Only a few lines of the sequential code had to be replaced
by specific directives of the OpenMP compiler in the pseudocode to get the code of the
parallel programs used in the computational experiments.

Four different parallelization strategies have been reported in the literature; two are
simple parallelization and the other two are more complex strategies. The two simple par-
allelizations of the VNS consist of parallelizing the local search and of replicating the whole
VNS in the processors. The other two additional parallelization strategies are proposed
in [8] and [4], and have been tested with known large instances of the p-Median Problem.

The first of the two simple parallelization strategies analyzed in [8] attempts to reduce
computation time by parallelizing the local search in the sequential VNS and is denoted
SPVNS (Synchronous Parallel VNS). The second one implements an independent search
strategy that runs an independent VNS procedure on each processor and is denoted RPVNS
(Replicated Parallel VNS).

The parallel local search is implemented trying to get a balanced load among the proces-
sors. The procedure divides the set of p(n–p) solutions of the neighborhood of the current
solution among the available num proc processors to look for the best one. Figure 11
shows the code of the procedure par local search that implements parallel local search.
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Algorithm PLS
void par local search(sol cur sol)

{
1: init sol = cur sol

2: while (improved()) {
3: load = (n-p) div (num proc) ;

4: parallel (pr = 0; pr symbol< num proc; pr++) {
5: tmp sol(pr) = init sol;

6: low = pr * load ; high = low + load ;

7: for (i = low; i symbol< high; i++)

8: for (j = 0; j symbol< p; j++) {
9: exchange(init sol,new sol,i,j)

10: if improve(new sol,tmp sol(pr))

11: tmp sol(pr) = new sol ;

12: } /* for */

13: critical

14: if improve(tmp sol(pr), cur sol)

15: cur sol = tmp sol(pr);

16: } /* parallel */

17: } /* while */

} /* par local search */

Figure 11: Parallel Local Search Pseudocode

Then the pseudocode of the Synchronous Parallel Variable Neighborhood Search SPVNS
is shown in Figure 12.

The second simple parallelization of the VNS is the Replicated Parallel VNS (RPVNS)
that tries to search for a better solution by means of the exploration of a wider zone of the
solution space, using multistart strategies. It is done by increasing the number of neighbor
solutions to start a local search (several starting solutions in the same neighborhood or
in different ones). This method is like a multistart procedure where each local search is
replaced by the VNS. The pseudocode of the RPVNS is described in the Figure 13.

The two additional parallelization strategies use cooperation mechanisms to improve
the performance. The Replicated-Shaking VNS parallelization (RSVNS) of the VNS pro-
posed in [8] applies a synchronous cooperation mechanism through a classical master-slave
approach. The Cooperative Neighbourhood VNS (CNVNS) parallelization proposed in [4]
applies a cooperative multi-search method based on a central-memory mechanism.

In the Replicated-Shaking VNS (RSVNS), the master processor runs a sequential VNS
but the current solution is sent to each slave processor that shakes it to obtain an ini-
tial solution from which the local search is started. The solutions obtained by the slaves
are passed on to the master that selects the best and continues the algorithm. The in-
dependence between the local searches in the VNS allows their execution in independent
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Algorithm SPVNS
1: initialize(best sol);

2: k = 0 ;

3: while (k symbol< k max) {
4: k++ ;

5: cur sol = shake(best sol, k);

6: par local search(cur sol);

7: if improved(cur sol,best sol) {
8: best sol = cur sol ;

9: k = 0 ;

10: } /* if */

11: } /* while */

Figure 12: Synchronous Parallel Variable Neighborhood Search Pseudocode

Algorithm RPVNS
1: initialize(joint best sol);

2: parallel pr = 0, num proc-1 {
3: Initialize(best sol(pr));

4: k(pr) = 0 ;

5: while (k(pr) symbol< k max) {
6: k(pr)++;

7: cur sol(pr) = shake(best sol(pr), k(pr));

8: local search(cur sol(pr));

9: if improved(cur sol(pr), best sol(pr)) {
10: best sol(pr) = cur sol(pr);

11: k(pr) = 0;

12: } /* if */

13: } /* while */

14: critical

15: if improve(best sol(pr), joint best sol)

16: joint best sol = best sol(pr);

17: } /* parallel */

Figure 13: Replicated Parallel Variable Neighborhood Search Pseudocode

processors and updating the information about the joint best solution found. This infor-
mation must be available for all the processors in order to improve the intensification of
the search. The Replicated-Shaking VNS (RSVNS) pseudocode is described in Figure 14.

The Cooperative Neighbourhood VNS (CNVNS) proposed by [4] is obtaining by apply-
ing the cooperative multi-search method to the VNS metaheuristic. This parallelization
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Algorithm RSVNS
1: initialize(joint best sol);

2: k = 0 ;

3: while (k symbol< k max) {
4: k++;

5: joint cur sol = joint best sol ;

6: parallel pr = 0, num proc-1 {
7: cur sol(pr) = shake(joint best sol, k);

8: local search(cur sol(pr));

9: critical

10: if improved(cur sol(pr), joint cur sol)

11: joint cur sol = cur sol(pr);

12: barrier ;

13: master ;

14: if improved(joint cur sol, joint best sol) {
15: joint best sol = joint cur sol;

16: k = 0;

17: } /* if */

18: barrier

19: } /* parallel */

20: } /* while */

Figure 14: Replicated-Shaking Parallel Variable Neighborhood Search Pseudocode

method is based on the central-memory mechanism that has been successfully applied to
a number of different combinatorial problem. In this approach, several independent VNS’s
cooperate by asynchronously exchanging information about the best solution identified so
far, thus conserving the simplicity of the original, sequential VNS ideas. The asynchronous
cooperative multi-search parallel VNS proposed allows a broader exploration of the solution
space by several VNS searches.

The controlled random search nature of the shaking in the VNS and its efficiency is
altered significantly by the cooperation mechanism that implement frequent solution ex-
changes. However the CNVNS implements a cooperation mechanism that allows each
individual access to the current overall best solution without disturbing its normal pro-
ceedings. Individual VNS processes communicate exclusively with a central memory or
master. There are no communications among individual VNS processes. The master
keeps, updates, and communicates the current overall best solution. Solution updates and
communications are performed following messages from the individual VNS processes. The
master initiates the algorithms by executing a parallel RVNS (without local search) and
terminates the whole search by applying a stopping rule.

Each processors implements the same VNS algorithm. It proceeds with the VNS explo-
ration for as long as it improves the solution. When the solution is not improved any more
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it is communicated to the master if better than the last communication, and the overall
best solution is requested from the master. The search is the continued starting from the
best overall solution in the current neighborhood. The CNVNS procedure is summarized
as follows:

Cooperative Neighborhood VNS

• Master process:

– Executes parallel RVNS;

– Sends initial solutions to the individual VNS processes;

– After each communication from an individual VNS process, updates the best
overall and communicate it back to the requesting VNS process.

– Verifies the stopping condition

• Each VNS process

– Receives the initial solution, selects randomly a neighborhood and explores it
by shaking and local search;

– If the solution is improved, the search proceeds from the first neighborhood:
shake and local search

– If the solution cannot be improved, the process

∗ Communicates its solution to the master;

∗ Requests the overall best solution from the master;

∗ Continuous the search from the current neighborhood.

The pseudo-codes, similar to the above parallelizations, of the master and workers
procedures of the Cooperative Neighbourhood parallel Variable Neighborhood Search are
shown in Figures 15 and 16.

4 Application of VNS for the p-median

The p-median problem has been chosen as test problem for a wide set of basic VNS algo-
rithms and extensions appeared in literature.

4.1 The p-Median Problem

The p-median problem is a location/allocation problem consisting of selecting the p loca-
tions for the facilities that minimize the sum of the distances from a set of users to the
set of facility points. It belongs to a wide class of hard combinatorial problems where
the solutions consists in the selection of p items from an universe. The evaluation of the
objective function of the location/allocation problems ranges from the simplest one to that
needing to solve another hard problem or to perform a simulation process. The standard
moves for this class of problems are the interchange moves. An interchange move consists
of replacing an item in the solution by another one out of the solution.
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Algorithm CNVNS
Master process
1: parallel RVNS(init sol(pr): pr=1..num proc);

2: initialize(joint best sol);

3: for (pr=1,pr<num proc,pr++) {
4: send(init sol(pr): pr=1..num proc)

5: } /* for */

6: while (not stopping criterion) {
7: get(improved sol(pr));
8: if improved(improved sol(pr), joint best sol)

9: joint best sol = improved sol(pr);

10: init sol(pr) = joint best sol ;

11: send(init sol(pr): pr=1..num proc) ;

12: } /* while */

Figure 15: Master CNVNS Pseudocode

Algorithm CNVNS
Master process
Worker(pr) process
1: get(best sol pr));

2: k = 0 ;

3: while (k < k max) {
4: k++ ;

5: cur sol = shake(best sol pr,k) ;

6: local search(cur sol) ;

7: if improved(cur sol,best sol pr)

8: best sol pr = cur sol ;

9: k = 0 ;

10: } /* if */

11: } /* while */

12: Return best sol pr

Figure 16: Workers CNVNS Pseudocode

Consider a space S that includes a set of potential location points for facilities or facility
centers and a given set of users with their corresponding demand for the facility. Consider
also a real-valued function D : S × S → ℜ whose values D(s, t) represents, ∀s, t ∈ S, the
distance traveled (or costs incurred) for satisfying a unit of demand of a user located at
s from a facility located at t. The distance from a finite set of facility points X ⊂ S to a
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user located at s is:
D(X, s) = min

x∈X
D(x, s).

The total transportation cost for satisfying the demand of all the users located at a finite
set of points U ⊆ S from the facilities located at the points of X ⊂ S is:

T (X, U) =
∑

u∈U

D(X, u) · w(u),

where w(u) is the total amount of demand of all the users located at u. The p-median
problem consists of locating p facility centers (or medians) in S in order to minimize the
total transportation cost for satisfying the demand of all users. Several formulations and
extensions of this optimization problem are useful to model many real word situations,
such as the location of industrial plants, warehouses and public facilities. When the set
of potential locations and the set of users are finite, the problem admits a combinatorial
formulation. This formulation is as follows.

Let L = {v1, v2, ..., vm} be the finite set of potential location for the p medians, and
U = {u1, u2, ..., un} be the set of demand points for the facility. Consider also a weight
vector w = [wi : i = 1, ..., n] representing the amount of demand of the users located
at demand point ui. Let D be the n × m matrix whose entries contain the distances
dist(ui, vj) = dij between the demand point ui and the potential location vj , for i = 1, ..., n,
j = 1, ..., m; i.e.,

D = [dij : i = 1, ..., n, j = 1, ..., m] = [Dist(ui, vj) : i1, ..., n, j = 1, ..., m].

The p-median problem consists of choosing the location of p medians from L minimizing
the total transportation cost for satisfying the whole demand. The objective of the com-
binatorial problem is to minimize the sum of the weighted distances (or transportation
costs), i.e.,

minimize
∑

ui∈U

min
vj∈X
{wi ·Dist(ui, vj)}

where X ⊆ L and |X| = p. The capacitated version (see [6, 19]) includes a fixed capacity
for the facility center located at each point of L that bounds the amount of demand served
by it, but usually the problem is uncapacitated and each customer is supplied from its
closest facility.

Beside this combinatorial formulation, the p-median problem has a formulation in terms
of integer programming with matrix D and vector w as data. The formulation includes two
sets of decision variables: the location variables y = [yj : j = 1, ..., m] and the allocation
variables x = [xij : i = 1, ..., n, j = 1, ..., n]. The meaning of these variables is as follows:

• yj = 1 if a facility is located at vj and yj = 0 otherwise.

• xij = 1 if all the users at demand point ui are served from a facility located at vj

and xij = 0 otherwise.
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The integer linear programming formulation of the p-median problem is then:

Minimize
n∑

i=1

m∑

j=1

widijxij

Subject to
m∑

j=1

xij = 1, i = 1, ..., n

xij ≤ yj , i = 1, ..., n, j = 1, ..., m
m∑

j=1

yj = p

xij , yj ∈ {0, 1}, i = 1, ..., n, j = 1, ..., m.

However, the most common version of the p-median problem is the unweighted case where
all the weights are equal and can be eliminated from the formulation.

The unweighted and uncapacitated p-median problem is NP-hard [17]. Extensive ref-
erences to works on this and related problems are contained in the main books, surveys
and reviews in Location like [3, 2, 22, 7].

Many heuristics and exact methods have been proposed for solving it. Exact algorithms
were developed in [1], [10] and others. Classical heuristics for the p-median problem often
cited in the literature are Greedy [18], Alternate [21] and Interchange [33]. The basic Greedy
heuristics starts with an empty set and repeat the following greedy step; the facility point
that least increase the objective of the resulting set is added. The Alternate heuristics,
from an arbitrary set of p locations “alternate” the following allocation and allocation
steps. In an allocation step, all the users are allocated to the nearest facility point. In
an location step, the best facility point for the set of users allocated to a single facility
point is chosen. These steps are iterated while some improvement is obtained. Finally, the
Interchange heuristic, from an arbitrary initial set of p facility points chosen as medians,
iteratively interchanges a facility points in the median set with another facility point out
of the median set.

Among other metaheuristics (see [29, 34, 25, 28, 30, 31, 32, 27]) the VNS and its variants
have been applied to the p-median problems (see [11, 16, 13, 15]).

4.2 Application of VNS to p-Median problem

In this section we describe some details of the application of VNS to the standard p-median
problem. In the standard instances of p-median problem, there are no weights associated
to the users and the set of potential locations for the facilities and the set of locations of
the users coincide. Then m = n and L = U is the universe of points and wi = 1, for
i = 1, ..., n. A solution of the p-median problem consists of a set S of p points from the
universe U to hold the facilities. The objective function is usually named cost function due
to the economical origin of the formulation of the problem.
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Therefore, the solutions are evaluated by the cost function computed as the sum of the
distances to the points in the solution.

Cost(S) =
∑

v∈U

Dist(v, S) =
∑

vi∈U

min
vj∈S

Dist(vi, vj)

Most of the heuristic searches use a constructive method and then apply a good strategy
to select base moves to apply. Basic constructive heuristics are used to generate an initial
solution for the searches. They consist of adding elements to an empty solution until a set
of p points is obtained. The base moves for this problem are the interchange moves.
They are used in most of the heuristic searches. Given a solution S, an element vi in the
solution and an element vj not in the solution, an interchange move consists of dropping
vi from S and adding vj to S.

The selection of a solution coding that provides an efficient way of implementing the
moves and evaluating the solutions is essential for the success of any search method. For
this purpose the following coding of the solutions are often applied. A solution S is rep-
resented by an array S = [vi : i = 1, ..., n] where vi is the i-th element of the solution, for
i = 1, 2, ..., p, and the (i− p)-th element outside the solution, for i = p + 1, ..., n.

The computation of the cost of the new solution after each move can be simplified by
storing the best allocation costs in a vector named Cost1[.], defined as:

Cost1[i] = min
j=1..p

Dist[vi, vj ], i = 1, ..., n.

and the second best allocation cost of vi, i = 1, ..., n, in

Cost2[i] = min
j=1..p,j 6=r(i)

Dist[vi, vj ].

where r(i) is such that Cost1[i] = Dist[vi, vr(i)]. The first and second best allocation costs
have been used in a Variable Neighborhood Decomposition Search (VNDS) by [16].

For 1 < i ≤ p and p < j ≤ n, let Sij be the new solution consisting in interchanging vi

and vj . Then the cost of the new solution is given by:

Cost(Sij) = min{Dist[vi, vj ], min
l=1,...,p,l 6=i

Dist[vi, vl]}

+

n∑

k=p+1

min{Dist[vk, vj ], min
l=1,...,p,l 6=i

Dist[vk, vl]},

which would imply O(pn) operations. However, using the values in Cost1 and Cost2, an
improved procedure takes O(pni +n) time, ni being the number of points assigned to point
vi. Note that if p is large then ni must be small and the difference between pn and pni +n

is important in shaking and local searches.
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5 Computational experience

The algorithms of [8] were coded in C and tested with instance of the p-median problem
where the distance matrix was taken from TSPLIB RL1400 that includes 1400 points. The
values for p where from 10 to 100 with step 10; i.e., 10, 20, ..., 100. The algorithms run
on the Origin 2000 (64 processors R10000 at 250-Mhz, with 8 Gbytes and O.S. IRIX 6.5)
of the European Center for Parallelism of Barcelona. The algorithm runs four times with
four different numbers of processors(1, 2, 4, and 8 respectively).

The results show that the algorithm SPVNS finds the same objective value using differ-
ent number of processors. The objective values obtained with SPVNS were worse than the
best known objective values. The comparison between the results of the four methods (the
sequential VNS and the three parallelizations) showed that the speed up increased with
the number of processors. However, the linearity was not reached due to the concurrent
access to the data in the shared memory. Some computer results on this instance of the
problem have been reported in [11], where several heuristics (including a basic VNS) were
compared.

They reported results of the algorithms RPVNS and RSVNS using 2, 4, and 8 proces-
sors. The best results were obtained for the algorithm RPVNS which gets CPU times near
to those obtained by the sequential algorithm and in most cases it gets better objective
values. Also they are better when the number of processors increases. The algorithm
RSVNS provides worse results than RPVNS both in CPU time and objective values.

The work by [4] extends to the VNS the success of the cooperative multi search method
that had been applied to a number of difficult combinatorial optimization problems [5].
They carried out extensive experimentations on the classical TSPLIB benchmark problem
instances with up to 11948 demand points and 1000 medians. Their results indicate that
the cooperative strategy yields, compared with the sequential VNS, significant gains in
terms of computation time without a loss in solution quality.

The CNVNS and the sequential VNS for comparison purposes where coded in
Fortran77. The cooperative parallel strategy was implemented using MPI. Computational
experiments were performed on a 64-processor SUN Enterprise 1000 with 400 MHz clock
and 64 gigabytes of RAM. Tests were run using 5, 10, 15 and 1 for the sequential version.

Note that, since VNS includes a random element in the shake, solving the same problem
repeatedly may yield different solutions. Therefore, the comparisons have to be based on
average values taking into account the standard deviations. However standard deviations
where extremely low or very low in all cases. This fact indicates that both the sequential
and the cooperative multi-search parallel are robust with respect to the random move in
the shake step.

VNS is based on the idea of aggressive exploration of neighborhoods, that is, on gener-
ation and evaluation of many different solutions. Consequently, when the evaluation of the
moves is not expensive in computing time (as is the case for the p-median instances using
the fast interchange), the communication overhead associated to parallel computation re-
sults in less search time and generally somewhat lower quality solutions for the same total
search time.
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6 Conclusions

The combination of the Variable Neighborhood Search and parallelism provides a useful
tool to solve hard problems. The VNS, as a combination of series of random and local
searches, is parallelizable in several ways. Two simple parallelization strategies are the
Synchronous Parallel VNS (SPVNS) that is obtained by parallelizing the local search and
the Replicated Parallel VNS (RPVNS) that is obtaining by parallelizing the whole pro-
cedure so that each processor runs in parallel a VNS. These parallelizations provide the
basic advantages of the parallel procedures. However using cooperative mechanisms, the
performance is improved by the Replicated-Shaking VNS (RSVNS) proposed in [8] that
applies a synchronous cooperation mechanism through a classical master-slave approach
and additionally improved by the Cooperative Neighborhood VNS (CNVNS) proposed in [4]
that applies a cooperative multi-search method based on a central-memory mechanism.
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