
Chapter 1

FROM THEORY TO IMPLEMENTATION:
APPLYING METAHEURISTICS

An Object Oriented Programming approach

I.J. Garćıa del Amo, F. Garćıa López, M. Garćıa Torres, B. Melián
Batista, J.A. Moreno Pérez and J.M. Moreno Vega
Departamento de Estad́ıstica, I.O. y Computación
Universidad de La Laguna, 38271 La Laguna, SPAIN
{igdelamo,fcgarcia,mgarciat,mbmelian,jamoreno,jmmoreno}@ull.es

1. Introduction
Metaheuristics are strategies to design heuristic procedures. Since the

first time the word metaheuristic appeared in the seminal paper of Tabu
Search by Fred Glover in 1986 [8], there have been a lot of papers, re-
views and books on Metaheuristics (see [29], [37], [31], [2], [12]). The
classification of metaheuristics is usually based on the kind of proce-
dures for which they are designed. For example, there are constructive
metaheuristics like GRASP [30], evolutive metaheuristics like Genetic
Algorithms [28] or neighborhood metaheuristics like the classical greedy
local search. However, other possible classifications of metaheuristics
are given by the computational tool or technique considered fundamen-
tal for the procedure, like Neural Networks [27] or Ant Colony Systems
[3]. Some of the proposed algorithms are designed following not only
one metaheuristic, but several of them. Moreover, some proposed meta-
heuristics are formed by mixed strategies that combine different kinds of
tools, in such a way that they are either hybrid metaheuristics obtained
by a combination of them, or they can be considered a simplified ver-
sion of them obtained by ignoring some of the tools applied. It is also
usual for many metaheuristic to have some modifications or adaptations
to special circumstances that have been proposed to provide different
versions or extensions of the metaheuristics. For these reasons the field
of metaheuristics is continuously growing with new proposals that are

2

becoming efficient and effective for an increasing number of difficult op-
timization problems.

However, the most relevant classification of them is to separate the
metaheuristics based in populations of solutions from the metaheuristics
based on a single solution. Among the single solution based metaheuris-
tics (or point-based solutions, as we will refer to from now on), we should
emphasize the importance of some of them, like the Greedy Search, the
Random Search, the Local Search [38], the Guided Local Search [33], the
Simulated Annealing [22], the Tabu Search [13] or the Variable Neigh-
borhood Search [21]. On the other hand, among the population based
metaheuristics, some of the most important ones are the Ant Colony
Systems [3], the Scatter Search [24], the Estimation of Distribution Algo-
rithms [25] or the Genetic Algorithms [28]. Other classifications appear
in [32] and [39].

1.1 Variable Neighborhood Search
Variable Neighborhood Search (VNS) [17], [18], [20], [19], [21] is a

recent and effective metaheuristic for solving combinatorial and global
optimization problems that is capable of escaping from the local op-
tima by systematically changing the neighborhood structures within the
search. VNS proceeds using a descent method to reach a local minimum,
then explores, either systematically or at random, increasing neighbor-
hoods of this solution. In each iteration, one or several points within the
current neighborhood are used as an initial solution for a local descent.
The procedure jumps from the current solution to a new one if and only
if a better solution has been found.

It has been empirically observed that, for many problems, local min-
ima with respect to one or several neighborhoods are relatively close to
each other. Therefore, a local optimum often provides some information
about the global one. This may for instance be several variables with
the same value, but usually it is unknown which ones are such. An orga-
nized study of the neighborhood of this local optimum is applied, until
a better one is found.

Variable Neighborhood Descent (VND) is a deterministic version of
VNS based on the fact that a local minimum with respect to one neigh-
borhood structure is not necessary so for another. Thus, each time the
descent reaches a local optimum for a set of moves, the method changes
the set of moves; it changes the neighborhood each time it is trapped
by the neighborhood structure. The method thus takes advantage from
combining several descent heuristics and it stops at a local minimum
with respect to all the neighborhood structure. Since a global minimum

From Theory to Implementation: Applying Metaheuristics 3

is a local minimum with respect to all possible neighborhood structures,
the probability of reaching to the global optimum increases.

Another simple application of the VNS principle is the Reduced Vari-
able Neighborhood Search (RVNS). From an initial solution, a point is
chosen at random in the first neighborhood. If its value is better than
the current one, the search is re-centered there. Otherwise, the search
proceeds to the next neighborhood. After all neighborhoods have been
considered, it starts again with the first, until a stopping condition is
satisfied. Usual stopping criteria are based on a maximum computing
time since the last improvement, or a maximum number of iterations.

In the previous two methods, we see how to use variable neighbor-
hoods to descent to a local optimum and to find promising regions for
near-optimal solutions. Merging the tools for both tasks leads to the
General Variable Neighborhood Search scheme that uses VND to im-
prove each solution sampled by RVNS. However, the basic VNS scheme
(Figure 1.1) is obtained by combining a local search with systematic
changes of neighborhoods around the local optimum found.

BVNS method

1 Find an initial solution x; choose a stopping condition;

2 Repeat until the stopping condition is met:
(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point x′ at random from the kth neighborhood of x
(x′ ∈ Nk(x));

(b) Local search. Apply some local search method with x′ as initial solution;
denote with x′′ the so obtained local optimum;

(c) Move or not. If the local optimum x′′ is better than the incumbent
x, move there (x ← x′′), and continue the search with N1 (k ← 1);
otherwise, set k ← k + 1;

Figure 1.1. Basic Variable Neighborhood Search Method

1.2 Scatter Search
Scatter Search (SS) [10], [11], [14], [15], [24] is an evolutionary al-

gorithm that combines good solutions from a reference set (RefSet)
to construct new ones exploiting the knowledge of the problem at hand.
Genetic Algorithms [28] are also evolutionary algorithms in which a pop-
ulation of solutions evolves by using the mutation and crossover oper-
ators. These operators have a significant reliance on randomization to

4

create new solutions. Unlike the population in Genetic Algorithms, the
RefSet of solutions in Scatter Search is relatively small.

The principles of the Scatter Search metaheuristic were first intro-
duced in the 1970s as an extension of formulations for combining decision
rules and problem constraints. This initial proposal generates solutions
considering characteristics of several parts of the solution space [7]. Scat-
ter Search has an implicit form of memory, which can be considered as
an inheritance memory, since it keeps track of the best solutions found
during the search, and selects their good features to create new solu-
tions. The Scatter Search Template, proposed by Glover in 1998 [10],
summarizes the general description of Scatter Search given in [9].

Scatter Search consists of five components processes: Diversification
Generation Method, that generates a set of diverse solutions, Improve-
ment Method, that improves a solution to reach a better solution, Ref-
erence Set Update Method, which builds and updates the reference set
consisting of RefSetSize good solutions, Subset Generation Method, to
produce subsets of solutions of the reference set, and Solution Combi-
nation Method, that combines the solutions in the produced subsets.
A comprehensive description of the elements of Scatter Search can be
found in [10], [11], [14], [15], [24] and [24].

The basic Scatter Search procedure (see Figure 1.2) starts generating
a large set of diverse solutions Pop, which is obtained using the Diversifi-
cation Generation Method. This procedure creates the initial population
(Pop),which must be a wide set consisting of diverse and good solutions.
Several strategies can be applied to get a population with these prop-
erties. The solutions to be included in the population can be created,
for instance, by using a random procedure to achieve a certain level of
diversity. An Improvement Method is applied to each solution obtained
by the previous method reaching a better solution, which is added to
Pop.

A set of good representative solutions of the population is chosen
to generate the reference set (RefSet). The good solutions are not
limited to those with the best objective function values. The considered
reference set consists of RefSetSize1 solutions with the best objective
function values and RefSetSize2 diverse solutions. Then RefSetSize =
RefSetSize1+RefSetSize2. The reference set is generated by selecting
first the RefSetSize1 best solutions in the population and secondly
adding RefSetSize2 times the most diverse solution in the population.

Several subsets of solutions from the RefSet are then selected by the
Subset Generation Method. The Solution Combination Method combines
the solutions in each subset using their good features. Then, the Im-
provement Method is applied to the result of the combination to get an

From Theory to Implementation: Applying Metaheuristics 5

improved solution. Finally, the Reference Set Update Method uses the
obtained solution to update the reference set.

procedure Scatter Search
begin

Create Population;
Generate Reference Set;
repeat

repeat
Subset Generation Method;
Solution Combination Method;
Improvement Method;

until (StoppingCriterion1);
Reference Set Update Method;

until (StoppingCriterion2);
end.

Figure 1.2. Scatter Search Metaheuristic Pseudocode

1.3 From Theory to Practice
After this review of current state-of-the-art on metaheuristics, it is

time to ask the main question this chapter aims to answer. How can we
implement these metaheuristics? Moreover, is there a way of program-
ming them such that we could implement more metaheuristics than those
seen here, without having to code them all from the beginning? Well,
we believe that the answer is “yes”. But before getting into the work, we
need to comment first on some necessary concepts, for instance, Object
Oriented Programming (OOP).

Although it is not the purpose of this chapter to explain OOP paradigm
and all of its features, we shall provide a brief description of it to con-
textualize the reading. Interested readers should refer to [1] for more
information about OOP standards and features.

The OOP paradigm is a relatively new one. Although the first pro-
grams following its guidelines were developed in later 1960’s, it has not
been until 1990’s that they had become widely spread. Traditional pro-
gramming deals with functions (code) and variables (data), emphasizing
the difference between them. We could say that traditional program-
ming is a “code-based” approach, as programmers should rely on the
efficiency and correctness of the code to resolve the task it was pro-
grammed to. OOP, on the other hand, focuses on dealing with objects,
which are functionality units containing both data and code to manage
it. This provides OOP with desirable properties such as modularity, en-
capsulation, abstraction, polymorphism or inheritance. We can say that

6

OOP is a “design-based” paradigm, as it relies on the architecture of
the program and the objects that live and interact in it, considering the
code of the objects virtually irrelevant. The challenge in OOP therefore
is of designing a sane object system ([35]).

Considering the problem of designing methods to implement several
metaheuristics and making them extensible and easy to code, we can
naturally think of OOP as an appropriate candidate for doing it.

We want to code common parts just one time, so we do not have
to program all the metaheuristic again every time we want to use
a new one. This can be done by encapsulating common code into
superclasses, and creating subclasses which inherit from them for
metaheuristic-dependant code. This also has the advantage that
if we detect an error in a part of the code of a superclass, we only
have to correct it once, and all the subclasses will be updated.

We want the code to be easily extensible. As we mentioned earlier,
what really matters in OOP is the way in which objects relate to
each other (i.e., WHAT they do), and not the specific code they
use to do it (i.e., HOW they do it). For example, if we have a prob-
lem object, and a metaheuristic object, we want the metaheuristic
object to get the problem object and to produce a solution object.
We only care about what are the specifications of the metaheuris-
tic. If the requirements are met, we should not care about how
the metaheuristic object gets the solution. So, in theory, it does
not matter if the metaheuristic object uses the VNS search or the
Scatter Search, as long as it produces a valid solution for the prob-
lem. Thus, to extend the classes to include a new metaheuristic,
we only have to create a subclass of the appropriate class and re-
implement the necessary methods to use the new algorithm. We
are changing the insides, but for an external viewer, it will still
remain as a metaheuristic object.

2. Class Hierarchy
In this section we will explain in detail each of the classes that form

the hierarchy we propose (Figures 1.3, 1.4 and 1.5). We will start talking
about the classes that define the structure of a problem and a solution
(classes Problem and Solution respectively). Next, we will explain the
general properties and methods we consider every metaheuristic should
have (conforming the base class Metaheuristic). Then, we will con-
tinue with an explanation of why metaheuristics should be separated
depending on if they are population-based or point-based. Finally, we

From Theory to Implementation: Applying Metaheuristics 7

will end with the specific details of two examples of metaheuristics al-
ready reviewed in the previous section: a point-based one (VNS) and
a population-based one (Scatter Search). After this, we will comment
the class StopCriterion and its relationship with metaheuristic classes.
Note that, although classes MhT VNS and MhT SS are represented in
Figure 1.4, they inherit from classes PointBased and PopulationBased
respectively, which are represented in Figure 1.3.

The explanation of each class will be preceded by an enumeration of
its attributes and methods, along with a short, general description of it
and some relevant comments that we think are useful to understand the
purpose of the class.

In the enumeration section, we will present firstly the attributes of the
class, and then, its methods. Every attribute and method is preceded
by one of these three symbols:

“+”: expresses that the attribute/method is public.

“−”: expresses that the attribute/method is private of the class.

“#”: expresses that the attribute/method is protected (that is,
only the class or some subclass of it can access it).

Apart from these symbols, if a method or class has its name written
in italics, that means that the method or class is abstract, and therefore
it has to be redefined by a subclass (if it is an abstract method) or a
subclass needs to be created for an object to be instantiated (if it is an
abstract class).

Every attribute/method will end by a colon followed by the type of
the attribute/method. For example, “ : bool” means that the attribute
is of type bool or that the method returns a bool value.

For convention, we will consider that the accessor methods of every
class (i.e., get and set) return copies of the attribute (if it is a getter)
or make a copy of the parameter before assigning it to the attribute (if
it is a setter). This assumption is for preserving data encapsulation and
integrity, so that every method can safely work with the object’s data
without interfering with other methods. Nevertheless, we understand
that, in some cases, working with copies can be simply unaffordable (for
example, in problems in which a solution is formed by a high number of
elements). In these cases the reader is advised to implement carefully
these methods to avoid strange behavior (i.e., freeing object’s attributes,
modifying the current solution in a local search procedure, etc).

8
Metaheuristic

− bestSolution : Solution
− problem : Problem

− iteration : int
− iterationOfBestSolution : int
− elapsedTime : double

− elapsedTimeOfBestSolution : double

− stopCriterion : StopCriterion

+ getBestSolution() : Solution

+ getProblem() : Problem

+ getIteration() : int

+ getIterationOfBestSolution() : int

+ getElapsedTime() : double

+ getElapsedTimeOfBestSolution() : double

+ getStopCriterion() : StopCriterion

+ setStopCriterion(stopCriterion : StopCriterion) : void

+ setBestSolution(solution : Solution) : void

+ setProblem(problem : Problem) : void

+ resetIteration() : void

+ resetElapsedTime() : void

+ runSearch() : void

setIteration(iteration : int) : void

increaseIteration() : void

setIterationOfBestSolution(iteration : int) : void

setElapsedTimeOfBestSolution(elapsedTime : double) : void

¡
¡

¡
¡¡µ

PointBased
− currentSolution : Solution
− newSolution : Solution

+ getCurrentSolution() : Solution

+ getNewSolution() : Solution

+ runSearch() : void

setCurrentSolution(solution :

Solution) : void

setNewSolution(solution :

Solution) : void

initializeParameters() : void

generateInitialSolution() : void

generateNewSolution() : void

acceptNewSolution() : bool

acceptanceUpdateParameters() : void

rejectionUpdateParameters() : void

@
@

@
@@I

PopulationBased

− initialPopulationSize : int

− maxPopulationSize : int

− currentPopulation : Population

− newPopulation : Population

+ getInitialPopulationSize() : int

+ getMaxPopulationSize() : int

+ getCurrentPopulation() : Population

+ getNewPopulation() : Population

+ getBestSolutionInPopulation(population :

Population) : Solution

+ setInitialPopulationSize(size : int) : void

+ setMaxPopulationSize(size : int) : void

+ runSearch() : void

setCurrentPopulation(population :

Population) : void

setNewPopulation(population :

Population) : void

initializeParameters() : void

generateInitialPopulation() : void

generateNewPopulation() : void

acceptNewPopulation() : bool

acceptanceUpdateParameters() : void

rejectionUpdateParameters() : void

Figure 1.3. Class Hierarchy for the proposed metaheuristics

From Theory to Implementation: Applying Metaheuristics 9

PointBased PopulationBased

6

MhT VNS
− K : int
− KMax : int

+ getK() : int

+ getKMax() : int

+ setKMax(KMax : int) : void

setK(K : int) : void

increaseK() : void

generateNewSolution() : void

acceptNewSolution() : bool

acceptanceUpdateParameters() :

void
rejectionUpdateParameters() :

void
initializeParameters() : void

generateInitialSolution() : void

shake() : void

improveSolution(solution : Solution) :

Solution

6

MhT SS
− RefSetSize : int
− RefSet1Size : int
− RefSet2Size : int
− subsetSize : int
− refSet : Population

− newRefSet : Population

− stopCriterionRefSet : StopCriterion

− stopCriterionPopulation : StopCriterion

+ getRefSetSize() : int

+ getRefSet1Size() : int

+ getRefSet2Size() : int

+ getSubsetSize() : int

+ getRefSet() : Population

+ getNewRefSet() : Population

+ getStopCriterionRefSet() : StopCriterion

+ getStopCriterionPopulation() :

StopCriterion

+ setRefSetSize(size : int) : void

+ setRefSet1Size(size : int) : void

+ setRefSet2Size(size : int) : void

+ setSubsetSize(size : int) : void

+ setStopCriterionRefSet(stopCriterion :

StopCriterion) : void

+ setStopCriterionPopulation(stopCriterion :

StopCriterion) : void

setRefSet(refSet : Population) : void

setNewRefSet(refSet : Population) : void

generateNewPopulation() : void

acceptNewPopulation() : bool

acceptanceUpdateParameters() : void

rejectionUpdateParameters() : void

initializeParameters() : void

generateInitialPopulation() : void

generateRefSet() : void

selectSubset() : void

combineSolutions(subset :

Population) : Population

improveSolutions(subset :

Population) : Population

updateRefSet() : void

Figure 1.4. Class Hierarchy for the proposed metaheuristics (cont.)

10

Problem
− isMaxProblem : bool

+ isMaxProblem() : bool

+ setIsMaxProblem(isMax : bool) : void

+ areEqual(solution1 : Solution, solution2 : Solution) : bool

+ firstSolutionIsBetter(solution1 : Solution, solution2 : Solution) : bool

+ evaluate(solution : Solution) : double

Solution
− score : double

+ getScore() : double

+ setScore(score : double) : void

StopCriterion

+ stop(mh : Metaheuristic) : bool

6

GeneralStopCriterion

− maxTime : double
− maxIterations : int

+ stop(mh : Metaheuristic) : bool

+ getMaxTime() :double

+ getMaxIterations() : int

+ setMaxTime(maxTime : double) : void

+ setMaxIterations(maxIterations : int) : void

Figure 1.5. Class Hierarchy for the proposed metaheuristics (cont.)

From Theory to Implementation: Applying Metaheuristics 11

2.1 Class Problem

Problem

− isMaxProblem : bool

+ isMaxProblem() : bool
+ setIsMaxProblem(isMax : bool) : void
+ areEqual(solution1 : Solution, solution2 : Solution) : bool
+ firstSolutionIsBetter(solution1 : Solution, solution2 : Solution) : bool
+ evaluate(solution : Solution) : double

The Problem class is probably the most important of all, but ob-
viously, it is also the most problem-dependent one. Of course, there
is no doubt that as class named Problem should be strongly problem-
dependent. And that is why it is so difficult to generalize: we cannot
assume anything about the attributes it contains, because they depend
on the type of problem we are talking about. We can only assume that
the problem should contain some kind of structure which explicitly enu-
merates all the elements that can form the solution, or at least, a way
to obtain them. But that is all, we cannot know a priori if it is a list of
objects, a function to obtain them, if we need more attributes to com-
pletely describe the problem... So, at most, we can define one attribute
and some methods, which are listed below:

Attributes:

isMaxProblem. Attribute that determines if the problem is a
maximization or minimization problem.

Methods:

isMaxProblem(). Method to get the value of the attribute is-
MaxProblem.

setIsMaxProblem(isMax : bool). Method to set the value of the
attribute isMaxProblem

areEqual(solution1 : Solution, solution2 : Solution). Method
to compare if two solutions have the same score. If a solution has
not been evaluated yet, the method should call evaluate (explained
below) and save the score obtained into the solution, then compare.
The method should return true only if both solutions have the same
score, and false in any other case.

firstSolutionIsBetter(solution1 : Solution, solution2 : Solution).
Similar to the method areEqual described above, but it checks if

12

the first solution has a higher score than the second one. The
method should return true only if the first solution has an strictly
higher score than the second one.

evaluate(solution : Solution). Abstract method to evaluate (give
a score) to a solution. This method should be implemented by the
subclass that specifies the problem.

2.2 Class Solution

Solution

− score : double

+ getScore() : double
+ setScore(score : double) : void

The Solution class is as problem-dependent as the Problem one, be-
cause it has to provide a correct arrangement for some elements of the
problem in order to conform a solution to it. And that is exactly why
it cannot be generally defined with much detail. We cannot know how
this elements should be placed, it could be linearly, in which case we
would use a vector or an array, or maybe it could need a more complex
structure like a tree or a priority queue.

So, the specific structure to handle the elements must be left to a
subclass that knows more about the problem. The only property that
we think any solution should have, at least, is a representative value of
the fitness of the solution.

Attributes:

score. Attribute that reflects the fitness of the solution. This
attribute is intended as a variable to store the value returned by
the method evaluate of the class Problem. If the solution has not
been yet evaluated, it should contain a not a number (NaN) value.

Methods:

getScore(). Method to get the value of the attribute score.

setScore(score : double). Method to set the value of the attribute
score.

2.3 Class Metaheuristic

Metaheuristic

From Theory to Implementation: Applying Metaheuristics 13

− bestSolution : Solution
− problem : Problem
− iteration : int
− iterationOfBestSolution : int
− elapsedTime : double
− elapsedTimeOfBestSolution : double
− stopCriterion : StopCriterion

+ getBestSolution() : Solution
+ getProblem() : Problem
+ getIteration() : int
+ getIterationOfBestSolution() : int
+ getElapsedTime() : double
+ getElapsedTimeOfBestSolution() : double
+ getStopCriterion() : StopCriterion
+ setStopCriterion(stopCriterion : StopCriterion) : void
+ setBestSolution(solution : Solution) : void
+ setProblem(problem : Problem) : void
+ resetIteration() : void
+ resetElapsedTime() : void
+ runSearch() : void
setIteration(iteration : int) : void
increaseIteration() : void
setIterationOfBestSolution(iteration : int) : void
setElapsedTimeOfBestSolution(elapsedTime : double) : void

This class is the base class from which every metaheuristic will inherit.
It has a few attributes to control the execution of the metaheuristic, and
a main method runSearch to look for a solution to a problem.

The sequence of use of this class in the general case should be as
follows:

1 Inform the metaheuristic class of the problem we are considering
by setting the problem attribute to the appropriate value.

2 Set a stop criterion for the search.

3 Call the runSearch method.

4 When the search is finished, get the best solution found.

This sequence can be altered in special cases, for example, when we
already have a solution for the problem and we want the metaheuristic
to improve it. In that case, before calling runSearch, we would have
to set the bestSolution attribute to the solution object we have. The
metaheuristic should then return a solution which is, at least, as good
as the one provided, if not better.

14

The class also has attributes for posterior statistical analysis, such as
the number of iterations run, the iteration in which the best solution
was found, or the elapsed time of search until that moment.

Attributes:

bestSolution. Attribute to store the best solution found until the
moment. Normally, this attribute will be unset before the begin-
ning of the search, but if a solution is provided, the metaheuristic
should try to continue the search of the best solution from that
point. In any case, the search method should not update the solu-
tion unless the new solution found has a higher score than the one
provided.

problem. This is an object containing the problem which we are
searching for a solution.

iteration. The current iteration of the runSearch main loop. The
metaheuristic should reset this value to 0 each time the method
runSearch is called.

iterationOfBestSolution. Iteration in which the best solution
was found.

elapsedTime : A time-stamp for several usages. Normally, this
attribute would be reset before the beginning of the search and
will be updated at the finish of the search, containing the number
of time units since the last reset (search stop time− reset time).

elapsedTimeOfBestSolution. A time-stamp for the moment in
which the best solution was found (best solution time−reset time).

stopCriterion. Object to determine if the search should stop at
a given moment or should continue searching for a better solution.

Methods:

getBestSolution(). Method to get the best solution found by the
metaheuristic.

getProblem(). Method to get the problem object.

getIteration(). Method to get the current iteration of the search.

getIterationOfBestSolution(). Method to get the iteration of
the best solution. If a best solution hasn’t yet been found, it should
return a non-numeric value.

From Theory to Implementation: Applying Metaheuristics 15

getElapsedTime(). Method to get the elapsed time (in time
units) since the last reset.

getElapsedTimeOfBestSolution(). Method to get the elapsed
time (in time units) since the las reset until the moment the best
solution was found.

getStopCriterion(). Method to get the StopCriterion object of
the metaheuristic.

setStopCriterion(stopCriterion : StopCriterion). Method to set
the StopCriterion object of the metaheuristic.

setBestSolution(solution : Solution). Method to set the best so-
lution found until the moment (for example, to continue a search).

setProblem(problem : Problem). Method to set the Problem
object.

resetIteration(). Method to reset the iterations for the search.

resetElapsedTime(). Method to reset the time from which we
will count.

runSearch(). Abstract method to search for a solution. This
method must be implemented by a subclass. The implementa-
tion should also reset the iterations and the elapsed time at the
beginning of the method.

setIteration(iteration : int). Method to set the current iteration.
This method can only be called by an object of class Metaheuristic
or subclass of it. An external object should never update this
variable.

increaseIteration(). Method to increase the current iterations.

setIterationOfBestSolution(iteration : int). Method to set the
iteration in which the best solution was found.

setElapsedTimeOfBestSolution(elapsedTime : double). Method
to set the time in which the best solution was found.

2.4 Class PointBased

PointBased

− currentSolution : Solution
− newSolution : Solution

16

+ getCurrentSolution() : Solution
+ getNewSolution() : Solution
+ runSearch() : void
setCurrentSolution(solution : Solution) : void
setNewSolution(solution : Solution) : void
initializeParameters() : void
generateInitialSolution() : void
generateNewSolution() : void
acceptNewSolution() : bool
acceptanceUpdateParameters() : void
rejectionUpdateParameters() : void

The PointBased class is one of the two subclasses of Metaheuristic we
will implement. This class implements its methods taking in mind that
a point-based metaheuristic will only obtain one solution per iteration,
and if it is better than the best it has found, it updates this best one
with the new solution obtained.

This schema represents the core of this class, and it is shown mainly
in the runSearch method, that was abstract in the Metaheuristic class,
and is now defined in this class to follow the former guidelines. The
runSearch method calls several internal methods (see fig 1.6) that are
declared abstract, in order to permit a subclass to define them in a way
that matches the metaheuristic specific algorithm.

Attributes:

currentSolution. Solution with which the metaheuristic is cur-
rently working.

newSolution. Temporary variable in which the newly created
solution is stored. If after generating a new solution it is accepted,
then the current solution is replaced by the new one.

Methods:

getCurrentSolution(). Method to get the current solution of the
metaheuristic.

getNewSolution(). Method to get the newly created solution in
each iteration of the metaheuristic.

runSearch(). Implementation of the method to search for a so-
lution, specially adapted to point-based metaheuristics, in which
some abstract methods are used.

setCurrentSolution(solution : Solution). Method to set the cur-
rent solution.

From Theory to Implementation: Applying Metaheuristics 17

PointBased::runSearch
void PointBased::runSearch()

{
resetEllapsedTime();

resetIterations();

generateInitialSolution();

do {
generateNewSolution();

if (acceptNewSolution()) {
acceptanceUpdateParameters();

setCurrentSolution (getNewSolution());

if (getProblem().firstSolutionIsBetter

(getCurrentSolution(),getBestSolution()))

{
setTimeOfBestSolution(time());

setIterationOfBestSolution(getIteration());

setBestSolution(getCurrentSolution());

}
} else {

rejectionUpdateParameters();

}
increaseIteration();

} while (!this.getStopCriterion().stop());

}

Figure 1.6. PointBased::runSearch code

18

setNewSolution(solution : Solution). Method to set the newly
created solution in each iteration of the metaheuristic.

initializeParameters(). Abstract method to initialize some pa-
rameters. The method is declared abstract, as we cannot know a
priori how the metaheuristic needs to be initialized. A subclass
that implements a specific metaheuristic, should implement also
this method.

generateInitialSolution(). Abstract method to generate the ini-
tial solution. It is declared abstract, because the way in which an
initial solution has to be generated depends not only on the meta-
heuristic, but also on the problem. Anyway, when this method
is implemented, it should store the new solution in the bestSolu-
tion attribute. And also, if the bestSolution attribute is already
set (for example, when we want the metaheuristic to continue a
search from a solution), the method should not modify this value,
but return immediately, leaving the attribute “as is”.

generateNewSolution(). Abstract method to generate a new
solution when a previous solution exists. The method is abstract
for the same reason as the previous method generateInitialSolu-
tion. This method should store the new solution in the attribute
newSolution, and if it needs the previous existing solution, it can
access it through the currentSolution attribute.

acceptNewSolution(). Abstract method to decide if the newly
created solution is accepted to become the current solution. This
method is provided because some metaheuristics accept every new
solution, but others check the new solution for some properties,
and do not accept it if it does not conform to them.

acceptanceUpdateParameters(). Abstract method to call when
the new solution is accepted.

rejectionUpdateParameters(). Abstract method to call when
the new solution is rejected.

2.5 Class PopulationBased

PopulationBased

− initialPopulationSize : int
− maxPopulationSize : int
− currentPopulation : Population

From Theory to Implementation: Applying Metaheuristics 19

− newPopulation : Population

+ getInitialPopulationSize() : int
+ getMaxPopulationSize() : int
+ getCurrentPopulation() : Population
+ getNewPopulation() : Population
+ getBestSolutionInPopulation(population : Population) : Solution
+ setInitialPopulationSize(size : int) : void
+ setMaxPopulationSize(size : int) : void
+ runSearch() : void
setCurrentPopulation(population : Population) : void
setNewPopulation(population : Population) : void
initializeParameters() : void
generateInitialPopulation() : void
generateNewPopulation() : void
acceptNewPopulation() : bool
acceptanceUpdateParameters() : void
rejectionUpdateParameters() : void

This class is the counterpart of the PointBased class, but for popu-
lations of solutions. These classes (PointBased and PopulationBased)
were specifically designed to be as similar as possible, so that a paral-
lelism between them could be naturally established. For example, if the
class PointBased has a method called generateNewSolution, the class
PopulationBased should have its equivalent called generateNewPopula-
tion.

In Figure 1.7 we can see the code of the method runSearch for the
PopulationBased class, and there is shown clearly the strong similarities
that exist between this method and the respective one from PointBased
class (1.6).

Just one more comment. In this class (and implicitly in all of its
subclasses), there is an assumption for the object/type Population. For
implementation purposes, we can simply consider it as an array, vector,
list, etc. of Solution objects. The only requirements are that it can
handle a set of solutions, granting the insertion, access and removal of
each of them.

Attributes:

initialPopulationSize. Number of elements (solutions) that should
be contain in the initial population. The method to generate it,
though abstract, should honor this value when implemented.

maxPopulationSize. The maximum number of elements (solu-
tions) that any population should contain. This value has to be
observed every time a new population is created.

20

PopulationBased::runSearch
void PopulationBased::runSearch()

{
Solution bestInPopulation;

resetEllapsedTime();

resetIterations();

generateInitialPopulation();

do {
generateNewPopulation();

if (acceptNewPopulation()) {
acceptanceUpdateParameters();

setCurrentPopulation (getNewPopulation());

bestInPopulation = getBestSolutionInPopulation

(getCurrentPopulation());

if (getProblem().firstSolutionIsBetter

(bestInPopulation, getBestSolution()))

{
setTimeOfBestSolution(time());

setIterationOfBestSolution(getIteration());

setBestSolution(bestInPopulation);

}
} else {

rejectionUpdateParameters();

}
increaseIteration();

} while (!this.getStopCriterion().stop());

}

Figure 1.7. PopulationBased::runSearch code

From Theory to Implementation: Applying Metaheuristics 21

currentPopulation. The population the metaheuristic is work-
ing on in the current iteration.

newPopulation. The new population generated in each itera-
tion of the metaheuristic. As with the PointBased class, if this
method requires the previous population, it can access it through
the currentPopulation attribute.

Methods:

getInitialPopulationSize(). Method to get the size of the initial
population.

getMaxPopulationSize(). Method to get the maximum size of
any population.

getCurrentPopulation(). Method to get the population the
metaheuristic is currently working on.

getNewPopulation(). Method to get the new population created
in each iteration of the metaheuristic.

getBestSolutionInPopulation(population : Population). Method
that looks for the solution with the highest score among all the
population, and then returns it.

setInitialPopulationSize(size : int). Method to set the attribute
initialPopulationSize.

setMaxPopulationSize(size : int). Method to set the attribute
maxPopulationSize.

runSearch(). Implementation of the method to search for a so-
lution, specially adapted to population-based metaheuristics, in
which in each iteration the metaheuristic explores a set of solu-
tions. As in the PointBased class, some abstract methods are
used.

setCurrentPopulation(population : Population). Method to set
the attribute currentPopulation.

setNewPopulation(population : Population). Method to set the
attribute newPopulation.

initializeParameters(). Abstract method to initialize some metaheuristic-
dependent parameters.

22

generateInitialPopulation(). Abstract method to generate the
initial population. As its PointBased counterpart, it is declared
abstract, because the way in which an initial population has to be
generated depends on the problem. If the bestSolution attribute
is already set (for example, when we want the metaheuristic to
continue a search from a solution), this solution should be included,
or at least used to generate, the initial population.

generateNewPopulation(). Abstract method to generate a new
population when a previous population exists. As the method
generateNewSolution of the PointBased class, this method should
store the new population in the attribute newPopulation, and if
it needs the previous existing population, it can access it through
the currentPopulation attribute.

acceptNewPopulation() : bool. Method to determine if the new
population is accepted to substitute the current population. Usu-
ally, populations must have some properties in order to avoid de-
generation of the solutions, and if it does not, the population is
rejected.

acceptanceUpdateParameters() : void. Abstract method to
call when the new population is accepted.

rejectionUpdateParameters() : void. Abstract method to call
when the new population is rejected.

2.6 Class MhT VNS

MhT VNS

− k : int
− kMax : int

+ getK() : int
+ getKMax() : int
+ setKMax(kMax : int) : void
setK(k : int) : void
increaseK() : void
generateNewSolution() : void
acceptNewSolution() : bool
acceptanceUpdateParameters() : void
rejectionUpdateParameters() : void
initializeParameters() : void
generateInitialSolution() : void
shake() : void
improveSolution(solution : Solution) : void

From Theory to Implementation: Applying Metaheuristics 23

This class is the first one we will see that represents an approximation
to an specific metaheuristic. The MhT VNS class uses attributes and
methods that are exclusive of the VNS metaheuristic, although it is still
declared abstract because of problem-dependent issues and the existence
of several variances of the VNS general algorithm.

This class is intended to provide the general schema of the VNS meta-
heuristic, but at the same time, allow a subclass to customize some as-
pects of the algorithm, like, for example, the local search (here called
improveSolution) or the shake procedure (see Figure 1.1). For exam-
ple, a subclass of MhT VNS could implement the improveSolution as
an strictly local search, other could use a global search, and other could
even use another metaheuristic.

For implementing this class the key concepts are, as in every other
metaheuristic, to identify firstly if it is a point based or a population
based metaheuristic, and secondly, where do the algorithm fit in the
methods provided by the super-class (in this case, PointBased).

For example, the generateNewSolution method could consist in a
shake and a local search (see Figure 1.8). The method to test if a new
solution is accepted is simply a comparison between the new solution
and the best solution found until the moment, and if has a higher score,
it is accepted (Figure 1.9). If a solution is accepted, K is reset to 1
(Figure 1.10), and if it is rejected, K is increased (Figure 1.11).

MhT VNS::generateNewSolution
void MhT VNS::generateNewSolution()

{
shake();

improveSolution();

}

Figure 1.8. MhT VNS::generateNewSolution code

Attributes:

k. This attribute controls the current size of the neighborhood
of the solution to explore in the improveSolution phase. This at-
tribute varies from 1 to kMax.

kMax. Maximum value for the k attribute.

Methods:

24

MhT VNS::acceptNewSolution
void MhT VNS::acceptNewSolution()

{
return getProblem().firstSolutionIsBetter

(getNewSolution(), getCurrentSolution());

}

Figure 1.9. MhT VNS::acceptNewSolution code

MhT VNS::acceptanceUpdateParameters
void MhT VNS::acceptanceUpdateParameters()

{
setK(1);

}

Figure 1.10. MhT VNS::acceptanceUpdateParameters code

MhT VNS::rejectionUpdateParameters
void MhT VNS::rejectionUpdateParameters()

{
increaseK();

}

Figure 1.11. MhT VNS::rejectionUpdateParameters code

From Theory to Implementation: Applying Metaheuristics 25

getK(). Method to get the attribute k.

getKMax(). Method to get the attribute kMax.

setKMax(kMax : int). Method to set the attribute kMax.

setK(k : int). Method to set the attribute k.

increaseK(). Method to increase the value of the attribute k.

generateNewSolution(). Method to generate the new solution
from an existent one. See Figure 1.8.

acceptNewSolution(). Method to determine if a new solution is
accepted. See Figure 1.9.

acceptanceUpdateParameters(). Method to call in case a new
solution is accepted. See Figure 1.10.

rejectionUpdateParameters(). Method to call in case a new
solution is rejected. See Figure 1.11.

initializeParameters(). Abstract method to initialize param-
eters. This methods has to be implemented by a subclass that
knows more details about the problem.

generateInitialSolution(). Abstract method to generate an ini-
tial solution. This methods has to be implemented by a subclass
that knows more details about the solution.

shake(). Abstract method to provide the metaheuristic with a way
to escape from a local minimum solution. It is declared abstract to
allow a subclass to implement different ways of shaking, and also,
because to be able to shake a solution, the method needs to know
more details about the solution.

improveSolution(solution : Solution). Abstract method to im-
prove a solution within a k-sized neighborhood. Like the shake
method, this method is defined abstract both for allowing several
implementations and because there is a need for more information
on the problem and the solution. For a possible implementation
of a local search procedure, see Figure 1.13.

26

2.7 Class MhT SS

MhT SS

− refSetSize : int
− refSetSize1 : int
− refSetSize2 : int
− subsetSize : int
− refSet : Population
− newRefSet : Population
− stopCriterionRefSet : StopCriterion
− stopCriterionPopulation : StopCriterion

+ getRefSetSize() : int
+ getRefSetSize1() : int
+ getRefSetSize2() : int
+ getSubsetSize() : int
+ getRefSet() : Population
+ getNewRefSet() : Population
+ getStopCriterionRefSet() : StopCriterion
+ getStopCriterionPopulation() : StopCriterion
+ setRefSetSize(size : int) : void
+ setRefSetSize1(size : int) : void
+ setRefSetSize2(size : int) : void
+ setSubsetSize(size : int) : void
+ setStopCriterionRefSet(stopCriterion : StopCriterion) : void
+ setStopCriterionPopulation(stopCriterion : StopCriterion) : void
setRefSet(refSet : Population) : void
setNewRefSet(refSet : Population) : void
generateNewPopulation() : void
acceptNewPopulation() : bool
acceptanceUpdateParameters() : void
rejectionUpdateParameters() : void
initializeParameters() : void
generateInitialPopulation() : void
generateRefSet() : void
selectSubset() : void
combineSolutions(subset : Population) : Population
improveSolutions(subset : Population) : Population
updateRefSet() : void

This class is the other example of an specific metaheuristic we will see,
but, as we mentioned earlier, instead of being point based, as was VNS,
this metaheuristic is classified as population based. It is also defined
abstract because, to be able to create an instantiable class, we need
more information about the problem.

To implement this class, the first thing we have to do is find the meth-
ods of the PopulationBased class in which to insert the Scatter Search

From Theory to Implementation: Applying Metaheuristics 27

specific code (see Figure 1.2 for the pseudocode). We only have to take in
mind that the main loop for the runSearch method in PopulationBased
consists in generating a new population in each iteration. Remember
that the Scatter Search is based in the generation and update of a ref-
erence set in each iteration, not the population itself. This means that
we have to think a little how to split the code of the algorithm in order
to fit in the abstract methods used by runSearch.

An implementation of the classical Scatter Search will typically let
the reference set evolve, and when it is done, return the best solution in
it. So, in practice, it only uses one population. This fact has some im-
plications, like, for example, that most of the code of the algorithm has
to be embedded in the generateNewPopulation method. Another conse-
quence is that other methods and attributes are meaningless, like accept-
NewPopulation (which shall always return true), or the Metaheuristic
attribute stopCriterion (which, as it refers to the evolution of the pop-
ulation, we want it to stop in the first iteration, so in fact, it has to
return always true). More sophisticated implementations may use other
stop criterions that would allow also the evolution of populations. For
further reference on Scatter Search implementations, see [24].

MhT SS::generateNewPopulation

void MhT SS::generateNewPopulation()

{
Population subset;

do {
setNewRefSet(new Population());

do {
subset = selectSubset();

subset = combineSolutions(subset);

subset = improveSolutions(subset);

setNewRefSet(getNewRefSet().add(subset));

} while(!getStopCriterionRefSet().stop());

updateRefSet();

} while(!getStopCriterionPopulation().stop());

}

Figure 1.12. MhT SS::generateNewPopulation code

Attributes:

refSetSize. Attribute that determines the size of the complete
reference set (good solutions + diverse solutions).

28

refSetSize1. Attribute that determines the number of good solu-
tions that will be in the reference set.

refSetSize2. Attribute that determines the number of diverse
solutions that will be in the reference set.

subsetSize. Attribute to determine the number of solutions that
will be taken from the reference set to be combined. A typical
value for this attribute is 2.

refSet. Object containing the reference set of solutions.

newRefSet. Object containing the new reference set of solutions
generated in each iteration.

stopCriterionRefSet. Object representing the stop criterion for
the loop in which the new reference set is generated. When this
stop criterion determines that the loop should stop, it will have
generated a new reference set.

stopCriterionPopulation. Object representing the stop crite-
rion for the loop in which new reference sets are being generated.
When this stop criterion determines that the loop should stop (usu-
ally because the new reference sets generated lack of good solutions
or diverse solutions), a new reference set will have to be created
from the population.

Methods:

getRefSetSize(). Accessor method to get the value of the at-
tribute refSetSize.

getRefSetSize1(). Accessor method to get the value of the at-
tribute refSetSize1.

getRefSetSize2(). Accessor method to get the value of the at-
tribute refSetSize2.

getSubsetSize(). Accessor method to get the value of the at-
tribute subsetSize.

getRefSet(). Accessor method to get the value of the attribute
refSet.

getNewRefSet(). Accessor method to get the value of the at-
tribute newRefSet.

From Theory to Implementation: Applying Metaheuristics 29

getStopCriterionRefSet(). Accessor method to get the value of
the attribute stopCriterionRefSet.

getStopCriterionPopulation(). Accessor method to get the
value of the attribute stopCriterionPopulation.

setRefSetSize(size : int). Accessor method to set the attribute
refSetSize.

setRefSet1Size(size : int). Accessor method to set the attribute
refSet1Size.

setRefSet2Size(size : int). Accessor method to set the attribute
refSet2Size.

setSubsetSize(size : int). Accessor method to set the attribute
subsetSize.

setStopCriterionRefSet(stopCriterion : StopCriterion). Acces-
sor method to set the attribute stopCriterionRefSet.

setStopCriterionPopulation(stopCriterion : StopCriterion). Ac-
cessor method to set the attribute stopCriterionPopulation.

setRefSet(refSet : Population). Accessor method to set the at-
tribute refSet.

setNewRefSet(refSet : Population). Accessor method to set the
attribute newRefSet.

generateNewPopulation(). Method to generate a new popula-
tion for the search. This method contains most of the code of the
algorithm, because Scatter Search is based more in the evolution
of the reference set than the evolution of the population. So, this
method also uses other methods that will be explained bellow, like
combineSolutions, or updateRefSet. See Figure 1.12 for the code of
this method.

acceptNewPopulation(). This method decides if a new popula-
tion is accepted or not. In the classical implementation of Scatter
Search, the process of finding a solution is based on the evolution
of the reference set, not the population. So, in the practice, this
method does not really has to check if the new population is better
than the older, it should always accept the new one.

acceptanceUpdateParameters(). Method to perform the needed
operations when a population is accepted. As no new population
is intended to be created, this method should contain no code.

30

rejectionUpdateParameters(). This method is like the accep-
tanceUpdateParameters above, so it should contain no code.

initializeParameters(). Abstract method to initialize different
variables that may be needed by a subclass, depending on the
specific problem.

generateInitialPopulation(). Abstract method to generate the
initial population that has to be defined by a subclass, as it may
need problem-specific data.

generateRefSet(). Abstract method to generate a reference set
from a population of solutions. This method should generate a
set of size refSetSize, composed of refSetSize1 good solutions and
refSetSize2 diverse solutions. A way to measure the diversity of a
solution will also have to be implemented by a subclass.

selectSubset(). Abstract method to get the next subset of solu-
tions from the reference set to be combined and improved. The
subset selected should contain subsetSize solutions.

combineSolutions(subset : Population). Abstract method to
combine the subset of solutions selected by the previous method.
This method should produce a new solution from the subset.

improveSolutions(subset : Population). Abstract method to im-
prove the new subset of solutions obtained by the method combi-
neSolutions.

updateRefSet(). Abstract method that has to decide which of
the solutions of the new reference set created should replace some
of the solutions of the old reference set.

2.8 Class StopCriterion

StopCriterion

+ stop(mh : Metaheuristic) : bool

The StopCriterion class is one of the most remarkable features of this
implementation. When talking about a stop criterion from the tradi-
tional point of view, we should expect a method of a subclass of Meta-
heuristic to handle this stop condition, having knowledge of the specific
metaheuristic and problem used.

From Theory to Implementation: Applying Metaheuristics 31

In the context of OOP, we have used a class approach instead. The
explanation is simple: think for example of a test in which we wanted to
compare the effectiveness of different metaheuristics, and we wanted to
stop their search after 1 second. Why do we have to implement a subclass
for every metaheuristic evaluated, repeating the same code for the stop
criterion in each of them? This rises the risk of introducing errors, and
at the same time, we are duplicating code, breaking the principles of
encapsulation and modularity. All of this can be avoided by using a
unique object stop criterion that will return true if the metaheuristic
has been running for a second. This has several advantages:

The StopCriterion class reduces drastically the number of sub-
classes that need to be created. If it were not for the StopCrite-
rion class, we would have to create a subclass of each metaheuristic
only to produce a different stopping condition of each of the loops
in its search method. Think, for example, of the MhT SS class,
which uses at least, three different stop criterions. If we wanted to
test just two stop criterions (for example, one based in the elapsed
time, and another based in the number of iterations), that would
imply, from the traditional approach, eight different subclasses of
that metaheuristic to combine all the possibilities for the stop cri-
terions. With the use of a StopCriterion class, there is no need
for subclasses of the metaheuristic, this could be done simply by
instantiating an object of each of the stop criterions and combining
them in all the possible ways.

The use of this class also increases the versatility of a metaheuristic,
because with a sole implementation of this metaheuristic, its func-
tionality can be fine-tuned in execution time, simply by changing
its stopCriterion object. With the example of the MhT SS class,
is obvious that not only eliminates the necessity for subclasses of
the metaheuristic, but also allows the MhT SS class to exhibit
different behaviors or “flavors” in execution time.

Of course, the use of the StopCriterion class is not exempt of dis-
advantages. For example, as the StopCriterion is an external class to
Metaheuristic (i.e., it does not inherits from Metaheuristic), all the ac-
cessor methods to get the value of an attribute (the getters) need to be
declared public in order to allow StopCriterion to check the values of
the attributes. Moreover, we need to enable public accessors to vari-
ables that in other cases would normally not even exist, because the
StopCriterion class may need access to some internal variables in order
to determine if the stop condition is met. Anyway, despite this disad-
vantages, we recommend the use of this class for its benefits.

32

The StopCriterion class is defined abstract, with only one method,
stop(), that has to be implemented by an specific subclass.

Methods:

stop(mh : Metaheuristic). Method to call when is needed to know
if a metaheuristic should stop searching. This method receives a
parameter, a Metaheuristic object, to which the StopCriterion will
ask for some attributes in order to know if the stop condition is
met.

2.9 Class GeneralStopCriterion

GeneralStopCriterion

− maxTime : double
− maxIterations : int

+ stop(mh : Metaheuristic) : bool
+ getMaxTime() :double
+ getMaxIterations() : int
+ setMaxTime(maxTime : double) : void
+ setMaxIterations(maxIterations : int) : void

This class inherits from StopCriterion, and is aimed to determine a
metaheuristic’s stopping condition without depending on the problem
nor the specific metaheuristic considered.

Before we continue, it is convenient to explain in more detail the
differences among possible stopping criterions:

Problem-dependent stop criterions. The stop criterion uses
information that is specific of the problem, usually concerning the
quality of the best solution obtained by the metaheuristic. For
example, if we are dealing with a minimization problem, and we
know which is the theoretical minimum value a solution can reach,
we could stop searching when a solution is within a certain range
above that minimum.

Metaheuristic-dependent stop criterions. In this case, the
stop criterion uses information about the metaheuristic itself. For
example, in the Scatter Search, we need to stop some loops if the
metaheuristic has reviewed all the specified combinations of solu-
tions of the reference set, or when the quality of the solutions of
the reference set lowers from a certain point.

Problem-Metaheuristic-dependent stop criterions. This case
is a mixture of the two previous cases, when the stop criterion

From Theory to Implementation: Applying Metaheuristics 33

uses both problem-dependent and metaheuristic-dependent infor-
mation. An example of this could be to stop the search of a VNS
metaheuristic either when the quality of the solution is above a
certain level, or when the value of K has reached the top (KMax)
and has not been reseted to 1 for a long time (which could indicate
that the solution is good, as we are always moving the maximum
distance between neighborhoods without finding a better solution).

Independent stop criterions. This is a generic case in which
the stop criterion accesses information that do not depend on the
problem nor the metaheuristic used. The typical information used
here is the number of iterations of the metaheuristic or the elapsed
time since the beginning of the search.

This class is an implementation of an independent stop criterion, that
can be configured to use the iterations, the elapsed time, or both.

Attributes:

maxTime. Attribute that determines the maximum time a meta-
heuristic is allowed to run. If this attribute is not going to be used,
it should contain a NaN value.

maxIterations. Similar to the attribute above, but it determines
instead the maximum number of iterations a metaheuristic is al-
lowed to run.

Methods:

stop(mh : Metaheuristic). Method that returns true if the meta-
heuristic has been running for more than maxTime or has looped
through more than maxIterations iterations.

getMaxTime(). Method to get the attribute maxTime.

getMaxIterations(). Method to get the attribute maxIterations.

setMaxTime(maxTime : double). Method to set the attribute
maxTime.

setMaxIterations(maxIterations : int). Method to set the at-
tribute maxIterations.

3. Implementation: The p-Median Problem
The p-selection problems constitute a wide class of hard combinatorial

optimization problems whose solutions consist of p items from a universe

34

U . The standard moves for this class of problems are the interchange
moves. An interchange move consists of replacing an item in the solu-
tion by another one out of the solution. A very representative p-selection
problem is the p-median location problem whose standard version is ex-
plained below. The p-median problem is a well known location problem
(see [26] or [4]) that have been proved NP-hard [23]. This problem has
often been used to test metaheuristics, among them parallel VNS [5] and
Scatter Search [6].

Let U = {u1, u2, ..., un} be the set of the locations of a finite set of
users that are also potential locations for p facilities. Let D be the n×n
matrix whose entries contain the distances dij = D(ui, uj) between the
points ui and uj , for i, j = 1, ..., n. The distance between a set of points
X ⊂ U and a point ui ∈ U is stated as follows:

D(X,ui) = min
uj∈X

D(uj , ui).

The cost function for a set of points X is the sum of the distances to all
the points in U ; i.e.,

f(X) =
∑

ui∈U

min
uj∈X

D(uj , ui) =
∑

ui∈U

D(X, ui).

The p medians selected from U constitute the set that minimizes this
cost function. The optimization problem is then stated as follows:

minimize
∑

ui∈U

min
uj∈X

D(ui, uj)

where X ⊆ U and |X| = p.
Using a solution coding that provides an efficient way of implementing

the moves and evaluating the solutions is essential for the success of any
search method. A solution X can be represented by an array x = [ui :
i = 1, ..., n] where ui is the i-th element of the solution for i = 1, 2, ..., p,
and the (i − p)-th element outside the solution for i = p + 1, ..., n. Let
Xij denote the solution obtained from X by interchanging ui and uj , for
i = 1, ..., p and j = p + 1, ..., n.

For the p-selection problems, as the p-median problem, the local
search procedure is based on the explained interchange moves. The usual
greedy local search is implemented by choosing iteratively the best pos-
sible move among all interchange moves. The code of a local search that
can be used in the improveSolution method of the MhT VNS class is
given in Figure 1.13. Here, the function improved tests if the new solu-
tion improves the current one or not. The exchange method is defined
in Figure 1.14

From Theory to Implementation: Applying Metaheuristics 35

Local Search
void local search(sol cur sol)

{
init sol = cur sol ;

while improved(cur sol,init sol))) {
for (i=p;i<n;i++)

for (j=0;j<p;j++) {
exchange(new sol,cur sol,i,j) ;

if improved(new sol,cur sol)

cur sol = new sol

} /* for */

} /* while */

} /* local search */

Figure 1.13. Local Search Pseudocode

Exchange
void exchange(Solution new sol, Solution cur sol,

int i, int j)

{
facilities = cur sol.getFacilities();

aux = facilities[i] = facilities[j];

facilities[i] = facilities[j];

facilities[j] = aux;

new sol.setFacilities(facilities);

}

Figure 1.14. Exchange Pseudocode

36

In order to use the class hierarchy explained above to solve the p-
median problem, we define the problem and solution objects for this
problem. These classes inherit from their respective superclasses Prob-
lem and Solution, defined previously.

We call the problem class PMedian Problem that is declared as fol-
lows:

PMedian Problem

− locations : List
− n : int
− p : int

+ getLocations() : List
+ getN() : int
+ getP() : int
+ setLocations(List : locations) : void
+ setN(n : int) : void
+ setP(p : int) : void
+ evaluate(solution : Solution) : double

where locations is a list (vector, array, etc) of points, n is the size of
that list, i.e., the number of possible locations, and p is the number of
facilities we want to allocate. The methods are simply accessors to the
attributes, except for the evaluate method, which calculates the sum of
the distances of every point in the locations list to its nearest facility.

The solution class will be called PMedian Solution, and will be defined
as follows:

PMedian Solution

− facilities : List

+ getFacilities() : List
+ setFacilities(List : facilities) : void

where the list facilities denotes the points where the facilities will be
allocated. In this case, where the facility points are only allocated in the
given location points, it is easier for all the functions to deal with the
PMedian Solution class if the facilities attribute contains all the possible
locations, ordered in the way we mentioned above. That is, the first p
elements of the list are the points selected for the facilities, and the final
n− p points are the discarded. The methods are simply accessors to the
attributes.

From Theory to Implementation: Applying Metaheuristics 37

3.1 VNS for the p-median

PMedian VNS

initializeParameters() : void
generateInitialSolution() : void
shake() : void
improveSolution() : void

The basic VNS pseudocode 1.1 can be applied to any problem by
providing the implementation of the initialization procedure, the shaking
method, the local search and the function to test whether the solution
is improved or not.

The shake procedure consists of, given the size k for the shake, choos-
ing k times two points, ui in the solution and uj outside the solution at
random, and performing the corresponding interchange move (see Figure
1.15).

The improveSolution method is implemented using the Local Search
defined previously using the basic Exchange movement.

The initializeParameters method is void, although some initialization
can be done here (for example, initializing a seed for a random number
generation routine).

The generateInitialSolution method simply selects random points to
be included in a solution, unless an initial solution is provided, in which
case the initialization does nothing.

PMedian VNS::shake
void PMedian VNS::shake(sol cur sol)

{
init sol = cur sol ;

for (r=0;r<k;r++) {
i = rnd % p ;

j = p + rnd % (n-p) ;

exchange(cur sol,new sol,i,j) ;

cur sol = new sol ;

} /* for */

} /* shake */

Figure 1.15. Shake Pseudocode

3.2 Scatter Search for the p-median

PMedian SS

38

− subsetI : int
− subsetJ : int

+ getSubsetI() : int
+ getSubsetJ() : int
setSubsetI(i : int) : void
setSubsetJ(j : int) : void
initializeParameters() : void
generateInitialPopulation() : void
generateRefSet() : void
selectSubset() : void
combineSolutions(subset : Population) : Population
improveSolutions(subset : Population) : Population
updateRefSet() : void

The Scatter Search for the p-median problem uses the standard pa-
rameter setting and rules explained above. The key idea to apply the
scatter search principles to an optimization problem is the distance be-
tween solutions used to evaluate the dispersion among them. This dis-
tance for the p-median problem is defined using the same objective func-
tion. Let fY (X) be the objective function for the set of users in Y :

fY (X) =
∑

v∈Y

min
u∈X

Dist(u, v)

The distance between two solutions X and Y is given by Dist(X, Y) =
fY (X) + fX(Y).

We now summarize an implementation of the components of the Scat-
ter Search for the p-median problem, explaining the key methods men-
tioned above.

1 generateInitialPopulation. A simple way to generate a popu-
lation consists in randomly creating solutions. We select p times
a new point from U that is successively included in the set X.
Given the previously fixed size PopSize of random solutions, the
population Pop is obtained by applying the local search to each
random solution as the improvement method. See Figure 1.16.

2 generateRefSet. To generate a reference set from the popula-
tion we first include in RefSet the RefSetSize1 best solutions.
Then we iteratively include in the RefSet the farthest solution
from the solutions already in RefSet, repeating this procedure
RefSetSize2 times. We then obtain the reference set RefSet
with size RefSetSize = RefSetSize1 + RefSetSize2. The code
of this method is given in Figure 1.17. The getFurthermostSolution

From Theory to Implementation: Applying Metaheuristics 39

method used in the code should return the furthermost solution
of a given population from those in the reference set, using the
distance concept defined above.

3 selectSubset. The selection of a subset to apply the combina-
tion consists in considering all the subsets of fixed size r (usu-
ally r = 2). Figure 1.18 contains the code of this method. This
method maintains its main indexes as class attributes for allowing
a StopCriterion class to determine if the subset generation loop
has finished.

4 combineSolutions. The combination of each two solutions con-
sists in the following. In the first place this method selects the
points common to both solutions. Let X be the set of these points.
For every point u ∈ U \X let

L(u) = {v ∈ U : Dist(u, v) ≤ βDistmax}
where

Distmax = max
u,v∈U

Dist(u, v).

Choose the point u∗ ∈ U such that Dist(X, u∗) = maxu∈U Dist(X, u)
and select at random a point v ∈ L(u∗) that is included in X. This
step is iteratively applied until |X| = p. The code of this method
is shown in Figure 1.19. There, the method calls several proce-
dures like getCommonPoints, that should return a solution with
the points that are part of all the solutions; getDiffPoints, that
does exactly the opposite, returning the points that do not appear
in all the solutions; getFurthermostPoint, that returns the point
with the largest distance to a set of points, selected from a set
of possibles; finally, selectNearNeighbour returns a random point
from a set of possibles that are considered “near” a given one (here,
the limit of “near” is controled by the parameter β).

5 improveSolutions. Given a solution, the improveSolutions
performs the local search on a population of solutions using the
interchange moves.

6 updateRefSet. Let ImpSolSet be the set of all the solutions
reached by the improveSolutions. Apply generateRefSet to
the set RefSet ∪ ImpSolSet.

4. Conclusions
The ability of OOP to develop encapsulated, extensible software makes

this paradigm one of the most suitable for programming metaheuristics.

40

PMedian SS::generateInitialPopulation
void PMedian SS::generateInitialPopulation()

{
for (i=0;i<getInitialPopulationSize();i++) {

cur sol = generateRndSolution();

cur sol = improveSolution(curr sol);

getCurrentPopulation().add(cur sol);

}
}

Figure 1.16. generateInitialPopulation code

PMedian SS::generateRefSet
void PMedian SS::generateRefSet()

{
// evaluate the solutions

for (i=0;i<getCurrentPopulation().size();i++) {
cur sol = (curr sol);

getProblem().evaluate(getCurrentPopulation().get(i));

}

// order the solutions by their score

sort(getCurrentPopulation());

// add refSetSize1 best solutions to the refSet

for (i=0;i<getRefSetSize1();i++) {
getRefSet().add(getCurrentPopulation().get(i));

}

// add refSetSize2 distant solutions to the refSet

for (i=0;i<getRefSetSize2();i++) {
cur sol = getFurthermostSol(population,refSet);

refSet.add(cur sol);

}
}

Figure 1.17. generateRefSet code

From Theory to Implementation: Applying Metaheuristics 41

PMedian SS::selectSubset
Population PMedian SS::selectSubset()

{
i = getSubsetI();

j = getSubsetJ();

if (NaN(i) || NaN(j)) {
i = 0;

j = 1;

} else if (j == getRefSetSize()-1) {
i++;

j = i + 1;

}
setSubsetI(i);

setSubsetJ(j);

return list(getCurrentPopulation.get(i),

(getCurrentPopulation.get(j));

}

Figure 1.18. selectSubset code

PMedian SS::combineSolutions
Population PMedian SS::combineSolutions(Population solutions)

{
newSolution = getCommonPoints(solutions);

possibleSolutions = getDiffPoints(solutions);

while (newSolution.getFacilities().size() <

problem.getP()) {
point = getFurthermostPoint(newSolution,

possibleSolutions);

point = selectNearNeighbour(possibleSolutions,

point,beta);

newSolution.getFacilities().add(point);

}
return list(newSolution);

}

Figure 1.19. combineSolutions code

42

Most metaheuristics appearing in the literature share some common as-
pects in their design (a main loop, attributes like the number of itera-
tions, etc), which makes them good candidates for establishing a class
hierarchy.

The hierarchy we have proposed tries to differentiate between point-
based and population-based metaheuristics, but maintaining at the same
time an intuitive parallelism between their respective methods, which
makes them easier to understand. We have also proposed an implemen-
tation of a metaheuristic of each class, VNS for point-based, and Scatter
Search for population-based. Although it is a very reduced set of ex-
amples, having in mind the number of metaheuristics currently created,
we hope that they give a significant insight of how other metaheuris-
tics could be implemented with this approach. The purpose is to make
the reader able to program new metaheuristics without getting stuck
in programming details, just caring of coding the relevant parts of the
algorithm.

Another property of OOP is the encapsulation and mobility it provides
to objects. For example, as we mentioned in the MhT VNS class, we
can produce an object to perform a local search in the improveSolution
method, but we could perfectly use a metaheuristic object to do that
task. This example illustrates how objects may help improving versatility
and usability in metaheuristic’s software design.

The reader may have also noted that, although the code provided has
a C + +-like style, we have tried not to stick to a specific programming
language, since our purpose was the design of the class hierarchy, which
is code-independent. The classes and their respective attributes and
methods where designed to use commonly extended features and data
types, in order to allow portability between languages.

As an additional comment the hierarchy proposed in this work has
been successfully implemented in practice in the context of the Weka
Project ([34], [36]). Weka is a collection of machine learning algorithms
oriented to data mining tasks, that is implemented in Java, and that
provides a graphical interface for dealing with the algorithms it contains.
The project defines the interface any Data Mining class should have to
be able to interoperate with the Weka environment, and all the classes
included in the project conforming to the interface are accessible to the
final user. This environment allows a user to graphically interact with
these algorithms, including metaheuristics. This illustrates the power
of encapsulated, top-down design, allowing a problem-oriented group of
classes (like Metaheuristic) to be transparently integrated in a graphical
environment.

From Theory to Implementation: Applying Metaheuristics 43

Acknowledgments
This research has been partially supported by the Spanish Ministry

of Science and Technology through the project TIC2002-04242-C03-01;
70% of which are FEDER funds.

The research of the co-author M. Garćıa Torres has been partially
supported by a CajaCanarias grant.

References

[1] J. Belisle. OMG Standards for Object-Oriented Programming. AIX-
pert, pp. 38-42, Aug. 1993.

[2] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison ACM Computing Surveys, 35-
3:268-308, 2003.

[3] M. Dorigo and T. Stutzle. The ant colony optimization meta-
heuristic: Algorithms applications, and advances. In F. Glover and
G. Kochenberger, editors, Handbook on MetaHeuristics. 2003.

[4] Z. Drezner. Facility location: A survey of applications and methods,
Springer, 1995.

[5] F. Garćıa-López, B. Melián-Batista, J.A. Moreno-Pérez, J.M.
Moreno-Vega. The Parallel Variable Neighborhood Search for the
p-Median Problem Journal of Heuristics 8 (2002) 375–388.

[6] F. Garćıa-López, B. Melián-Batista, J.A. Moreno-Pérez, J.M.
Moreno-Vega. Parallelization of the scatter search for the p-median
problem. Parallel Computing 29 (2003) 575–589.

[7] F. Glover. Heuristics for Integer Programming using Surrogate Con-
straints, Decision Sciences 8, (1977) 156–166.

[8] F. Glover. Future paths for integer programming and links to arti-
ficial intelligence. Computers and Operations Research, 5:533–549,
1986.

[9] F. Glover. Tabu Search for Nonlinear and Parametric Optimization
(with Links to Genetic Algorithms). Discrete Applied Mathematics
49 (1994) 231–155.

[10] F. Glover. A template for scatter search and path relinking. In
J.-K. Hao and E. Lutton, editors, Artificial Evolution, volume 1363,
pages 13–54. Springer-Verlag, 1998.

[11] F. Glover Scatter Search and Path Relinking. in D. Corne, M.
Dorigo, F. Glover (Eds.) New Ideas in Optimisation, Wiley, (1999).

[12] F. Glover and G. Kochenberger (eds.). Handbook of Metaheuristics.
Kluwer, 2003.

44

[13] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.
[14] F. Glover, M. Laguna, R. Mart́ı. Fundamentals of Scatter Search

and Path Relinking Control and Cybernetics, 39, (2000) 653-684.
[15] F. Glover, M. Laguna, R. Mart́ı. Scatter Search. in Theory and

Applications of Evolutionary Computation: Recent Trends, A. Ghosh,
S. Tsutsui (Eds.) Springer-Verlag, (2003).

[16] P. Hansen, N. Mladenović. Variable Neighborhood Search for the
p-Median. Location Science 5 (1997) 207–226.

[17] P. Hansen and N. Mladenović. An Introduction to Variable Neigh-
borhood Search. in: S. Voss et al. eds., Metaheuristics, Advances and
Trends in Local Search Paradigms for Optimization (Kluwer, 1999)
433-458.

[18] P. Hansen and N. Mladenović, Variable Neighborhood Search: Prin-
ciples and applications, European Journal of Operational Research
130:449-467, 2001.

[19] P. Hansen and N. Mladenović. Developments in variable neigh-
bourhood search. In C. Ribeiro and P. Hansen, editors, Essays and
Surveys in Metaheuristics, pages 415–439. 2002.

[20] P. Hansen and N. Mladenović. Variable neighborhood search. In
P.M. Pardalos and M.G.C. Resende, editors, Handbook of Applied
Optimization, pages 221–234. Oxford University Press, 2002.

[21] P. Hansen, N. Mladenović. Variable Neighborhood Search. In
F. Glover and G. Kochenberger (eds.), Handbook of Metaheuristics
Chapter 6, 2003.

[22] D. Henderson, S.H. Jacobson and A.W. Johnson. Theory and Prac-
tice of Simulated Annealing. In F. Glover and G. Kochenberger,
editors, Handbook on MetaHeuristics, chapter 10. 2003.

[23] O. Kariv, S.L. Hakimi. An algorithmic approach to network loca-
tion problems; part 2. The p-medians. SIAM Journal on Applied
Mathematics, 37(1969), 539-560.

[24] M. Laguna and R. Mart́ı. Scatter Search: Metodology and Imple-
mentations in C. Kluwer Academic Press, (2003).

[25] J.A. Lozano and P. Larrañaga. Estimation of Distribution Algo-
rithms. A New Tool for Evolutionary Computation. Kluwer Aca-
demic, 2002.

[26] P. Mirchandani and R. Francis, (eds.). Discrete location theory.
Wiley-Interscience, 1990.

[27] J.-Y. Potvin, K. Smith. Artificial Neural Networks for Combina-
torial Optimization. In F. Glover and G. Kochenberger, editors,
Handbook on MetaHeuristics, chapter 15. 2003.

From Theory to Implementation: Applying Metaheuristics 45

[28] C.R. Reeeves. Genetic algorithms. In F. Glover and G. Kochen-
berger, editors, Handbook on MetaHeuristics, chapter 3. 2003.

[29] C.R. Reeves. Modern Heuristic Techniques for Combinatorial Prob-
lems. Blackwell Scientific Press, 1993.

[30] M. Resende, C. Ribeiro. Greedy Randomized Adaptive Search Pro-
cedures. In F. Glover and G. Kochenberger, editors, Handbook on
MetaHeuristics, chapter 8. 2003.

[31] C.C. Ribeiro and P. Hansen, editors. Essays and Surveys in Meta-
heuristics, volume 15. Kluwer, 2002.

[32] E.A. Silver, R. Victor, V. Vidal, and D. De Werra. A tutorial on
heuristic methods. European Journal of Operational Research, 5:153–
162, 1980.

[33] C. Voudouris and E.P.K. Tsang. Guided local search. In F. Glover
and G. Kochenberger, editors, Handbook on MetaHeuristics, chap-
ter 7. 2003.

[34] Weka project webpage.
http://www.cs.waikato.ac.nz/ ml/weka/

[35] Wikipedia on-line definition for OOP.
http://en.wikipedia.org/wiki/Object-oriented programming

[36] I.H. Witten, E. Frank Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations Morgan Kauf-
mann, 1999

[37] M. Yagiura and T. Ibaraki. On metaheuristic algorithms for com-
binatorial optimization problems. Systems and Computers in Japan,
32(3):33–55, 2001.

[38] M. Yagiura and T. Ibaraki. Local search. In P.M. Pardalos and
M.G.C. Resende, editors, Handbook of Applied Optimization, pages
104–123. Oxford University Press, 2002.

[39] S.H. Zanakis, J.R. Evans, and A.A. Vazacopoulos. Heuristic meth-
ods and applications: a categorized survey. European Journal of Op-
erational Research, 43:88–110, 1989.

