
Scatter Search for the Feature Selection
Problem?

Félix C. Garćıa López, Miguel Garćıa Torres??, José A. Moreno Pérez, J.
Marcos Moreno Vega

Departamento de E.I.O. and Computación
Escuela Técnica Superior de Ingenieŕıa Informática

University of La Laguna. 38271 La Laguna
Santa Cruz de Tenerife, SPAIN

{fcgarcia,mgarciat,jamoreno,jmmoreno}@ull.es

Abstract. The feature selection problem in the field of classification
consists of obtaining a subset of variables to optimally realize the task
without taking into account the remainder variables. This work presents
how the search for this subset is performed using the Scatter Search
metaheuristic and is compared with two traditional strategies in the lit-
erature: the Forward Sequential Selection (FSS) and the Backward Se-
quential Selection (BSS). Promising results were obtained. We use the
lazy learning strategy together with the nearest neighbour methodology
(NN) also known as Instance-Based Learning Algorithm 1 (IB1).

1 Introduction

Instance-Based Learning (IBL) [1] is an inductive learning algorithm that gen-
eralizes tasks by storing available training instances in memory. The purpose of
the classification problem, given a set of cases or instances of a known class, is to
classify other cases of which only the features or variables are known. A similar-
ity measure is needed between cases [11] for which the set of available features
is used. However, not all of the variables that describe the instances provide the
same quality of information; some of them do not significantly contribute and
can even degrade the information.

The purpose of the feature selection problem is to obtain the subset of these
features which optimally carry out the classification task. An appropriate feature
selection affects efficiency, because is cheaper to measure only a subset of fea-
tures, and accuracy, which might be improved by removing irrelevant features.
This is of special interest in those problems with a large number of cases and
features.

These problems are NP-hard [6]. Thus it is impossible to explore the whole
solution space. The metaheuristics provide procedures for finding solutions with
? This work has been partially supported by the project TIC2002-04242-C03-01, 70%

of which are FEDER founds
?? The work of the second author has been partially supported by CajaCanarias grant

2

reasonable efficacy and efficiency. The application of evolutive procedures such
as Genetic Algorithms [4] are described in the literature, but, to our knowledge,
the Scatter Search (SS) has not been applied. In this work we analyse the SS
metaheuristic in this problem, comparing its performance with two traditional
strategies: the Forward Sequential Selection (FSS) and the Backward Sequential
Selection (BSS).

In the next section we introduce the feature selection problem with a formal
description of the problem and the most common solution strategies. In section
3 we describe the main elements of the Scatter Search metaheuristic in the
application to this problem. The outcomes of the computational experience are
shown in section 4 for several data sets and motivate our conclusions, shown in
section 5.

2 The Feature Selection Problem

In the Feature Selection Problem there are two general approaches: the filter
and the wrapper strategies. The first approach is characterized by the applica-
tion of a different methodology in the training and test phases. The wrapper
applies the same algorithm in the entire process. In the filter approach, the rele-
vant algorithm FOCUS [3] examines the entire subset of features selecting those
that minimize the number of features among those classifying correctly all of
the training instances. Another relevant algorithm is Relief, which is a random
algorithm that assigns a weight to each feature based on the two nearest cases.

The second approach consists of two traditional strategies: the FSS strategy
and the BSS strategy. FSS starts with an empty subset of features and iteratively
adds the best feature as it improves the solution. BSS starts with the whole set of
features and iteratively removes the worst feature while it improves the solution.
This last strategy provides less efficient procedures [6].

The formal description of the problem is as follows. Let A be a set of n cases
(instances or objects) A = {ai : i = 1, ..., n} each one described by d features
(or attributes) {Xj}j=1...d where each feature can be nominal or numeric. Each
case is described by a vector ai = (ai1, . . . , aid) and aij corresponds to the value
of feature Xj in the case ai. Moreover, each case ai belongs to a class labelled
as ai(c). The purpose of the classification problem is to obtain the label of the
instances using only a subset of features. Therefore the objective of our problem
is to find the subset of features S = {Xij : j = 1 . . . m}, m ≤ d that classifies
best.

The classification task using the nearest neighbor approach is carried out by
assuming the existence of a set of cases with known class labels (training set)
and another set of cases with unknown class labels (test set). The information
provided by the training set is used to find the optimal set of features S =
{Xij : j = 1, ...,m} to classify. To measure the quality of the classifier (subset of
features and classification strategy) we consider the accuracy of the classification
as the objective function, f . The associated optimization problem is to find the
subset S ⊆ {Xj : j = 1, ..., d} such that f(S) is maximized.

3

Several methods can be considered when measuring accuracy of the algo-
rithms when a set of classified cases is given. A method widely used in the
literature is the k-fold cross validation that is described as follows. We consider
a total set of cases T divided into k parts of the same size, T1, ..., Tk and k exe-
cutions of the algorithm are performed. In the i-th execution the set Ti is taken
as the test set and the union of the remainder subsets, ∪j 6=iTj , as training set.
In [5] and [2] the method known as “5x2vc” is recommended, which consists in
applying the cross validation with k = 2 for 5 different orderings of the data
base. Such a procedure is also used in the training phase. The IB1 methodology
is applied which implies classification by the class of the nearest neighbor [1].

The dissimilarity function between cases applied to determine the nearest
neighbor is the distance function HEOM (Heterogenous Euclidean-Overlap Met-
ric) [11]. The distance between two cases ak and am, using the subset of features,
S ⊆ {Xj : j = 1...d}, is defined as

dHEOM (ak, am) =
∑

Xj∈S

d2
j (ak, am)

with

dj(ak, am) =

1 if akj or amj are unknown
ds(akj , amj) if Xj is nominal
dr(akj , amj) if Xj is numeric

where ds is the overlap and dr is the normalized rectilinear distance that is
defined by:

ds(akj , amj) =
{

1 if akj = amj

0 otherwise

and

dr(akj , amj) =
|akj − amj |

maxj −minj

where maxj and minj are the maximum and minimum values of the feature Xj

observed in the training set.
The two traditional hill-climbing strategies, FSS and BSS, improve itera-

tively the selected subset but they differ in the initial set of features. The first
strategy starts with an empty set and at each iteration it adds a feature in case
of improvement. The second one starts with the whole set of features and at
each iteration removes a feature if there is an improvement. The procedure is as
follows:

– Forward Subset Selection (FSS)
1. Initialize the set of features S = ∅.
2. For each feature Xj /∈ S, calculate f(S ∪ {Xj}). Let j∗ be such that
f(S ∪ {Xj∗}) = maxj{S ∪ {Xj})} and S∗ = S ∪ {Xj∗}. If f(S∗) > f(S),
take S = S ∪ {Xj∗} and repeat step 2. Otherwise, stop.

– Backward Subset Selection (BSS)
1. Initialize the set of features S = {Xj : j = 1, ..., d} .

4

2. For each feature Xj ∈ S, compute f(S \ {Xj}). Let j∗ be such that
f(S \ {Xj∗}) = maxj{S \ {Xj})} and S∗ = S \ {Xj∗}. If f(S∗) > f(S), take
S = S \ {Xj∗} and repeat step 2. Otherwise, stop.

3 Scatter Search

The Scatter Search [8] is a recent evolutionary strategy that has been applied
successfully to a wide range of optimisation problems. It starts with a popula-
tion of solutions from which a subset of solutions are selected for the reference
set RefSet that evolves by intensification and diversification mechanisms. The
solutions of this set are combined to generate new solutions to update the ref-
erence set. The combination of the solution in the scatter search is guided and
not random, unlike genetic algorithms. Another important difference is that the
reference set that evolves in the scatter search is smaller in size than the usual
populations in evolutive algorithms.

Figure 1 shows pseudocode of the scatter search.

procedure Scatter Search
begin

GeneratePopulation(InitPop);
GenerateReferenceSet(RefSet);
repeat

repeat
SelectSubSet(SubSet);
CombinationMethod(SubSet, S);
ImprovingMethod(S, S∗);

until (StoppingCriterion 1);
UpdateReferenceSet(RefSet);

until (StoppingCriterion 2);
end.

Fig. 1. Scatter Search Pseudocode

In order to generate the initial population we use a procedure similar to those
used in the constructive phase of the GRASP (Greedy Randomize Adaptive
Search Procedure) [12].

The elements of the scatter search in the application to feature selection
problem are implemented in the following way:

1. Generation of the population:
The initial population InitPop is constructed by generating solutions from
the application of the following procedure until the previously fixed size is
reached.

5

(a) Do S = ∅.
(b) For each feature Xj ∈ X \ S, calculate the accuracy with which Sj =

S ∪ {Xj} classifies in the training set using the 5x2 cross validation.
(c) The restricted candidate list, RCL, to the constructive phase of GRASP

is constructed by cardinality and it is compounded by the |RCL| best
features according to the value f(Sj).

(d) Select randomly a feature in RCL. Let Xj∗ be such feature.
(e) If by adding Xj∗ to S it improves the accuracy of the partial solution

then do S = Sj∗ and go to step (b). Otherwise, stop.
2. Generation of the reference set:

The reference set, RefSet, is generated in two phases. The first phase in-
cludes the 1

2 |RefSet| solutions of the population with the best values of
the objective function f . Then the most diverse solutions with respect to
the reference set are added, until the |RefSet| size is reached, by using the
following procedure in the second phase:
(a) Let C be the set of all the features that belongs to any solution of the

reference set.
(b) For each solution S of the population that is not in the reference set,

calculate the diversity degree Div(S, C).
(c) Let S∗ be the solution with the highest diversity degree.
(d) Add S∗ to the reference set.
The diversity degree between a solution S and the set of features C is defined
as:

Div(S,C) = |(S ∪ C) \ (S ∩ C)|
3. Selection of the subset:

All subsets of two solutions of the reference set are selected (i.e., the inner
loop of the pseudocode of Figure 1 is repeated for all the subsets with size
2 (stopping criterion 2)). The combination method is applied to each subset
and is described in the next subsection. Note that in the first iteration it is
necessary to apply the combination method to all the subsets. However, in
later iterations it is only necessary to apply this method to the subsets not
considered in previous iterations. This method increases efficiency.

4. Combination Method:
Given two solutions S1 and S2, the combination method generates two new
solutions, S

′
1 and S

′
2, as follows:

(a) Include in S
′
1 and S

′
2 the features that are in S1 and in S2; i.e., S

′
1 =

S
′
2 = S1 ∩ S2. Let C = (S1 ∪ S2) \ (S1 ∩ S2).

(b) For each feature Xj ∈ C calculate f(S
′
1 ∪ {Xj}) and f(S

′
2 ∪ {Xj}).

(c) Let j∗1 and j∗2 be features such that f(S
′
1∪{Xj∗1 }) = maxj{f(S

′
1∪{Xj})}

and f(S
′
2 ∪ {Xj∗2 }) = maxj{f(S

′
2 ∪ {Xj})} respectively.

i. If f(S
′
1 ∪ {Xj∗1 }) > f(S

′
1) and f(S

′
2 ∪ {Xj∗2 }) > f(S

′
2) update the

solution of which the feature Xj∗ has an associated value of the
objective function corresponding to f = max{f(S

′
1 ∪ {Xj∗1 }), f(S

′
2 ∪

{Xj∗2 })}, do C = C \ Xj∗ and go to step (b). If f∗1 (S
′
1 ∪ {Xj∗1 }) =

f∗2 (S
′
2∪{Xj∗2 }), the feature is added to the partial solution with fewer

features.

6

ii. If only one of the solutions, S
′
1 or S

′
2, improves then add the corre-

sponding feature, do C = C \Xj∗ and go to step (b).
iii. Otherwise, stop.

5. Improving method:
We initially applied iteratively the FSS and BSS strategies as long as any im-
provement took place. However it was observed that it only slightly improved
the solutions although a high computational effort was required. Therefore
we decided to reject this method.

6. Update of the reference set:
The solution that improves the worst solution in the reference set is then
added and replaces the worst one. Therefore, the outer loop in the pseu-
docode of figure 1 is repeated while the reference set is being updated (stop-
ping criterion 2)

4 Computational Experience

Table 1. Characteristics of the Data Bases considered.

Data Base Name Id Features #Instances #Classes
Total Nom Num

Small Iris Ir 4 0 4 150 3
Echocardiogram Ec 9 2 7 132 2
Glass Gl 9 0 9 214 7
Bridges Br 11 7 4 108 6
Wine Wi 13 0 13 178 3
Heart(Long − Beach− V a) HV 13 7 6 200 2
Heart(Hungarian) HH 13 7 6 294 2
Heart(Cleveland) HC 13 7 6 303 2
Zoo Zo 16 16 0 90 7
SoybeanLarge SbL 35 29 6 307 19
Sonar So 60 0 60 208 2

Average PimaIndianDiabetes Pm 8 0 8 768 2
V owel V w 10 0 10 528 11
CreditScreening Cx 15 9 6 690 2
Anneal An 38 29 9 798 5

Artificials Monks− 1 Mo1 6 6 0 432 2
Monks− 2 Mo2 6 6 0 432 2
Monks− 3 Mo3 6 6 0 432 2

For the computational experience, we considered standard databases from
the U.C.I. repository [10]. To study the performance of the algorithms FSS, BSS
and SS, we studied real and artificial databases independently. We also studied
the small and average ones independently as well for real databases. The reason
for doing this was that, for artificial data, the relevance of each feature is known,
nevertheless this information is unknown for real databases. Furthermore a low
number of instances can affect the undesirable overfitting effects.

Table 1 shows the general characteristics of each database used for the ex-
periments. The name is shown in the second column, and its label in the third

7

one. Additional information is given about the total number of features and the
number of nominal and numerical features. Finally the number of instances and
the number of classes can be seen in the last two columns.

For the scatter search algorithm an initial population whose number de-
pended on the number of features was considered. The number of solutions
was fixed to half of the number of features describing the data. We considered
|LRC| = 3 for the GRASP strategy to generate the initial population. A number
smaller than 3 would make the GRASP strategy very similar to an FSS algo-
rithm, and a larger number would be equivalent to a random initialization. The
size of the reference set was set to 1

2 |Pop|, where Pop refers to the population.
This RefSet was built with the 1

2 |RefSet| best solution from Pop and with the
same number of most diverse solutions.

Table 2 shows the cross-validation results obtained during the training. A
5x2cv was applied to validate the results and average outcomes are shown for
each database. Average standard deviation is also given. Scatter Search found
the best solution in most real databases.

The average number of features found for each database is given in Table 3.
As we can see, the FSS is the algorithm with greater reduction capacity and the
lowest reduction is performed by the BSS.

Table 2. Accuracy and its standardad deviation in training.

DB #FS FSS BSS SS

Ir 4 96.09 ±0.96 96.14 ±0.94 96.08 ±1.02
Ec 9 64.39 ±4.80 65.61 ±3.89 65.21 ±4.82
Gl 9 69.88 ±4.16 69.97 ±3.60 70.49 ±4.04
Br 11 59.22 ±6.24 58.74 ±6.84 60.41 ±6.24
Wi 13 96.86 ±2.07 97.04 ±1.54 97.24 ±1.56
HV 13 74.56 ±2.92 75.56 ±2.74 74.70 ±3.83
HH 13 82.61 ±3.22 82.15 ±3.03 82.84 ±3.20
HC 13 79.92 ±3.93 80.16 ±5.08 80.94 ±3.42
Zo 16 91.81 ±3.15 90.46 ±2.41 93.21 ±2.68
SbL 35 81.83 ±2.61 81.38 ±2.27 83.83 ±2.10
So 60 85.04 ±3.10 81.79 ±3.10 90.40 ±1.87
Pm 8 70.66 ±1.23 70.53 ±1.16 71.39 ±0.90
V w 10 82.07 ±1.00 82.09 ±1.03 82.14 ±1.08
Cx 15 84.94 ±1.68 83.22 ±2.18 85.28 ±1.73
An 38 96.00 ±1.48 96.21 ±0.86 96.34 ±0.69
Mo1 6 81.13 ±15.96 99.53 ±0.35 96.22 ±7.77
Mo2 6 62.25 ±4.11 67.95 ±1.83 65.03 ±3.45
Mo3 6 97.55 ±1.86 97.37 ±2.17 96.27 ±3.00

Outcomes during the test are given in Table 4. These outcomes can be com-
pared with those from the base algorithm IB1. If we compare the results we
notice that BSS is clearly different from the other algorithms. In small databases
FSS performed better than SS but SS performed better in the most complicated
problems (a large number of features). In average problems, SS obtained the
best outcomes. This difference increased in the most complicated problems. The
BSS algorithm performed best in artificial data.

8

Table 3. Size of the optimal subset of features found and its standard deviation.

DB #FS FSS BSS SS

Ir 4 1.90 ±1.10 2.80 ±0.92 2.30 ±1.16
Ec 9 3.10 ±1.45 5.10 ±1.37 3.20 ±0.92
Gl 9 5.30 ±1.42 5.70 ±1.34 4.90 ±1.10
Br 11 3.20 ±1.14 7.60 ±1.71 4.40 ±0.70
Wi 13 5.50 ±1.65 9.2 ±1.40 6.20 ±1.48
HV 13 2.90 ±1.29 9.10 ±1.20 3.10 ±2.03
HH 13 4.60 ±1.96 9.40 ±1.96 4.30 ±1.89
HC 13 4.90 ±1.98 9.20 ±1.32 6.10 ±1.29
Zo 16 6.60 ±2.12 13.90 ±1.45 6.60 ±0.70
SbL 35 17.20 ±2.86 29.60 ±1.78 18.60 ±2.07
So 60 7.20 ±1.87 53.70 ±4.67 11.20 ±2.39
Pm 8 3.40 ±1.27 6.00 ±1.25 3.50 ±1.35
V w 10 8.50 ±1.18 9.30 ±0.95 8.50 ±1.18
Cx 15 2.20 ±0.79 9.30 ±1.34 2.80 ±1.69
An 38 10.00 ±1.41 27.60 ±2.07 10.80 ±1.75
Mo1 6 2.10 ±0.88 3.00 ±0.00 3.20 ±0.42
Mo2 6 1.80 ±1.69 5.00 ±0.00 2.80 ±1.93
Mo3 6 3.00 ±0.00 3.00 ±0.00 3.00 ±0.00

Finally Table 5 shows the average reduction percentage for each algorithm. SS
and FSS performed similarly in average problems and FSS has a higher reduction
capacity in the rest of the problems. The BSS has the lowest reduction capacity.

5 Conclusions

The information contained in some features is not relevant enough for the clas-
sification problem; therefore the initial feature set can be reduced in order to
obtain an optimal subset of features.

Scatter search in small databases is affected by overfitting due to the lack
of number of instances; however it performs better if the number of features is
large enough. In average data the results are similar except that, in problems
with a small number of features, FSS and SS are similar although SS is slightly
better.

In artificial data the BSS is the best algorithm because it is the most sensitive
to the relevance of each feature among the strategies considered.

SS outcomes are promising. A deeper study of its methods is necessary. Future
investigation will consider the application of this algorithm to other learning
algorithms and the use of different objective functions.

9

Table 4. Accuracy and its standardad deviation in testing.

DB IB1 #FS FSS BSS SS

Ir 94.23 4 95.07 ±1.89 94.80 ±2.22 95.07 ±2.44
Ec 47.88 9 54.55 ±4.23 56.06 ±8.48 52.58 ±5.25
Gl 66.82 9 72.90 ±3.18 70.28 ±5.89 72.90 ±3.15
Br 58.70 11 59.44 ±4.49 58.52 ±7.62 59.26 ±5.45
Wi 94.61 13 94.83 ±2.38 95.28 ±2.94 95.06 ±2.61
HV 72.70 13 69.90 ±4.75 69.40 ±3.89 69.20 ±5.43
HH 78.43 13 80.82 ±3.55 78.23 ±2.42 79.66 ±3.84
HC 75.98 13 73.99 ±3.38 74.06 ±1.81 71.56 ±5.14
Zo 93.65 16 90.89 ±5.33 92.68 ±3.49 90.71 ±4.25
SbL 84.88 35 83.91 ±3.55 84.04 ±4.29 84.76 ±3.25
So 83.17 60 76.64 ±3.24 82.79 ±3.22 79.33 ±2.57
Pm 69.70 8 68.39 ±2.00 67.79 ±1.54 68.49 ±2.78
V w 95.29 10 94.06 ±1.71 94.63 ±1.90 94.12 ±1.66
Cx 81.54 15 83.77 ±2.34 81.51 ±1.57 84.09 ±2.19
An 93.56 38 95.97 ±2.82 96.35 ±1.73 96.48 ±1.76
Mo1 78.34 6 81.91 ±15.97 100.0 ±0.00 97.84 ±6.83
Mo2 69.02 6 63.46 ±4.47 70.82 ±3.66 65.62 ±6.17
Mo3 81.88 6 97.91 ±1.57 98.20 ±0.83 96.82 ±3.08

Table 5. Capacity of reduction of each algorithm.

DB #FS FSS BSS SS
Small 11.22 68.16% 20.77% 63.83%
Average 30.25 79.67% 56.86% 79.01%
Artificial 6.00 61.67% 38.33% 50.00%

Total 15.83 67.23% 23.33% 62.98%

References

1. D. W. Aha and D. Kibler and M. K. Albert. Instanced-based learning algorithms.
Machine Learning, 6(37–66), 1991.

2. Ethem Alpaydin. Combined 5x2cv f -test for comparing supervised classification
learning algorithms. IDIAP-RR 04, IDIAP, 1998.

3. J. R. Anderson and M. Matessa. Explorations of an incremental, bayesian algo-
rithm for categorization. Machine Learning, 9(275–308), 1992.

4. J. Bala, K. Dejong, J. Huang, H. Vafaie, and H. Wechsler. Using learning to
facilitate the evolution of features for recognizing visual concepts. Evolutionary
Computation, 4(3):297–311, 1996.

5. Thomas G. Dietterich. Approximate statistical test for comparing supervised clas-
sification learning algorithms. Neural Computation, 10(7):1895–1923, 1998.

6. Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.

7. K. Kira and L. Rendell. The feature selection problem: Traditional methods and
a new algorithm. Tenth National Conference Conference on Artificial Intelligence
(AAAI-92), pages 129–134. MIT, 1992.

8. M. Laguna and R. Mart́ı. Scatter Search: Metodology and Implementations in C.
Kluwer Academic Press, 2003.

9. M. Mitchell. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press,
1996.

10

10. P. M. Murphy and D. W. Aha. Uci repository of machine learning. Technical report,
University of California, Department of Information and Computer Science, 1994.

11. D. R. Wilson and T. R. Matinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6:1–34, 1997.

12. M. G.C. Resende and C. C. Ribeiro. Greedy Randomized Adaptive Search Pro-
cedures. Handbook of Metaheuristics, F. Glover and G. G. Kochenberger (eds.).
Kluwer Academic Publishers, 2003.

13. F. Garćıa-López and B. Melián B. and J. A. Moreno-Pérez and J. M. Moreno-
Vega. Parallelization of the Scatter Search for the p-median problem. Parallel
Computing, 29:575–589, 2003.

14. V. Campos and F. Glover and M. Laguna and R. Mart́ı. An Experimental Eval-
uation of a Scatter Search for the Linear Ordering Problem. Journal of Global
Optimization, 21:397–414, 2001.

15. J. P. Hamiez and J. K. Hao. Scatter Search for Graph Coloring Artificial Evolution,
168–179, 2001.

