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Abstract

The p-median problem is one of the basic models in discrete location theory. As
with most location problems, it is classified as NP-hard, and so, heuristic methods are
usually used to solve it. Metaheuristics are frameworks for building heuristics. In this
survey, we examine the p-median, with the aim of providing an overview on advances
in solving it using recent procedures based on metaheuristic rules.

Key Words: Metaheuristics, location, p-median.

Résumé

Le problème de la p-médiane est un des modèles de base de la théorie de la localisa-
tion discrète. Comme la plupart des problèmes de localisation, il est NP-complet et des
méthodes heuristiques sont utilisées pour le résoudre. Les métaheuristiques sont des
cadres généraux pour construire des heuristiques. Dans cet article de synthèse, nous
examinons le problème de la p-médiane, dans le but de présenter une vue générale
des avancées dans sa résolution grâce à des procédures récentes utilisant des règles
métaheuristiques.

Mots clés : métaheuristiques, localisation, p-médiane.
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1 Introduction

Let us consider a combinatorial or global optimization problem

min{f(x) |x ∈ X} (1)

where f(x) is the objective function to be minimized and X the set of feasible solutions. A
solution x∗ ∈ X is optimal if

f(x∗) ≤ f(x), ∀x ∈ X. (2)

An exact algorithm for problem (1), if one exists, finds an optimal solution x∗, together
with the proof of its optimality, or shows that there is no feasible solution (X = ∅), or the
problem is ill-defined (solution is unbounded). On the other hand, a heuristic algorithm
for (1) finds quickly a solution x′ that is “near” to being optimal. The metaheuristics are
general strategies to design heuristic algorithms.

Location analysis is a field of Operational Research that includes a rich collection of
mathematical models. Roughly speaking, a problem is classified to belong to the location
field if some decision regarding the position of new facilities has to be made. In general, the
objective or goal of the location problem is related with the distance between new facilities
and other elements of the space where they have to be positioned. Location models may
be divided into three groups: continuous (X ⊆ Rq), discrete (X is finite) and network
models (X is a finite union of linear, continuous sets). Another possible classification
is as a median (minisum) or center (minimax) problem, depending on the nature of the
objective function considered. Location models are also deterministic or stochastic, linear
or nonlinear, single or multi criteria, and so on. See several survey articles and books
(Love et al. (1988), Brandeau and Chiu (1989), Mirchandani and Francis (1990), Drezner
(1995), Daskin 1995, etc.). Moreover, several special issues of journals have been devoted
to locational analysis (e.g., more recently, Annals of Operations Research, Vol. 111 (2002),
Computers and Operations Research, Vol. 29 (2002)). Also, the main topic of two journals
(Location Theory (1993 - 1997) and Studies in Locational Analysis) deals exclusively with
location problems.

Numerous instances of location problems, arising in Operational Research and other
fields, have proven too large for an exact solution to be found in reasonable time. It is
well-known from complexity theory (Garey and Johnson, 1978; Papadimitriou, 1994) that
thousands of problems are NP-hard, that no algorithm with a number of steps polynomial
in the size of the instance is known, and that finding one for any such problem would entail
obtaining one for any and all of them. Moreover, in some cases where a problem admits
a polynomial algorithm, the power of this polynomial may be so large that instances of
realistic size cannot be solved in reasonable time in the worst case, and sometimes also in
the average case or most of the time.

So one is often forced to resort to heuristics, that are capable of yielding quickly an
approximate solution, or sometimes an optimal solution but without proof of its optimality.
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Some of these heuristics have a worst-case guarantee, i.e., the solution xh obtained satisfies

f(xh) − f(x)

f(xh)
≤ ε, ∀x ∈ X, (3)

for some ε, which is, however, rarely small. Moreover, this ε is usually much larger than
the error observed in practice and may therefore be a bad guide in selecting a heuristic. In
addition to avoiding excessive computing time, heuristics address another problem, that
of local optima. A local optimum xL of (1) has the property that

f(xL) ≤ f(x), ∀x ∈ N(xL) ∩ X, (4)

where N(xL) denotes a neighborhood of xL. (Ways to define such a neighborhood will
be discussed below.) If there are many local minima, the range of values they span may
be large. Moreover, the globally optimum value f(x∗) may differ substantially from the
average value of a local minimum, or even from the best such value among many, obtained
by some simple heuristic (a phenomenon called by Baum (1986), the central-limit catas-
trophe). There are, however, many ways to get out of local optima, or, more precisely,
the valleys which contain them (or set of solutions followed by the descent method under
consideration towards the local solution).

In the last decade, general heuristic methods, usually called metaheuristics, have engen-
dered a lot of success in OR practice. Metaheuristics provide a general framework to build
heuristics for combinatorial and global optimization problems. They have been the sub-
ject of intensive research since Kirkpatrick, Gellatt and Vecchi (1983) proposed Simulated
Annealing as a general scheme for building heuristics able to escape the local optimum
“trap”. Several other metaheuristics were soon proposed. For a discussion of the best-
known among them the reader is referred to the books edited by Reeves (1993) and Glover
and Kochenberger (2003). Some of the many successful applications of metaheuristics are
also mentioned there.

In this survey we give an overview of heuristic methods with emphasis on recent results
of metaheuristic approaches used to solve one of the basic discrete facility location prob-
lems, the p-Median problem (PMP). Significant advances in the state-of-the-art may be
attributed to these newer methods.

2 Formulation

Consider a set L of m facilities (or location points), a set U of n users (or customers or
demand points), and a n×m matrix D with the distances traveled (or costs incurred) dij

for satisfying the demand of the user located at i from the facility located at j, for all j ∈ L

and i ∈ U . The objective is to minimize the sum of these distances or transportation costs

(min)
∑

i∈U

min
j∈J

dij ,
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where J ⊆ L and |J | = p. PMP can be defined as a purely mathematical problem: given
an n × m matrix D, select p columns of D in order that the sum of minimum coefficients
in each line within these columns be the smallest possible.

The p-median problem and its extensions are useful to model many real world situations,
such as the location of industrial plants, warehouses and public facilities (see for example
Christofides 1975, for a list of applications). PMP can also be interpreted in terms of
cluster analysis; locations of users are then replaced by points in an m-dimensional space
(see Hansen and Jaumard, 1997, for a survey of cluster analysis from a mathematical
programming viewpoint). It may thus offer a powerful tool for data mining applications
(Ng and Han, 1994).

Beside this combinatorial formulation, the PMP has also an integer programming one.
Let us define two sets of decision variables: (i) yj = 1, if a facility is opened in j ∈ L, and
0, otherwise; (ii) xij = 1, if customer i is served from a facility located in j ∈ L, and 0,
otherwise. Then the integer programming formulation is as follows:

min
∑

i

∑

j

dijxij (5)

subject to

∑

j

xij = 1, ∀i, (6)

xij ≤ yj , ∀i, j, (7)
∑

j

yj = p, (8)

xij , yj ∈ {0, 1}. (9)

Constraints (6) express that the demand of each user must be met. Constraints (7)
prevent any user from being supplied from a site with an unopened facility. The total
number of open facilities is set to p by constraint (8).

3 Test problems

Most often test instances used in comparing heuristics for PMP are:

(i) OR-Library instances. There are 40 orlib problems from Beasley (1985), where
the set of facility sites is identical to the set of users. The problem parameters range from
instances with n = 100 nodes and p = 5, 10, 20 and 33 up to instances with n = 900 and
p = 5, 10, 90. All these test problems are solved exactly (Beasley, 1985), which makes them
suitable for computational comparisons. OR-Library is available at the webpage.1

1http://mscmga.ms.ic.ac.uk/info.html
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(ii) TSP-Lib instances. The larger problem instances are usually taken from the travel-
ling salesman library, Reinelt (1991). They are available at the TSP-Lib webpage.2

(iii) Rolland et al. instances. Rolland et al. (1996) tested their heuristics with non
Euclidean instances with up to 500 nodes and potential facilities. Distances between nodes
are random numbers from some interval. This set is available (from the authors or from
us) upon request.

(iv) Alberta, Galvão, Koerkel, Daskin and Pizzolato instances. Five different sets
of older instances are recently collected and used in Alp et al. (2003). They are available
at Erkut’s webpage.3

(v) Resende and Werneck instances. A new class of instances for PMP is introduced
recently in Resende and Werneck (2004). These instances are generated in the same way
as those in the Rolland et al. set above: each instance is a square matrix in which each
entry (i, j) represents the cost of assigning user i to facility j. Instances with 100, 250,
500 and 1000 users were tested, each with values of p ranging from 10 to n/2. This set is
available from the authors upon request.

(vi) Kochetov instances. This collection of test instances is classified into four groups:
(a) instances on perfect codes (PCodes); (b) instances on chess-boards (Chess); (c) in-
stances on finite projective planes (FPP); (d) instances with large duality gap (Gap-A,
Gap-B, Gap-C). They are down-loadable at the webpage.4 At the same site the codes of
several solution methods are also provided: (a) exact branch and bound; (b) simulated
annealing; (c) probabilistic TS (described below as well); (d) genetic algorithm.

4 Classical heuristics

Heuristics for solving PMP may be divided into two groups: (I) Classical heuristics and
(II) Metaheuristics. Methods in each group may be further classified according to their
similarities. In Table 1 we give one possible classification of both groups of methods for
the PMP.

Classical heuristics for the p-median problem often cited in the literature may be divided
into three groups (see Table 1): Constructive (CH); Local search (LS); those based on
Mathematical programming (MP) formulations. Within these groups we have: (i) Greedy,
(ii) Stingy, (iii) Dual ascent, (iv) Composite (v) Alternate, (vi) Interchange, (vii) Dynamic
programming (DP); (viii) Lagrangian relaxation (RL), and (ix) Aggregation (AG) heuristics.
The first four are constructive heuristics, while the next two need a feasible initial solution.
The last three may be classified in the Mathematical programming group.

2http://www.iwr.uni-heidelberg.de/groups/compt/software/TSPLIB95
3http://www.bus.ualberta.ca/eerkut/testproblems
4http://www.math.nsc.ru/AP/benchmarks/P-median/p-med eng.html
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Table 1: Classification of p-median heuristics (the general types are: Constructive heuristics
(CH), Local Search (LS), Mathematical Programming (MP) and MetaHeuristics (MH)).

Type Heuristic References

CH Greedy Kuehn & Hamburger (1963), Whitaker (1983).

Stingy Feldman et al. (1966), Moreno-Pérez (1991),

Salhi & Atkinson (1995).

Dual ascent Galvão (1977, 1980), Erlenkotter (1978), Captivo (1991).

Composite Moreno-Pérez et al. (1991), Captivo (1991),

Pizzolato (1994), Salhi (1997).

LS Alternate Maranzana (1964).

Interchange Teitz & Bart (1968), Whitaker (1983), Hansen & Mladenović (1997),

Resende & Werneck (2003), Kochetov et al. (2005).

MP Dynamic Hribar and Daskin (1997).

programming

Lagrangian Cornuejols et al. (1977), Mulvey & Crowder (1979),

relaxation Galvão (1980), Beasley (1993), Daskin (1995),

Senne & Lorena (2000), Barahona & Anbil (2000),

Beltran et al. (2004).

Aggregation Hillsman & Rhoda (1978), Erkut & Bozkaya (1999), Casillas (1987),

Current & Schilling (1987), Hodgson & Neuman (1993),

Hodgson & Salhi (1998), Francis et al. (2000), Francis et al. (2003)

MH Tabu search Mladenovic et al. (1995, 1996), Voss (1996),

Rolland et al. (1996), Salhi (2002),

Kochetov (2001), Goncharov & Kochetov (2002).

Variable neighbor- Hansen & Mladenović (1997), Hansen et al. (2001),

hood search Garćıa-López et al. (2002), Crainic et al. (2004).

Genetic search Hosage & Goodchild (1986), Dibbie & Densham (1993),

Moreno-Perez et al. (1994), Erkut et al. (2001),

Alp et al. (2003).

Scatter search Garćıa-López et al. (2003).

Simulated Murray & Church (1996), Chiyoshi & Galvão (2000),

Annealing Levanova & Loresh (2004).

Heuristic Rosing et al. (1996), Rosing & ReVelle (1997),

concentration Rosing et al. (1999).

Ant colony Levanova & Loresh (2004).

Neural Networks Domı́nguez Merino and Muñoz Pérez (2002),

Domı́nguez Merino et al. (2003).

Decomposition Dai & Cheung (1997), Taillard (2003).

Hybrids Resende & Werneck (2004).
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(i) Greedy. The Greedy heuristic (Kuehn and Hamburger, 1963) starts with an empty set
of open facilities, and then the 1-median problem on L is solved and added to this set. Faci-
lities are then added one by one until the number p is reached; each time the location which
most reduces total cost is selected. An efficient implementation is given in Whitaker (1983).

(ii) Stingy. The Stingy heuristic (Feldman, et al., 1966), also known as Drop or Greedy-
Drop, starts with all m facilities opened, and then removes them one by one until the
number of facilities has been reduced to p; each time the location which least increases
total cost is selected. A modified implementation of the stingy heuristic is to start from a
subset instead of the entire set of potential sites (Salhi and Atkinson, 1995).

(iii) Dual ascent. Another type of heuristic suggested in the literature is based on the
relaxed dual of the integer programming formulation of PMP and uses the well-known Dual
ascent heuristic DUALOC (Erlenkotter, 1978). Such heuristics for solving the p-median
problem are proposed in Galvão (1980) and in Captivo (1991).

(iv) Composite heuristics. Several hybrids of these heuristics have been suggested. For
example, in the GreedyG heuristic (Captivo, 1991), in each step of Greedy, the Alternate
procedure is run. A combination of Alternate and Interchange heuristics has been suggested
in Pizzolato (1994). In Moreno-Pérez et al. (1991), a variant of Stingy (or Greedy-Drop) is
compared with Greedy + Alternate and Multistart Alternate. In Salhi’s (1997) perturbation
heuristic, Stingy and Greedy are run one after another, each having a given number of steps.
The search allows exploration of infeasible regions by oscillating around feasibility. The
combination of Greedy and Interchange, where the Greedy solution is chosen as the initial
one for Interchange, has been most often used for comparison with other newly proposed
methods (see for example Voss, 1996, and Hansen and Mladenović, 1997).

(v) Alternate. In the first iteration of Alternate (Maranzana, 1964), facilities are located
at p points chosen in L, users assigned to the closest facility, and the 1-median problem
solved for each facility’s set of users. Then the procedure is iterated with these new
locations of the facilities until no more changes in assignments occur. Since the iterations
consist of alternately locating the facilities and then allocating users to them, this method
will be referred to as the alternating heuristic. This heuristic may switch to an exhaustive
exact method if all possible

(

m
p

)

subsets of L are chosen as an initial solution. However,
this is not usually the case since the complexity of the algorithm is then increased by an
O(mp).

(vi) Interchange. The Interchange procedure (Teitz and Bart, 1968) is commonly used
as a standard to compare with other methods. Here a certain pattern of p facilities is
given initially; then, facilities are moved iteratively, one by one, to vacant sites with the
objective of reducing total cost; this local search process is stopped when movement of any
single facility fails to decrease the value of the objective function.

(vii) Dynamic programming (DM). A heuristic that uses a dynamic programming
idea is suggested by Hribar and Daskin (1997). It may be viewed as reduced dynamic
programming or as an extended greedy constructive method. Instead of considering only
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the best facility as in Greedy, the q best solutions are stored in each iteration (q is a
parameter). The procedure stops when p facilities are reached, as in Greedy. This heuristic
was tested using three small datasets of size m = n = 49, 55, and 88.

(viii) Lagrangian heuristics (LH). This heuristic procedure for solving PMP, originally
proposed by Cornuejols et al. (1977), is based on the mathematical programming formu-
lation (5)-(9). Different variants are suggested in Mulvey and Crowder (1979), Galvão
(1980), and Beasley (1993). Usually, the constraint (6) is relaxed so that the Lagrangian
problem becomes:

max
u

min
x,y





∑

i

∑

j

dijxij +
∑

i

ui(1 −
∑

j

xij)



 =

max
u

min
x,y





∑

i

∑

j

(dij − ui)xij +
∑

i

ui



 (10)

s.t. (7), (8) and (9).

Note that the objective function (10) is minimized with respect to the original variables
and is maximized with respect to the Lagrangian multipliers.

In Lagrangian heuristics the following steps are repeated iteratively after setting the
initial values of the multipliers ui: 1) solve the Lagrangian model, i.e., find the xij and
yi; 2) adjust the multipliers ui. Thus, it may be seen as an “Alternate” type heuristic.
The largest value of (10) (over all iterations) represents a lower bound of PMP. If the
variables ui are fixed, the resulting model (in step 1) is easy to solve (see, e.g., Daskin,
1995). The solution found may not be feasible, since the constraint (6) may be violated.
However, feasibility is obtained by assigning the users to their closest open facility. The
best of the feasible solutions found over all iterations would also give the best (lowest)
upper bound. Therefore, Lagrangian heuristics provide both lower and upper bounds of
the problem considered. The final most complex task is to modify the multipliers based on
the solution just obtained. A common approach is by subgradient optimization. In Beasley
(1993), at each subgradient iteration, Lagrangian solutions are made primal feasible and
the reallocation improved by the classical Alternate heuristic. A faster variant, called the
Lagrangian/surrogate heuristic has recently been proposed by Senne and Lorena (2000).
We also refer the reader to the Volume subgradient approach introduced by Barahona and
Anbil (2000). A semi-Lagrangian relaxation (SLR) method is suggested in Beltran et al.
(2004). The idea is to get a better lower bound in the Lagrangian relaxation by treating
the set of equality constraints in (6) and (8) twice: in the relaxation and in the set of
constraints replacing relation “=” with “≤”. In theory SLR closes the integrality gap.

(ix) Aggregation (AG). In order to reduce the computational time, and sometimes keep
the customer data confidential, a common practice is to reduce the number of demand
points by demand data aggregation. The process of aggregation, however, results in the
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loss of locational information and induces errors to the problem solution. Thus, the AG
methods could be seen as heuristics.

There are three types of such errors for solving PMP: source A, B and C errors. They
result in three types of perturbations in the p-median model: cost error, optimality error,
and location error. More formally, define the functions f and g, and the solutions (x, y)
and (xa, ya) as follows (Erkut and Bozkaya, 1999):

• f = the original (unaggregated) p-median objective function (5);

• g = aggregated p-median objective function;

• (x, y) = the optimal solution to the original (unaggregated) PMP;

• (xa, ya) = the optimal solution to the aggregated PMP (5) - (9).

With this notation, the three types of errors that have been discussed in the literature are
as follows:

Cost error =
f(xa, ya) − g(xa, ya)

f(xa, ya)
;

Optimality error =
f(xa, ya) − f(x, y)

f(x, y)
;

Location error = ‖(x, y) − (xa, ya)‖.

Hillsman and Rhoda (1978) defined source A, B, and C errors for the first time. Their
measurements assumed uniform population density. Casillas (1987) is the first author who
distinguished between cost and optimality errors. Current and Schilling (1987) presented
the method for removing source A and B aggregation errors if unaggregated data are avail-
able. Hodgson and Neuman (1993) concentrated on source C errors, outlining the complete
enumeration method that can be used to eliminate source C errors, using GIS (geographical
information systems). A faster variant of the method is suggested in Hodgson and Salhi
(1998). They use a quadtree database structure to allocate groups of origins to destina-
tions, basically aggregating when aggregation will not produce error, and disaggregating
when it would. A more theoretical approach on aggregation error bounds for a class of
location models is given in Francis et al. (2000). A survey of methods developed in the last
decade, based on viewing the aggregation as a second-order location problem, and using
error bounds, to do aggregation in such a way as to keep the error small, can be found in
Francis et al. (2003).

5 Implementation of interchange local search

The Interchange method is one of the most often used classical heuristics either alone or as
a subroutine of other more complex methods or within metaheuristics. Therefore, it would
seem that an efficient implementation is extremely important. The formula of benefit (or
profit) wij in applying an interchange move is
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wij =
∑

u:c1(u) 6=j

max{0, [d1(u) − d(u, i)]}

−
∑

u:c1(u)=j

[min{d2(u), d(u, i)} − d1(u)], (11)

where u, i and j are the indices of a user, and the ingoing and outgoing facilities, respec-
tively; c1(u) represents the index of the closest facility of user u; d1(u) = d(u, c1(u)) and
d2(u) represent distances from u to the closest and second closest facilities, respectively.
The first sum in (11) accounts for users whose closest facility is not j. The second sum
refers to users assigned to j in the current solution; since they lose their closest facility,
they will be reassigned either to the new facility i or to their second closest, whichever is
more advantageous.

An important study has been done by Whitaker (1983), who described the so-called
fast interchange heuristic. This method was not widely used (possibly because of an error
in that paper) until Hansen and Mladenović (1997) applied it as a subroutine of a variable
neighborhood search (VNS) heuristic. Among other results reported is that Add and
Interchange moves have similar complexity. Moreover, p times fewer operations are spent
for one fast interchange move as compared to one interchange move of Teitz and Bart
(1968). In fact, the following three efficient ingredients are incorporated in the interchange
heuristic in Whitaker (1983): (i) move evaluation, where a best removal of a facility is
found when the facility to be added is known; (ii) updating of the first and the second
closest facilities of each user; (iii) restricted first improvement strategy, where each facility
is considered to be added only once. In the implementation of Whitaker’s interchange
algorithm by Hansen and Mladenović (1997), only (i) and (ii) are used; i.e., instead of (iii),
a best improvement strategy is applied. Hence, the restriction of facilities to be added to
the solution is removed as well. Moreover, the complexity of steps (i) and (ii) is evaluated.

Recently, a new efficient implementation has been suggested by Resende and Werneck
(2003). Its worst case complexity is the same (O(mn)), but it can be significantly faster
in practice. The formula (11) is replaced with

wij =
∑

u∈U

max{0, d1(u) − d(u, i)} −
∑

u:c1(u)=j

[d2(u) − d1(u)] + eij .

The first sum represents gains by inserting facility i, the second losses by dropping facility
j, while the last term is from a matrix E = [eij ] called extra, which contains mostly values of
zero, and whose updating makes this implementation efficient for large problem instances:

eij =
∑

u:c1(u)=j; d(u,i)<d2(u)

[d2(u) − max{d(u, i), d1(u)}].
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Therefore, the extra memory required for the matrix E allows for significant accelerations.
Several variants have been considered: full matrix (FM) and sparse matrix (SM) repre-
sentation of E; with preprocessing, i.e., ranking distances from each user to all potential
facilities (FMP and SMP), and so on. For example, the average speedups obtained by SMP
on OR-Library and TSP-Lib test instances were by factors of 8.7 and 177.6, respectively,
if the running times for preprocessing were not included. If they were included, then SMP
was faster 1.8 and 20.3 times, respectively, than the fast interchange. As expected, the
greatest gains were observed on Euclidean instances, since a significant number of the eij

are equal to 0 in this case.

Another step forward in solving PMP by interchange local search has recently been
suggested in Kochetov et al. (2005), where a new neighborhood structure, called LK
(Lin-Kernigham), has been proposed. A depth parameter k that counts the number of
interchange moves within one step of local search is introduced. The LK(k) neighborhood
can be described by the following steps: (a) find two facilities iadd and idrop such that the
best solution in the 1-interchange neighborhood is obtained; (b) exchange them to get a
new solution; (c) repeat steps (a) and (b) k times such that a facility to be inserted has
not previously been dropped in steps (a) and (b). The set LK(k) is thus defined as

LK(k) = {(itadd, i
t
drop), t = 1, . . . , k}.

The best solution from LK(k) is the local minimum with respect to the LK neighborhood
structure. This local search has successfully been used within Lagrangian relaxation (LR),
random rounding (after linear relaxation) (RR), and within ant colony optimization (ACO)
(Dorigo and Di Caro, 1999).

6 Metaheuristics

We briefly describe here some of the metaheuristic methods developed for solving the
PMP. They include: (i) Tabu search (TS), (ii) Variable neighborhood search (VNS), (iii)
Genetic search, (iv) Scatter search, (v) Simulated annealing, (vi) Heuristic concentration,
(vii) Ant colony optimization, (viii) Neural Networks, (ix) Decomposition heuristics, (x)
Hybrid heuristics.

(i) Tabu search (TS). Several Tabu Search (Glover, 1989, 1990) methods have been
proposed for solving PMP (see also Glover and Laguna, 1997, for an introduction to Tabu
Search). In Mladenović et al. (1995, 1996), the 1-interchange move is extended into a
so-called 1-chain - substitution move. Two tabu lists (TL) are used with given and random
TL sizes. Another TS heuristic is suggested by Voss (1996), where a few variants of the so-
called reverse elimination method are discussed. In Rolland et al. (1996), a 1-interchange
move is divided into add and drop moves which do not necessarily follow each other and
so feasibility is not necessarily maintained during the search; this approach, within TS,
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is known as strategic oscillation (see Glover and Laguna, 1993). The same restricted
neighborhood structure is used in a more recent TS for solving PMP in Salhi (2002). After
a drop move, the set of potential ingoing facilities is restricted to the K (a parameter)
closest ones to the one just dropped. Moreover, the functional representation of the TL
size and a flexible concept of the aspiration level are proposed. Although results reported do
not improve significantly upon those obtained with a purely random TL size, this analysis
gives possible directions in designing efficient TS heuristics. A simple Probabilistic TS
(PTS) is suggested by Kochetov (2001). Denote by N(x) the 1-interchange neighborhood
of any solution x (a set of open facilities). A restricted neighborhood Nr(x) ⊂ N(x) (with a
given probabilistic threshold r < 1) is obtained at random. The simple TS heuristic based
on Nr(x) does not use aspiration criteria, or intensification and diversification rules, but it
allows the author to establish a connection with irreducible Markov chains and to develop
asymptotic theoretical properties. For solving PMP by PTS, good results on Kochetov
test instances (see above) are reported in Goncharov and Kochetov (2002).

(ii) Variable neighborhood search (VNS). There are several papers that use VNS for
solving the PMP. In the first one (Hansen and Mladenović, 1997), a basic VNS is applied
and extensive statistical analysis of various strategies performed. Neighborhood structures
are defined by moving 1, 2, . . . , kmax facilities and correspond to sets of 0–1 vectors at
Hamming distance 2, 4, . . . , 2kmax from x. In other words, if x1 and x2 denote two solutions
(two sets of open facilities), the distance ρ(x1, x2) between them is given as

ρ(x1, x2) =
|x1∆x2|

2
, (12)

where ∆ is the symmetric difference operator. The descent heuristic used is 1–interchange,
with the efficient fast interchange (FI) computational scheme described above. Results of
a comparison of heuristics for OR-Library and some TSP-Lib problems are reported. In
order to solve larger PMP instances, in Hansen et al. (2001), both reduced VNS and a
decomposition variant of VNS (VNDS) are applied. Subproblems with increasing numbers
of users (that are solved by VNS) are obtained by merging subsets of users (or market
areas) associated with k (k = 2, . . . , p) medians. Results on instances of 1400, 3038 and
5934 users from the TSP library show that VNDS improves notably upon VNS in less
computing time, and gives much better results than FI, in the same time that FI takes for
a single descent. Moreover, reduced VNS, which does not use a descent phase, gives results
similar to those of FI in much less computing time. Heuristics with Parallel VNS are found
in Garćıa-López et al. (2002) and Crainic et al. (2004). The first of the three parallelization
strategies analyzed in Garćıa-López et al. (2002) attempts to reduce computation time
by parallelizing the local search in the sequential VNS. The second one implements an
independent search strategy that runs an independent VNS procedure on each processor.
The third one applies a synchronous cooperation mechanism through a classical master-
slave approach. The Cooperative VNS parallelization proposed in Crainic et al. (2004)
applies a cooperative multi-search method based on a central-memory mechanism.
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(iii) Genetic algorithm (GA). Several genetic search heuristics have been suggested.
Hosage and Goodchild (1986) encoded a solution as a string of m binary digits (genes).
In order to reach feasibility (p open facilities), the authors penalized the number of open
facilities. The results reported are poor, even on small problems. In Dibbie and Densham
(1993), each individual has exactly p genes, and each gene represents a facility index. This
appears to be a better representation of the solution. The authors used conventional genetic
operators: selection, cross-over and mutation. Reported results are similar to Interchange
local search, but with considerably longer processing time. The size of the instances tested
was n = m = 150 (user and facility sites coincide) and p = 9. Moreno-Perez et al.
(1994) designed a parallelized GA for the PMP. Each gene represents a facility index as
well. Beside conventional GA operators, they used multiple population groups (colonies),
which exchange candidate solutions with each other (via migrations). Finally, in Alp et al.
(2003), much better results are reported, but still not as good as those obtained by VNS,
TS or hybrid approaches. It is even not clear if the suggested method belongs to the class
of GA. The mutation operator is avoided, and the new members of the population are not
generated in the usual way (i.e., by using selection and cross-over operators). Two solutions
are selected at random, and then the union of them taken, obtaining an infeasible solution
with number of genes (facilities) larger than p. To reach feasibility, the Stingy or Greedy-
Drop classical heuristic is applied. Better results would be obtained if the Interchange
heuristic was applied after Stingy and the resulting method would then be similar to VNS.
Results on OR-Library, Galvão, Alberta and Koerkel test instances are reported.

(iv) Scatter search (SS) metaheuristic (Glover et al., 2000) is an evolutionary strategy
based on a moderated set of good solutions (the Reference Set) that evolves mainly by
combining its solutions to construct others exploiting the knowledge of the problem at
hand. Garćıa-López et al. (2003) design a SS for the PMP by introducing a distance in
the solution space. This VNS idea is used to control the diversification of the method.
They consider the case where U = L. The distance between two solutions x1 and x2 is
defined differently than in (12):

η(x1, x2) =
∑

i∈x1

min
j∈x2

dij +
∑

j∈x2

min
i∈x1

dij .

The reference set consists of k (a parameter) best solutions from the population and r − k

randomly chosen solutions following some diversification criteria (r denotes the reference
set size). Solutions of a selected subset of the reference set are combined as follows: first,
as in heuristic concentration, the set of facilities that appear in each solution of the subset
is found; then to get the size p, new facilities are added iteratively according to predefined
rules. The combined solutions are then improved by a local search based on interchanges.
The resulting solution is incorporated in the reference set because it improves one of the
k best solutions or because it improves the diversity of the set according to the distance
between its solutions. Good results are reported on TSP-Lib instances. Three types of
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parallelization have been proposed in Garćıa-López et al. (2003) to achieve either an
increase of efficiency or an increase of exploration. The procedures have been coded in C
using OpenMP (1997) and compared in a shared memory machine with large instances.

(v) Simulated annealing (SA). A basic SA heuristic for PMP has been proposed in
Murray and Church (1996). The SA heuristic proposed in Chiyoshi and Galvão (2000)
combines elements of the vertex substitution method of Teitz and Bart with the general
methodology of simulated annealing. The cooling schedule adopted incorporates the no-
tion of temperature adjustments rather than just temperature reductions. Computational
results are given for OR-Library test instances. Optimal solutions were found for 26 of the
40 problems tested. Recently, an SA heuristic that uses the 1-interchange neighborhood
structure has been proposed in Levanova and Loresh (2004). Results of good quality are
reported on Kochetov data sets, and on the first 20 (among 40) OR-Library test instances.
For example, 17 out of the 20 OR-Library instances are solved exactly.

(vi) Heuristic concentration (HC) method (Rosing and ReVelle, 1997) has two stages.
In stage one, a set of solutions is obtained by repeating q times the Drop/Add heuristic,
and then retaining the best m solutions found. The elements of desirable facility sites
selected from the set of solutions form a concentration set. Stage two of HC limits the set
of potential facilities to this set and resolves the model. Such a restricted model can be
solved heuristically or even exactly. An extension of HC, known as the Gamma heuristic
(Rosing et al., 1999) includes a third stage as well. Testing is performed on 81 randomly
generated instances with 100 to 300 nodes. The results in Rosing et al. (1998) compare
successfully with the TS of Rolland et al. (1996).

(vii) Ant colony optimization (ACO) was first suggested in Dorigo et al. (1991) (see
also Dorigo and DiCaro, 1999). The motivation for the method comes from nature. The
main idea is to use the statistical information obtained from previous iterations and to
guide the search into the more promising areas of the solution space. Usually the method
contains several parameters, whose estimation and updating (as in SA) mostly influence
the quality of the obtained solution. In Levanova and Loresh (2004) and Kochetov et al.
(2005) a randomized stingy or drop heuristic is used within ACO: initially a solution x is
taken as the set of all potential facilities L; a facility j to be dropped is chosen at random
(with probability rj) from the restricted drop neighborhood set: Sj(λ) = {j | ∆fj ≤
(1−λ)minℓ ∆fℓ +λ maxℓ ∆fℓ}, for λ ∈ (0, 1) and ∆fj = f(x)−f(x\{j}). The probability
rj is defined in a usual way, also introducing some more parameters. This basic variant of
ACO was able to solve exactly only 8 out of the first 20 OR-Library test instances. That
is why the authors suggest two improvements when the cardinality of x reaches p; (i) the
1-interchange heuristic (Resende and Werneck, 2003) is applied; or (ii) local search with
the LK neighborhood structure (Kochetov et al., 2005) is performed with x as an initial
solution. A randomized drop routine followed by a 1-interchange or LK local search is
repeated a given number of times, and the best overall solution is kept. Both improved
versions were able to solve all 20 OR-Library instances.
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(viii) Neural Networks (NN). In Domı́nguez Merino and Muños Pérez (2002), a new
integer formulation of the p-median problem allows the application of a two-layer neural
network to solve it. In Domı́nguez Merino et al. (2003), a competitive recurrent neural
network consisting of a single layer with 2np neurons is used to design three different
algorithms.

(ix) Decomposition (DC). In Dai and Cheung (1997), two decomposition heuristics aim-
ing at problems of large scale are proposed. Firstly, a level-m optimum is defined. Starting
from a local optimum, the first heuristic efficiently improves it to a level-2 optimum by ap-
plying an existing exact algorithm for solving the 2-median problem. The second heuristic
further improves it to a level-3 optimum by applying a new exact algorithm for solving
the 3-median problem. In Taillard (2003), three heuristics have been developed for solving
large centroid clustering problems. Beside the p-median, this includes the multisource We-
ber problem and minimum sum-of-squares clustering. The first heuristic, named candidate
list strategy (CLS), may be seen as a variant of VNS (in the first version of the paper
appearing as a technical report in 1996, CLS was called VNS): the alternate heuristic is
used as a local search procedure; a random perturbation, or shaking, of the current so-
lution is done by choosing solutions from the restricted interchange neighborhood. The
other two, called LOPT and DEC, use decomposition for solving large problem instances.
An interesting idea of finding the partition of L, and thus the number of subproblems, by
using dynamic programming is developed in the DEC procedure.

(x) Hybrid heuristic (HH) that combines elements of several “pure metaheuristics is
suggested in Resende and Werneck (2004). Like GRASP (Greedy Randomized Adaptive
Search Procedure, Feo and Resende, 1995), their heuristic is a multistart approach where
each iteration consists of the construction of initial points by a randomized greedy step,
followed by local search. As in TS and SS, their method borrows the idea of path-relinking
(Laguna and Martii, 1999). That is, a path between any two solutions from a set of good
or elite solutions is found and local search performed starting from each solution on that
path. Since the distance between two solutions (defined by the symmetric difference) is
systematically changed by one before local search is performed, their path-relinking shares
a similarity with VNS as well. Moreover, they augment path-relinking with the concept
of multiple generations, a key feature of genetic algorithms. A large empirical analysis
includes OR-Library, TSP-Lib, Galvão and Resende-Werneck (see above) sets of instances.
Compared with other methods, their procedure often provides better results in terms of
both running time and solution quality.

7 Conclusions

Table 1 presents an overview on the development of heuristics for solving the p-median
problem (PMP). We should ask a basic question given the nature of this survey: Has
the advent of metaheuristics advanced the state-of-the-art significantly? Based on a large
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body of empirical evidence, the answer should be a resounding Yes! While the earlier
methods of constructive heuristics and local searches have been successful on relatively
small instances of PMP, the empirical results show that solution quality may deteriorate
rapidly with problem size. The use of metaheuristics has led to substantial improvements
in solution quality on large scale instances within reasonably short computing time. Using
nomenclature from tabu search, the success may be attributed to the ability of these
metaheuristic-based methods to “intensify” the search in promising regions of the solution
space, and then “diversify” the search in a systematic way when needed.

Some brief conclusions on the use of metaheuristics are as follows: (i) The neighbor-
hood structure used in descent plays the most important role for the efficiency and ef-
fectiveness of any metaheuristic for PMP. The interchange neighborhood appears to be a
better choice than the alternate, or drop/add. The variable depth neighborhood structure
LK(k) (Kochetov et al., 2005) seems to be a better choice than the 1-interchange. (ii)
The implementation of 1-interchange local search is the second very important issue. The
implementation of Whitaker (1983) is better than that suggested by Teitz and Bart (1968),
but not better than that proposed by Hansen and Mladenović (1997). This one in turn is
outperformed by the implementation of Resende and Werneck (2003). Therefore, it is not
easy to conclude what metaheuristic approach dominates others.
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