
Finite Dominating Set for the p-Facility

Cent-Dian Network Location Problem
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Abstract

A dominating set for a location problem is a set of points that contains an opti-
mal solution for all instances of the problem. The p-facility location problems on a
network appear when the possible selections for locating the facilities are the sets
of p points of the network. Hooker, Garfinkel and Chen [4] consider a theoretical
result to extend the dominating set for the 1-facility problems to the corresponding
p-facility problems, and apply this result to propose a finite dominating set for the
p-facility cent-dian problem on a network. The optimal solutions of the cent-dian
problems are those minimizing a linear combination of the center and median ob-
jective functions. Since it is known that the set of vertices and local centers is a
dominating set for the single facility cent-dian problem, they claim that it is also
a dominating set for the p-facility cent-dian problem. We show a counterexample
for p = 2 and give an alternative finite dominating set for the p-facility cent-dian.
We also provide a solution method that avoids the exhaustive search in all the sets
of p points of this dominating set.
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1 Introduction

Facility location deals with the problems of locating one or several facilities in order to

optimize some criteria with regard to the users. In this paper we consider the problem

of selecting several points of a network in order to minimize a function which is distance

dependent with respect to given points of the network. The median and the center

problems are two well known problems with numerous possible applications. The first

is suitable for locating a facility providing a routine service, by means of minimizing the

average distances of users to it. The second is appropriate for emergency services where

the objective is to have the furthest users as near as possible to the center.

In many real world problems the objective is a mixture of different, possibly adverse

objectives, for example, in locating a fire station one may want to minimize the travelling

time to the farthest potential source of a call for service as well as one my try to locate

as close as possible to the heavily populated areas. The problem is therefore to minimize

both objective functions. Such goal may be mathematically expressed by minimizing a

new objective function that is a convex combination of the objective functions of the

center and median problems. This multi-objective approach for locating a facility on a

network was introduced by Halpern [2], who coined the term cent-dian for the points

which minimize the convex combinations of the center and median objective functions.

Ever since the seminal paper by Hakimi [1], a thread running through network loca-

tion theory is the identification of a finite subset of the network that necessarily contains

an optimal solution for all the instances of a particular location problem. Since Hakimi

[1], it is known that the set of vertices is a finite dominating set for the p-median prob-

lem. The set of vertices and local centers (points, in the interior of the edges, that are

equidistant and balanced with respect to vertices) is a finite dominating set for the p-

center problem; e.g. see Moreno [5]. From Halpern [3], it is known that the set of vertices

and local centers of the network is a finite dominating set for the single facility cent-dian

problem. Hooker, Garfinkel and Chen [4] consider a theoretical result (lemma 10) which

extends the finite dominating sets of the single facility problems to the corresponding
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p-facility problems, and apply it to the p-facility cent-dian problem (corollary 9). We

show that the set of vertices and local centers of the network it is not dominating for the

p-facility cent-dian problem by giving a counterexample with an instance where the only

optimal solution does not consits of vertices or local centers. We propose an alternative

finite dominating set for the p-facility cent-dian problem and an exact solution procedure

that avoids the exhaustive selection of the solution.

Next section provides the basic definitions and notation for the formulation of the

p-facility cent-dian problem on network that is derived from the classical p-center and

p-median problems. Section 3 includes a very simple counterexample for p = 2 in a tree

network and the new finite dominating set of points. Last section includes a polynomial

exact algorithm for every p.

2 Formulation of the problem.

Let N = (G, l) be a network where G = (E, V ) is a connected undirected graph and l

is a positive length function defined on E. The set V of vertices is a finite set of points

and E is a finite set of edges, each one of them is a continuous and linear set of points

joining two vertices. The edge e joining vertices i and j is denoted by e = [i, j]. The

length of an edge e = [i, j] ∈ E is denoted by l(e) = l(i, j) = l(j, i) and represents the

cost of going once through it from one vertex to another to satisfy the demand of one

user.

Every point x on edge e = [i, j] is determined by a value t, 0 ≤ t ≤ l(e) which

represents the length of the proportion of the edge between x and i; the point x is then

denoted by x = p(e, t) = p([i, j], t). The portion of the edge [i, j] between i and x is

denoted by [i, x]. The end points of edge e (also called extremes of the edge) are the

vertices i = p(e, 0) and j = p(e, l(e)); the points p(e, t), for 0 < t < l(e), are the interior

points of e. Let P denote the set of points (vertices and interior points) of the network

N . The insertion of an interior point x = p(e, t) = p([i, j], t) in network N transforms it
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in an equivalent network N.x with the same set of points where the set of the vertices

of the graph is V ∪ {x}, the set of edges is E − {[i, j]} ∪ {[i, x], [x, j]} and the length

function for the two new edges are given by l(i, x) = t and l(x, j) = l(i, j)− t.

A path between two vertices i and j is a minimal sequence of edges of N joining i

and j. The length of a path is equal to the sum of the lengths of all its edges. The

distance d(i, j) between any two vertices i and j is equal to the length of the shortest

path between them. For any two points x and y on N , the paths between them and the

distance d(x, y) are defined, respectively, as the paths and the distance between vertices

x and y on (N.x).y. So P is a mathematical topological space with the topology induced

on N by the metric or distance d(., .) where continuous functions can be defined.

The distance between two points represents the cost of the shortest way of going from

one point to the other to supply one user. The distance from a finite set of facility points

X ⊂ P to an user vertex u ∈ U is given by:

d(X, u) = min
x∈X

d(x, u).

We derive the formulation of the p-facility cent-dian problem from the well known

p-center and p-median problems on networks (see [1]). The median problem consists of

determining the locations of the set of facilities that minimizes average travel time to or

from the facilities, for the population of their users. For a given value of p, the so called

p-median problem is to establish p facilities in p potential locations and to supply each

user from the established facilities such that the demands of all users are met and the

total costs thereby incurred are minimized. The p-center problem is to open p facilities

and to assign each user to exactly one of them such that the maximum distance from

any open facility to any of the users assigned to it is a minimum.

Given the network N = (G, l) and the set U of vertices where are the users that have

to be served, the p-median problem is to find the set X∗ ⊂ P , subject to |X∗| = p, that

minimizes the objective function:

fm(U ; X) =
∑

u∈U

d(X, u).
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The p-center problem is to find the set X∗ ⊂ P , subject to |X∗| = p, that minimizes the

objective function:

fc(U ; X) = max
u∈U

d(X, u).

Total -or average- distance minimization tends to favor users who are clustered in

population centers to the detriment of users who are spatially dispersed. Discrimination

of this kind with regard to accessibility may have a severe impact on remote users in the

case of an emergency service (ambulances, fire brigades, police cars,...). As a result, the

decision maker may want to consider a criterion focusing more on users who get poorly

served.

For a given λ, 0 ≤ λ ≤ 1, the λ-cent-dian problem is to find the location that

minimizes the objective function defined by: fλ = λ · fc + (1 − λ) · fm, where fc and

fm are the objective functions of the center and median problems, respectively. The

value of λ reflects the weight attributed to the maximum distance with respect to the

total distance. When λ = 0, the λ-cent-dian problem is the median problem and when

λ = 1, it is the center problem. For 0 < λ < 1, it can be viewed as a location problem

where both efficiency and equity criteria are taken into account; the λ-cent-dian is also

a location that minimizes a linear combination of the average and maximum distances

to the user vertices.

Given the network N and the set of user vertices U , the single facility λ-cent-dian

problem consists in finding the point x∗ ∈ P such that:

fλ(U ; {x∗}) = min
x∈P

fλ(U ; {x}).

The p-facility λ-cent-dian problem or the p-λ-cent-dian problem consists in finding

the set X∗ ⊂ P , subject to |X∗| = p, that minimizes the objective function

fλ(U ; X) = λ · fc(U ; X) + (1− λ) · fm(U ; X).

i.e., such that

fλ(U ; X∗) ≤ fλ(U ; X),∀X ⊂ P, with |X| = p.
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3 The new finite dominating set.

The following two sets of interior points of the edges of the networks are used in the

finite dominating sets for the p-facility location problems on networks.

• A point x ∈ P is an extreme point with range r associated to user vertex u ∈ U

(we denote x ∈ EP (r; u)) if x is an interior point of an edge [i, j] such that:

r = d(x, u) = l(x, i) + d(i, u)

or

r = d(x, u) = l(x, j) + d(j, u).

• A point x ∈ P is a local center with range r associated to user vertices u, v ∈ U

(we denote x ∈ LC(r; u, v)) if x is an interior point of an edge [i, j] such that:

r = d(x, u) = l(x, i) + d(i, u) < l(x, j) + d(j, u)

and

r = d(x, v) = l(x, j) + d(j, v) < l(x, i) + d(i, v).

In the standard case the set of user vertices is U = V . The set of vertices is a finite

dominating set for the p-median problem [1]. The set of vertices and local centers is a

finite dominating set for the p-center problem [5] and also for the single facility λ-cent-

dian problem [3]. However, it is not a dominating set for the p-λ-cent-dian problem;

Figure 1 shows a counterexample for it.

Consider p-λ-cent-dian problem for p = 2 and λ = 0.8 in the tree network with six

user vertices given in figure 1; the lengths are shown below each edge. Two clusters of

vertices are easily found; the first one with vertices v1, v2, v3 and v4 and the second one

with vertices v5 and v6. For the second cluster, the best location is x2 = p([v5, v6], 5)

that is the only local center associated to v5 and v6; LC(5; v5, v6) = {x2}. For the

first cluster, the local centers associated to vertices v1, v2, v3 and v4 are: p([v1, v2], 3) ∈
LC(3; v1, v2), p([v1, v2], 4) ∈ LC(4; v1, v3) = LC(4; v1, v4), p([v2, v3], 1) ∈ LC(1; v2, v3)

and p([v2, v4], 1) ∈ LC(1; v2, v4). The best of these candidates is x1 = p([v1, v2], 4). The
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vertices in the clusters are worse than x1 or x2 as candidates for the optimal solution.

Other local centers are in the longest edge and clearly they can not be in an optimal

solution. The objective value for X = {x1, x2} is fλ(X) = 8.0.

fλ(X) = 0.8 · d(x2, v5) + 0.2 ·
[

4∑

i=1

d(x1, vi) +
6∑

i=5

d(x2, vi)

]
=

= 0.8 · 5 + 0.2 · [4 + 2 + 4 + 4 + 5 + 5] = 0.8 · 5 + 0.2 · 24 = 4.0 + 4.8 = 8.8

However the optimal solution is X∗ = {x∗1, x∗2}, where x∗1 = p([v1, v2], 5) and x∗2 = x2,

with objective value fλ(X
∗) = 8.4.

fλ(X
∗) = 0.8 · d(x∗1, v1) + 0.2 ·

[
4∑

i=1

d(x∗1, vi) +
6∑

i=5

d(x∗2, vi)

]
=

= 0.8 · 5 + 0.2 · [5 + 1 + 3 + 3 + 5 + 5] = 0.8 · 5 + 0.2 · 22 = 4.0 + 4.4 = 8.4
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Figure 1: The counterexample for p = 2. The black points constitute the only optimal

solution for λ = 0.8. The point x∗1 is not a local center.

The proposed finite dominating set for p-facility λ-cent-dian problem consists of the

union of three finite sets: the set of vertices, the set of local centers and a finite set of

extreme points. Let the canonical extreme points be those that have range equal to the
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distance between two vertices or equal to the range of a local center. Given the network

N and the set of user vertices U , let the set of local centers and the set extreme points

with range r associated to user vertices, for every r, be:

LC(r) =
⋃

u,v∈U

LC(r; u, v) and EP (r) =
⋃

v∈U

EP (r; v).

Let the set of distances between vertices and ranges of local centers be given by

R = {r : LC(r) 6= ∅} ∪ {r : r = d(v, u), v ∈ V, u ∈ U}.

Then the set of local centers and the set of canonical extreme points associated to user

vertices are

LC =
⋃

r∈R

LC(r) and EP =
⋃

r∈R

EP (r).

The proposed finite dominating set of points is: D = V ∪ LC ∪ EP .

Theorem 1. The set D = V ∪LC ∪EP of vertices, local centers and canonical extreme

points of the network associated to user vertices is a finite dominating set for the p-λ-

cent-dian problem.

Proof. Let every candidate solution be given by a vector X ∈ P p; i.e., a selection of

p facility points X = (x1, x2, ..., xp) with xk ∈ P , for k = 1, ..., p. Every user vertex

u ∈ U is assigned to its closest component of X ∈ P p, then the result is a series of sets

U(X) = (U1(X), U2(X), ..., Up(X)) defined by:

Uk(X) = {u ∈ U : d(xk, u) = min
x∈X

d(x, u)}.

They constitute a partition of the set of user vertices U only if there is not tie; otherwise

an optimal partition can be established by solving the ties arbitrarily and then the parti-

tion is not unique. The assignment given by the sets U∗(X) = (U∗
1 (X), U∗

2 (X), ..., U∗
p (X))

is an optimal partition for X ∈ P n if it is a partition of the set of user vertices that

verifies:

u ∈ U∗
k (X) ⇒ d(xk, u) = min

x∈X
d(x, u).

Given an optimal partition of the user vertex set U , the p-center and the p-median

objective functions can be computed by:

fc(U ; X) = max
k=1,...,p

fc(U
∗
k (X); xk).
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fm(U ; X) =
p∑

k=1

fm(U∗
k (X); xk).

Given a candidate solution X and the corresponding optimal partition U∗(X), asso-

ciated with each xk there is a radius rk(X) which represent the farthest distance from

xk to U∗
k (X):

rk(X) = max
u∈U∗

k
(X)

d(xk, u).

Then

fc(U ; X) = max
k=1,...,p

rk(X) = r∗(X),

and

fλ(U ; X) = λ · max
k=1,...,p

rk(X) + (1− λ) · fm(U ; X) = λ · r∗(X) + (1− λ) · fm(U ; X).

Assume that xk /∈ D for some k ∈ {1, ..., p}. We are going to show that set X can be

modified without increasing the function fλ(U ; X) until xk ∈ D for every k. We consider

two cases: rk(X) < r∗(X) and rk(X) = r∗(X).

Case 1. Let rk(X) < r∗(X).

Since xk /∈ D, it must be an interior point of an edge [i, j]. We are going to show

how to move this point xk on its edge without increasing the function fλ(U ; X) until a

vertex is reached or rk(X) equals r∗(X). In order to do so, we will analyse the slope of

fλ(U ; X) in terms of the distance from xk to the end vertex i of its edge [i, j].

For any interior point x of an edge [i, j], the set of user vertices which are optimally

reached from x through i is denoted by U i(x); i.e.,

U i(x) = {u ∈ U : d(x, u) = l(x, i) + d(i, u) ≤ l(x, j) + d(j, u)}.

Analogously,

U j(x) = {u ∈ U : d(x, u) = l(x, j) + d(j, u) ≤ l(x, i) + d(i, u)}.

Let U=
k (X) be the set of user vertices that can be assigned to xk and also to other

xm, for some m 6= k; i.e.,

U=
k (X) = {u ∈ U : d(xk, u) = min

x∈X
d(x, u) = d(xm, u), for some m 6= k}.
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The user vertices assigned to xk that are no assignable to other facility point are those

of U<
k (X) = Uk(X)− U=

k (X); i.e.,

U<
k (X) = {u ∈ U : d(xk, u) = min

x∈X
d(x, u) < d(xm, u), for every m 6= k}.

The vertices of U=
k (X) are assignable to xk and to other facility point in X, but

if xk is moved a small amount ξ towards j or towards i some of these vertices can

not remain assigned to xk and some of them must be assigned only to xk because the

tie is destroyed. Let the new point xk(ξ) denote xk when it is moved an amount ξ

towards j; i.e., if xk = p([i, j], t) then xk(ξ) = p([i, j], t + ξ). Then, those user vertices of

U=
k (X)∩U j(xk) are assigned only to xk(ξ) and those of U=

k (X)−U j(xk) are no assigned

to xk(ξ).

Let X(ξ) denote the new solution (x1, x2, ..., xk(ξ), ..., xp). Then the new optimal

partition for X(ξ) is given by: U∗
m(X(ξ)) = U∗

m(X)− [U=
k (X)∩U j(xk)], for every m 6= k,

and U∗
k (X(ξ)) = U∗

k (X)− [U=
k (X)− U j(xk)].

The slope of fm(U ; X(ξ)), as a function of ξ, depends of the user vertices assignable to

xk (those of of Uk(X(ξ)) = U<
k (X)∪U=

k (X)) that are optimally reached or not through

j. The value of this slope is:

sj
m(ξ) = |U<

k (X)− U j(xk)| − |[U<
k (X) ∪ U=

k (X)] ∩ U j(xk)|.

When the movement is towards the vertex i the new facility point is xk(−ξ) = p(e, t− ξ)

and, analogously, denoting by X(−ξ) the solution (x1, x2, ..., xk(−ξ), ..., xp). The slope

of fm(U ; X(−ξ)), as a function of ξ, is:

si
m(ξ) = |U<

k (X)− U i(xk)| − |[U<
k (X) ∪ U=

k (X)] ∩ U i(xk)|.

One of these slopes is not positive since:

si
m(ξ) + sj

m(ξ) = −2|[U<
k (X) ∪ U=

k (X)] ∩ U i(xk) ∩ U j(xk)| ≤ 0.

Let us assume (the other case is similar) that sj
m(ξ) ≤ 0.
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The slope sj
m(ξ) could change from non-positive to positive only if one of the following

cases hold: a) the set U<
k (X) − U j(xk) gets a vertex, or b) the set [U<

k (X) ∪ U=
k (X)] ∩

U j(xk) loses a vertex. Let us analyse them.

a) U<
k (X)− U j(xk) gets a vertex. The only possibilities for this are:

a1) A vertex leaves U j(xk(ξ)), but this is not possible because we are moving

xk(ξ) towards j.

a2) A vertex that is not in U j(xk(ξ)) comes into U<
k (X), but this is not possi-

ble either because, for this vertex, the distance to xk(ξ) increases while the

distance to xm, for m 6= k, does not change.

b) [U<
k (X)∪U=

k (X)]∩U j(xk) loses a vertex. This is impossible because the distance

from xk(ξ) to the vertices of U j(xk) decreases as xk(ξ) gets closer to j, then they

can not leave U<
k (X) ∪ U=

k (X).

While rk(X(ξ)) ≤ r∗(X(ξ)) = r∗(X) the slope of fc is zero. Then, the slope of fλ is:

sj
λ(ξ) = (1− λ) · sj

m(ξ), if the movement is towards j, and si
λ(ξ) = (1− λ) · si

m(ξ), if the

movement is towards i. The sum or these two values is:

sj
λ(ξ) + si

λ(ξ) =(1− λ)︸ ︷︷ ︸
≥0

(si
m(ξ) + sj

m(ξ)︸ ︷︷ ︸)
≤0

≤ 0.

So, in any case one of the slopes is no positive. This means that we can always move xk

in the direction which has no positive slope where fλ does not increase, until it reaches

a vertex or the corresponding radius rk equals r∗. In this last case we will be in case 2.

Case 2. Let rk(X) = r∗(X).

We study two subcases: 2a and 2b. In case 2a) rm(X) < rk(X), for all m 6= k; i.e.,

r∗(X) = max
i∈{1,..,p}

ri(X) is equal only to rk(X). And in case 2b) rm(X) = rk(X), for some

m 6= k; i.e., r∗(X) = max
i∈{1,..,p}

ri(X) is equal to several of ri(X), i ∈ {1, .., p}.

Case 2a) rm(X) < rk(X) = r∗(X), for all m 6= k.
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As in case 1, let us analyse the slope of function fλ when moving xk ∈ [i, j] an amount

ξ towards j or towards i. Let xk(ξ) denote xk when it is moved an amount ξ towards j

and xk(−ξ) denote xk when it is moved an amount ξ towards i.

Let U∗ = {u ∈ U∗
k (X) : d(xk, u) = r∗(X)}. Since xk /∈ D, it is not a local center then

only the following two cases are possible:

a) U∗ ⊂ U j(xk) and U∗ ∩ U i(xk) = ∅ then r∗(X(ξ)) = rk(X(ξ)) = rk(X)− ξ.

b) U∗ ⊂ U i(xk) and U∗ ∩ U j(xk) = ∅ then r∗(X(ξ)) = rk(X(ξ)) = rk(X) + ξ.

Therefore the slope of fc(X(ξ)) is +1 or it is −1, for both positive and negative ξ. Thus

the slope of fλ is exppresed in one of the following ways:

a) sλ(ξ) = sj
λ(ξ) = −λ+ (1− λ)sj

m(ξ) and sλ(−ξ) = si
λ(ξ) = +λ+ (1− λ)si

m(ξ).

b) sλ(ξ) = sj
λ(ξ) = +λ+ (1− λ)sj

m(ξ) and sλ(−ξ) = si
λ(ξ) = −λ+ (1− λ)si

m(ξ).

In both cases, as can be deduced from the analysis of case 1, the sum of the slope when

moving xk towards j plus the slope when moving it towards i is:

si
λ(ξ) + sj

λ(ξ) =(1− λ)︸ ︷︷ ︸
≥0

(si
m(ξ) + sj

m(ξ)︸ ︷︷ ︸)
≤0

≤ 0.

Therefore, moving xk in one of the directions (towards i or towards j) the function

fλ does not increase until xk(ξ) becomes a vertex (i or j), or a local center where the

slope of fc(Uk(X(ξ)); xk(ξ)) could be +1 in both directions, until or rk(X(ξ)) becomes

equal to some rm, with m 6= k. In this last case we will be in case 2b).

Case 2b) rm(X) = rk(X) = r∗(X), for some m 6= k.

Let K be the set of indices where r∗(X) is reached; i.e., k ∈ K if and only if

rk(X) = r∗(X). If for some k∗ ∈ K, xk∗ ∈ LC(r∗)∪ V then r∗ ∈ R and xk ∈ EP (r∗) for

all k ∈ K. Otherwise xk /∈ CL(r∗) ∪ V for every k ∈ K. Let us consider this case.

For every k ∈ K, the facility point xk is interior to an edge and xk /∈ CL(r∗). By the

analysis of case 2a, we can denote the edge containing xk by [ik, jk] in such way that the

slope of fc(Uk(X); xk) is +1 when moving xk towards jk and it is −1 when moving xk
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towards ik (the interchange of the names ik and jk could be necessary). We will move at

the same time all the points xk, k ∈ K, an amount ξ on their edges in the direction in

which simultaneously every rk increases or decreases. The slope of the objective function

fλ is:

a) If every xk, for k ∈ K, is moved ξ towards jk:

sλ(ξ) = +λ + (1− λ)
∑

k∈K

sjk
k (ξ).

b) If every xk, for k ∈ K, is moved ξ towards ik:

sλ(−ξ) = −λ + (1− λ)
∑

k∈K

sik
k (ξ).

One of these two slopes must be non positive, because the sum of them is:

(1− λ)
∑

k∈K

[sik
k (ξ) + sjk

k (ξ)︸ ︷︷ ︸
≤0

] ≤ 0.

Therefore, moving at the same time all the xk, k ∈ K, in the corresponding directions

(towards the ik’s or towards the jk’s) the function fλ does not increase until some xk

becomes a vertex (ik or jk) or a local center with range rk(X(ξ)) = r∗(X(ξ)) where the

slope of fc(Uk(X(ξ)); xk(ξ)) is +1 in both directions, or until rk(X(ξ)) becomes equal to

some rm, with m /∈ K. In this last case a new index comes into K and the process is

iterated.

This completes the proof. 2

4 Algorithms.

The finite dominating set D provides a rudimentary procedure for solving the problem:

an exhaustive search in the set of all combinations of p points of D. The complexity of

this algorithm depends on the size of D. Let n be the size of the vertex set V and m be

the number of edges.

Proposition 1. The finite dominating set D for the p-facility λ-cent-dian problem on

a network N has size O(n3m2).
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Proof. We have D = V ∪LC∪EP . There is at most a local center in each edge associated

to every pair of vertices, then |LC| = O(n2m) and |R| = O(n2m). For every value r > 0,

there are at most two extreme points with range r in each edge associated to every

vertex, then |EP (r)| = O(nm). Therefore |EP | = O(n3m2) and |D| = O(n3m2) 2

The exact algorithm for solving the p-λ-cent-dian problem, based on the exhaustive

search in Dp, has complexity O(n3p+1m2p) because |Dp| = O(n3pm2p) and the objective

function is computed with complexity O(n).

The following result is a consequence of the proof of the theorem and allows us to

reduce the complexity of the search in the set of candidates.

Proposition 2. There is an optimal solution X∗ for the p-λ-cent-dian problem such

that, if r∗ = fc(U ; X∗) is the maximum radius of the solution, then every x∗ ∈ X ∗ is a

local center, a vertex, or an extreme point with range r∗. That is, X∗ ⊂ V ∪LC∪EP (r∗).

We can reduce the search for an optimal solution to the set of combinations of p points

of D(r), for each r ∈ R. Since |D(r)| = |V ∪ LC ∪ EP (r)| = O(n2m) for every r, these

|R| searches of the combinations of p points imply evaluating O(n2p+2mp+1) candidate

solutions. The objective function is computed in O(n) time, so the complexity of the

exact algorithm is O(n2p+3mp+1).

The complexity of the search can be reduced even more by observing that one of the

points in X∗ has to be a local center or a vertex that determines the value of r∗, and the

other p− 1 points of X∗ have to be vertices or extreme points with range r∗.

Proposition 3. Let X∗ be an optimal solution for the p-λ-cent-dian problem and r∗ =

fc(U ; X∗) be the maximum radius of the solution. Then, there is a point x∗ ∈ X∗ such

that x∗ ∈ LC(r∗) or x∗ ∈ V with d(x∗, u) = r∗ for some vertex u ∈ U ; and the other

p− 1 facility points in X∗ are vertices or extreme points with range r∗.

To obtain a procedure based on this result, let DR the set of pairs (point,range)

given by

DR = {(x, r) : x ∈ LC(r)} ∪ {(v, r) : v ∈ V, r = d(v, u), for u ∈ U}.



D. Pérez, J.A. Moreno and I. Rodŕıguez. FDS for p-cent-dian network problem. 15

For each (x, r) ∈ DR we only need to search for solutions consisting of x and p − 1

points in V ∪ E(r). |DR| = O(n2m) since |LC| = O(n2m) and |U | = O(n). Moreover

|EP (r)| = O(nm) for every r ≥ 0. All this results in O(n2m) searches in (V ∪ E(r))p−1

to find candidate sets of p points. Evaluating each candidate set takes a time O(n).

Thus the exact algorithm has complexity O(n2m · (nm)p−1 · n) = O(np+2mp).

Proposition 4. Let X∗ be an optimal solution for the p-λ-cent-dian problem, X∗
c be an

optimal solution for the p-center problem, and X∗
m be an optimal solution for the p-median

problem. Let r∗ = r∗(U ; X∗), r∗c = r∗(Xc) and r∗m = r∗(Xm). Then r∗c ≤ r∗ ≤ r∗m.

Then, the proposed algorithm is as follows:

Algorithm.

• Step 1. Obtain the list L of pairs (x, r) consisting in a local center x and its radius

r. Add to L all the pairs (v, r) where v is a vertex and r = d(v, u) for some u ∈ U .

• Step 2. Compute the p-center Xc and the p-median Xm. Let rc = r∗(Xc) and

rm = r∗(Xm) be the corresponding maximum radii.

• Step 3. For every (x, r) ∈ L with rc ≤ r ≤ rm do de following. Obtain the set

EP (r) of extreme points with range r. For every selection Y of p − 1 points of

V ∩ EP (r) compute fλ(U ; {x} ∩ Y ).

• Step 4. Keep the best of the sets of p points evaluated in step 3.

If the underlying graph is a tree then m = n−1 and |CL| = O(n2); then |R| = O(n2)

and D(r) = O(n2) for every r ≥ 0. Therefore |D| = O(n4) and the exhaustive search on

Dp takes time O(n4p+1) to get the optimal solution. So the complexity of the proposed

algorithm in a tree network is O(n2p+1).
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