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Abstract

In this paper we deal with the ordered median problem: a family of location prob-
lems that allows us to deal with a large number of real situations which does not
fit into the standard models of location analysis. Moreover, this family includes as
particular instances many of the classical location models. Here, we analyze the
p-facility version of this problem on networks and our goal is to study the structure
of the set of candidate points to be optimal solutions.
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1 Introduction

Network location models have been widely studied in the literature as can
be seen in textbooks: Handler and P.B. Mirchandani (1979), Mirchandani
and R.L. Francis (1990), Daskin (1995), Drezner (1995), Drezner and H.W.
Hamacher (2002), and in the Handbook in Operations Research and Man-
agement Science (Ball et al. (1995)) devoted to network models.
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Since the seminal paper by Hakimi (1964), much of this work has been
devoted to identify finite sets of points where an optimal solution of a
problem must belong to. These sets, called finite dominating sets (FDS),
are very useful in a wide range of optimization problems, in order to restrict
the number of possible candidates to be optimal solutions. Hooker et al.
(1991) is an excellent paper on this subject that provides characterizations
of FDS for a large number of problems of Location Analysis.

In the last years, the study of the ordered median problem has received
a special attention by the researchers in Location Theory. In the contin-
uous case, characterizations of the solution set and polynomial time algo-
rithms have been developed in several papers (see Puerto and Fernández
(1995), Puerto et al. (1997), Rodŕıguez-Ch́ıa (1998), Ogryczak (1999),
Puerto and Fernández (2000), Rodŕıguez-Ch́ıa et al. (2000), Francis et al.
(2000), Lozano et al. (2002), Saameño et al. (2003)). On networks, finite
dominating sets have been obtained for particular instances of this prob-
lem (see Nickel and Puerto (1999), Kalcsics et al. (2002), Kalcsics et al.
(2003)). Recently, also the discrete version of this model has been studied
(see Domı́guez-Maŕın et al (2003), Domı́guez-Maŕın et al. (2003)).

In this paper, our goal is to study the structure of the set of candidates
to be optimal solutions for the p-facility ordered median problem on net-
works. This problem has been already analyzed in the literature but with
restrictive hypotheses on the weights. Therefore, our study focusses on the
problem without additional hypotheses. We will show that the structure of
any FDS depends on the number of facilities to be located.

Before introducing the problem some notation is needed. Let N = (G, l)
denote a network with underlying graph G = (V,E), where the node set
is V = {v1, . . . , vn} (demand points) and the edge set is E = {e1, . . . , em}.
We restrict ourselves to undirected graphs. Therefore, we write the edge
that joins the nodes vi and vj as [vi, vj ] = [vj , vi] and as (vi, vj) = (vj , vi)
the edge without the nodes.

The length of an edge e ∈ E is denoted by l(e) = l(vi, vj) = l(vj , vi) and
it represents the cost of going once through the edge to satisfy the demand
of one user. By d(vi, vj), we denote the length of the shortest path between
vi and vj measured by l.

A point x on an edge e = [vi, vj ] is determined by a value t, 0 ≤ t ≤ l(e),
which represents the length of the proportion of the edge between x and
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vi, the point x is then denoted by

x = p(e, t) = p([i, j], t) or x = p([j, i], l(e) − t). (1.1)

The distance from this point to a node vk 6= vi, vj is:

d(x, vk) := d(vk, x) := min{d(vk, vi) + t , d(vk, vj) + l(e) − t}.

The set of all the points of a network (G, l) is denoted by A(G). Notice
that A(G) is a metric space induced by G and the edge lengths. The
distance from a node to a vector with p components, Xp = (x1, . . . , xp) ⊆
A(G) × . . . × A(G), is given by

d(v,Xp) = min
i=1,...,p

d(v, xi).

We consider a set of non-negative weights {w1, . . . , wn} called w-weights,
where each weight wi is associated to the node vi and represents the demand
intensity of this node. Let β(·) be a permutation of the set {1, . . . , n}
verifying that

wβ(1)d(vβ(1),Xp) ≤ . . . ≤ wβ(n)d(vβ(n),Xp). (1.2)

The ordered p-median problem can be defined as to minimize any of the
following two expressions:

Fλ(Xp) =

n∑

i=1

λiwβ(i)d(vβ(i),Xp) =

n∑

i=1

λσ(i)wid(vi,Xp) (1.3)

where {λ1, . . . , λn} is a set of non-negative weights called λ-weights and σ(·)
is a permutation of {1, . . . , n} such that σ(i) < σ(j) if d(vi,Xp) ≤ d(vj ,Xp)
for all i, j ∈ {1, . . . , n}. We will say that λi is allocated (assigned) to vβ(i)

or equivalently λσ(i) is allocated to vi.

The λ-weights are the parameters that define the objective function
and depending on the values of these parameters we can obtain different
problems. In fact, the ordered p-median problem allows to model the p-
facility versions of the median (λi = 1, ∀i), center (λn = 1, λi = 0, ∀i 6=
n), α-centdian (λn = 1, λi = α, ∀i 6= n), k-centrum (λi = 1, for i =
n−k+1, . . . , n and λi = 0 for i = 1, . . . , n−k), k-trimmed p-mean location
model (we omit the k

2 smallest and k
2 largest weighted distances, to simplify

assume k is even, λ1 = . . . = λ k
2

= 0, λ k
2
+1 = . . . = λn− k

2

= 1, λn− k
2
+1 =
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. . . = λn = 0), etcetera. Notice that we do not have any assumption on the
monotonicity of the λ-weights, therefore we do not restrict to the convex
nor the concave case, see Nickel and Puerto (1999).

In what follows we give an overview of the different FDS obtained for
particular instances of the ordered median problem. In order to do that, we
will use the sets EQ (equilibrium points) and Y that are defined in Section
3.

Nickel and Puerto (1999) proves that for λ1 ≥ . . . ≥ λn the node set V
constitutes an FDS for the ordered p-median problem. For arbitrary non-
negative λ-weights, it also obtains that EQ is an FDS for the single-facility
ordered median problem.

Kalcsics et al. (2003) studies the ordered p-median problem where the
λ-weights are defined as: λ1 = . . . = λk 6= λk+1 = . . . = λn, for a fixed k,
such that, 1 ≤ k < n. It proves that the set Y is an FDS for this problem.

Kalcsics et al. (2002) gives an FDS for the single facility ordered me-
dian problem with general node weights (the w-weights can be negative).
Moreover, for the case of directed networks with non-negative w-weights,
they show that there is always an optimal solution in V .

However, none of these papers deals with the general case of the ordered
p-median problem. In fact, these papers deal with restrictive hypotheses
over the λ-weights. Our goal in this paper is to obtain a finite set of candi-
dates to be optimal solutions of the 2-facility ordered median problem when
no hypotheses are made on the set of parameters. Besides, we will prove
that the structure of this set depends on the number of service facilities to
be located for p > 2.

The paper is organized as follows, the next section provides the basic
properties of the objective function above mentioned. Section 3 includes
a finite set of candidates to be optimal solutions for the 2-facility ordered
median problem. In section 4, we show that the structure of the finite
set of candidates characterized in the previous section cannot be extended
to the general problem of locating p facilities. The paper ends with some
concluding remarks.
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2 Properties

Before characterizing the set of candidates to be optimal solutions for Prob-
lem (1.3), we study some properties which give us insights into the structure
of the p-facility ordered median objective function. To this end, we define
several sets which will be used later.

Let Xp = (x1, . . . , xp) ∈ A(G) × . . . × A(G) and xk ∈ [vik , vjk
], for any

k = 1, . . . , n, we define the following sets:

Uk(Xp) = {v ∈ V : d(v,Xp) = d(v, xk)},
U=

k (Xp) = {v ∈ Uk(Xp) : d(v, xk) = d(v, xm) = min
i=1,...,p

d(v, xi),

for some m 6= k}.
U<

k (Xp) = Uk(Xp) \ U=
k (Xp)

U ik = {v ∈ Uk(Xp) : d(v, xk) = l(xk, vik) + d(vik , v) ≤ l(xk, vjk
) + d(vjk

, v)}
Uik = U ik \ (U=

k (Xp) ∪ U jk
)

Remark 2.1.

• Uk(Xp) is the set of nodes whose demand can be covered optimally
by xk, that is, the set of nodes that can be allocated to xk.

• U=
k (Xp) is the set of nodes that can be allocated either to xk or to

xm for some m 6= k.

• U<
k (Xp) is the set of nodes allocated to xk that cannot be allocated

to a different service facility.

• U ik is the set of nodes which can be served optimally by xk through
vik .

• Uik is the set of nodes included in U<
k (Xp), such that, their corre-

sponding distances to their service, xk, increase when xk is displaced
towards vjk

.

• Notice that based on their definitions, it always holds that Uik ⊆
U ik and Uik ∩ U jk

= ∅. Moreover, Uik , U jk
and (U=

k (Xp) ∩ U ik) \
U jk

constitutes a partition of the set Uk(Xp), that is, these sets are
pairwise disjoint and their union is Uk(Xp).
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We say that there exist ties in the vector of weighted distances between
the services x1, . . . , xp and their demand nodes if there exist vk, vl ∈ V such
that wkd(vk,Xp) = wld(vl,Xp).

The nodes of U=
k (Xp) can be allocated to xk and to some other service

of the vector Xp. However, if xk is moved a small enough amount ξ either
towards vjk

or towards vik , then: 1) some of these nodes cannot still be
assigned to xk and 2) some of them will be assigned only to xk because
the existing tie is destroyed. Let xk(ξ) denote the position of xk when it
is moved an amount ξ towards vjk

; i.e., if xk = p([vik , vjk
], t) then xk(ξ) =

p([vik , vjk
], t + ξ).

Lemma 2.1. If a point xk ∈ (vik , vjk
) is moved an amount ξ towards vjk

the

contribution to the slope of Fλ(Xp) is
(∑

vl∈Uik
wlλσ(l) −

∑
vl∈Ujk

wlλσ(l)

)

provided that no ties exist in the vector of weighted distances and being σ(·)
defined in (1.3).

Proof. Since we have assumed that there are no ties in the vector of dis-
tances, the weights λ1, . . . , λn are not reallocated after moving xk a small
enough amount. This is because the order of the sequence of weighted
distances (1.2) does not change.

The nodes of U=
k (Xp) can be allocated to xk or to xm, for some m ∈

{1, 2, ..., p} \ {k}, but if xk is moved an amount ξ towards jk, a new point
xk(ξ) will be generated.

1. The nodes of Uik are still assigned to xk(ξ) but the distances to xk(ξ)
increase and their contribution to Fλ(Xp) has slope

∑
vl∈Uik

wlλσ(l).

2. The nodes of U jk
are allocated to xk(ξ), because the distance from

xk(ξ) to vjk
decreases. Thus, −∑

vl∈Ujk

wlλσ(l) is the contribution of

U jk
to the slope of Fλ(Xp).

3. The nodes of (U=
k (Xp) ∩ U ik) \ U jk

are allocated to xm for some
m ∈ {1, . . . , p} \ {k} and their contribution to Fλ(Xp) is null.

Hence, the result follows.

Let mvik , mvjk be the slopes of Fλ when xk is displaced a small enough
amount towards the node vik and the node vjk

respectively. Lemma 2.2
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shows that there is always a direction (either towards vik or towards vjk)
where the value of the objective function of the problem does not get worse
when xk is moved an amount ξ provided that no ties are allowed in the
vector of ordered distances.

Lemma 2.2. If xk ∈ (vik , vjk
), then either mvik or mvjk is non positive

provided that no ties exist in the vector of distances.

Proof. Using the sets of Remark 2.1 we can write down the slopes mvik and
mvjk as:

mvik =
∑

vl∈Ujk

wlλσ(l) −
∑

vl∈U ik

wlλσ(l)

mvjk =
∑

vl∈Uik

wlλσ(l) −
∑

vl∈Ujk

wlλσ(l)

Then:

mvik + mvjk =




∑

vl∈Uik

wlλσ(l) +
∑

vl∈Ujk

wlλσ(l)



 −




∑

vl∈U ik

wlλσ(l) +
∑

vl∈Ujk

wlλσ(l)



 .

Since Uik ⊆ U ik and Ujk
⊆ U jk

then mvik + mvjk ≤ 0 and the result
follows.

Remark 2.2. The above lemma implies that there always exists a move-
ment that strictly decreases the objective function except when mvik =
mvjk = 0. In this case we can move xk towards vik as well as towards vjk

without increasing the objective function.

3 A finite set of candidates

In this section we identify a finite set of candidates to be optimal solutions
of the 2-facility ordered median problem. First of all, we recall the concept
of equilibrium points (see Nickel and Puerto (1999)). A point x ∈ A(G)
is in equilibrium with range r with respect to node vk, vl ∈ V, if: r =
wk d(vk, x) = wl d(vl, x). It is important to realize that there may exist
subedges in equilibrium with respect to two nodes. We denote by EQ the
set of nodes V union with the relative boundary of the points in equilibrium.
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(This is, the points in equilibrium that are isolated and the extreme points
of the subedges in equilibrium.) In short, EQ is the set of equilibrium
points.

Theorem 3.1. Consider the following sets:

R = {r : r = wid(vi, y), vi ∈ V, y ∈ EQ},
Y (r) = {y ∈ A(G) : wid(vi, y) = r, vi ∈ V } with r ∈ R,

Y =
⋃

r∈R

Y (r),

T = {X2 = (x1, x2) ∈ A(G) × A(G) : ∃vr, vs ∈ U<
1 (X2) and vr′ , vs′ ∈

U<
2 (X2) with wrd(vr, x1) = wr′d(vr′ , x2) and wsd(vs, x1) =

ws′d(vs′ , x2). Moreover, if wr = wr′ and ws = ws′, then the slopes
of the functions d(vr, ·) and d(vs, ·), in the edge that x1 belongs
to, must have the same signs at x1 and the slopes of the functions
d(vr′ , ·) and d(vs′ , ·), in the edge that x2 belongs to, must have
different signs at x2 }, and

F = (EQ × Y ) ∪ T ⊂ A(G) × A(G). (3.1)

The set F is a finite set of candidates to be optimal solutions of the 2-facility
ordered median problem in the network N .

Remark 3.1. The structure of the set F is different from previous FDS
which appeared in the literature. Indeed, the set F is itself a set of can-
didates for optimal solutions because it is a set of pairs of points. That
means that we do not have to choose the elements of this set by pairs to
enumerate the whole set of candidates. The candidate solutions may be
either a pair of points belonging to EQ × Y or a pair belonging to T , but
they never can be one point of Y and another point of any pair in T .

Proof. We will prove that for any pair X2 = (x1, x2) 6∈ F there exist
movements of its elements that transform the pair X2 into a new pair
X∗

2 = (x∗
1, x

∗
2) ∈ F without increasing the objective value of Problem (1.3).

Let X2 = (x1, x2) be a candidate to be optimal solutions for the 2-
facility ordered median problem. First, we assume that x1 ∈ EQ, and
x2 6∈ Y and (x1, x2) 6∈ T . Then x2 belongs to the subedge (y, y′), such that,
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y, y′ ∈ Y are two different and consecutive points of Y on the edge where
x2 belongs to.

Since x1 ∈ EQ and x2 6∈ Y then there is no vi ∈ V , such that,

wid(vi, x1) = wid(vi, x2).

Moreover, the above equality does not hold for any pair (x1, x) with x ∈
(y, y′). This means that the set U=

2 (X2) = ∅, that is, U<
2 (X2) does not

change when we move x2 in the subedge (y, y′). In addition, since x1 ∈ EQ
and x2 6∈ Y , the vector of ordered weighted distances only can have ties
between the elements of the set U<

1 (X2). Hence, there are no reassignments
of the λ-weights after any movement of x2 in the subedge (y, y′). Therefore,
the problem of finding the best location of the second facility in (y, y′) is
a 1-facility median problem in U<

2 (X2). Then, an optimal solution always
exists on the extreme points of the interval (y, y′) and the new pair X ′

2 =
(x1, x

′
2) ∈ EQ × Y is not worse than (x1, x2).

In what follows we analyze the situation where neither x1 nor x2 belong
to EQ. We distinguish the following four cases:

Case 1: There exist no ties in the vector of weighted distances between the
nodes and their service facilities.

Case 2: There exists one tie in the vector of weighted distances between
the nodes and their service facilities.

Case 3: There exist two ties in the vector of weighted distances between
the nodes and their service facilities.

Case 4: There exist more than two ties in the vector of weighted distances
between the nodes and their service facilities.

It is worth noting that in these cases, since neither x1 nor x2 belong to
EQ, the ties in the vector of weighted distances (see (1.2)) have to occur
between weighted distances from two nodes: one associated to x1 and the
other to x2. Indeed, if there would exist two equal weighted distances
between two nodes associated with the same service, this service would be
an equilibrium point.

Case 1: Using Lemma 2.2, we can move x1 or x2 without increasing the
objective value while a tie does not occur.
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Case 2: There exist vr ∈ U1(X2) and vr′ ∈ U2(X2) such that wrd(vr, x1) =
wr′d(vr′ , x2). First we have that {vr, vr′} ∩ U=

1 (X2) = ∅. Indeed, if vr ∈
U=

1 (X2), we would have that wrd(vr, x1) = wrd(vr, x2). However, since we
have assumed that wrd(vr, x1) = wr′d(vr′ , x2), it follows that wrd(vr, x2) =
wr′d(vr′ , x2), that is, x2 ∈ EQ, what is impossible because by hypothesis
x2 6∈ EQ. A similar argument can be used if vr′ ∈ U=

1 (X2).

Assume that x1 belongs to the edge [vi1 , vj1 ] and that x2 belongs to the
edge [vi2 , vj2 ]. Moreover, we denote by λσ(r) and λσ(r′) the λ-weights as-
signed to vr and vr′ , respectively. We can assume without loss of generality
that σ(r′) = σ(r) + 1, vr ∈ Uj1 and vr′ ∈ Uj2. For sake of simplicity, we
denote by VT = {vr, vr′} ∪ U=

1 (X2).

In this case, if we move x1, a small enough amount ξ1, towards vj1 and
x2, a small enough amount ξ2, towards vj2, such that ξ1wr = ξ2wr′ , we
have that the change in the objective function due to these movements is:

mvj1 (ξ1)+mvj2 (ξ2)=ξ1

(∑

vt∈Ui1
\VT

wtλσ(t)−
∑

vt∈Uj1
\VT

wtλσ(t)−
∑

vt∈U=
1

(X2)∩(U j1
\Uj2

)

wtλσ(t)−wrλσ(r)

)

+ ξ2

( ∑

vt∈Ui2
\VT

wtλσ(t) −
∑

vt∈Uj2
\VT

wtλσ(t) −
∑

vt∈U=
1

(X2)∩(U j2
\Uj1

)

wtλσ(t) − wr′λσ(r)+1

)

+
∑

vt∈U=
1

(X2)\(U j1
∪Uj2

)

min{ξ1, ξ2}wtλσ(t) −
∑

vt∈U=
1

(X2)∩(U j1
∩Uj2

)

max{ξ1, ξ2}wtλσ(t)

and if we move the same amounts as before, x1 and x2 towards vi1 and vi2

respectively, we have that the change in the objective function due to these
movements is:

mvi1 (ξ1) + mvi2 (ξ2) =

ξ1

( ∑

vt∈Uj1
\VT

wtλσ(t) −
∑

vt∈U i1
\VT

wtλσ(t) −
∑

vt∈U=
1

(X2)∩(U i1
\U i2

)

wtλσ(t) + wrλσ(r)

)

+ ξ2

(∑

vt∈Uj2
\VT

wtλσ(t) −
∑

vt∈U i2
\VT

wtλσ(t) −
∑

vt∈U=
1

(X2)∩(U i2
\U i1

)

wtλσ(t)wtλσ(t) + wr′λσ(r)+1

)

+
∑

vt∈U=
1

(X2)\(U i1
∪Ui2

)

min{ξ1, ξ2}wtλσ(t) −
∑

vt∈U=
1

(X2)∩(U i1
∩Ui2

)

max{ξ1, ξ2}wtλσ(t).
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Since Ujq ⊆ U jq , Uiq ⊆ U iq for q = 1, 2, U=
1 (X2) \ (U j1 ∪ U j2) ⊆ U=

1 (X2) ∩
(U i1 ∩U i2), U=

1 (X2) \ (U i1 ∪U i2) ⊆ U=
1 (X2)∩ (U j1 ∩U j2) then mvj1 (ξ1) +

mvj2 (ξ2) + mvi1 (ξ1) + mvi2 (ξ2) is non positive. Therefore, there exists a
movement of x1 and x2 that does not increase the objective value.

Notice that the initial assumptions vr ∈ Uj1 and vr′ ∈ Uj2 are not
restrictive because if vr ∈ U j1 \Uj1 (vr′ ∈ U j2 \Uj2) then the term wrλσ(r)

(wr′λσ(r)+1) in the above two expressions would appear with negative sign.

Case 3: There exist vr, vs ∈ U1(X2) and vr′ , vs′ ∈ U2(X2) such that
wrd(vr, x1) = wr′d(vr′ , x2) and wsd(vs, x1) = ws′d(vs′ , x2). First, no-
tice that using the arguments of Case 2, we obtain that {vr, vr′ , vs, vs′} ∩
U=

1 (X2) = ∅.
We distinguish two subcases:

Case 3.1: If wr 6= wr′ or ws 6= ws′ the pairs in this subcase are included in
T and therefore belong to the the set of candidates to be optimal solutions.
Case 3.2: If wr = wr′ and ws = ws′ , that is, d(vr, x1) = d(vr′ , x2) and
d(vs, x1) = d(vs′ , x2). We will distinguish four more subcases. Before that,
in order to obtain an easy understanding, we assume without loss of gen-
erality that:

i) x1 ∈ [vi1 , vj1 ], σ(r′) = σ(r) + 1.

ii) x2 ∈ [vi2 , vj2 ], σ(s′) = σ(s) + 1.

Let VT = {vr, vr′ , vs, vs′} ∪ U=
1 (X2). After that, we proceed with the four

subcases:

3.2.1 The slopes of the functions d(vr, ·) and d(vs, ·) on the edge [vi1 , vj1 ]
have the same sign at x1 and the slopes of the functions d(vr′ , ·) and
d(vs′ , ·) on the edge [vi2 , vj2 ] have the same sign at x2.

3.2.2 The slopes of the functions d(vr, ·) and d(vs, ·) on the edge [vi1 , vj1 ]
have different sign at x1 and the slopes of the functions d(vr′ , ·) and
d(vs′ , ·) on the edge [vi2 , vj2 ] have different sign at x2.

3.2.3 The slopes of the functions d(vr, ·) and d(vs, ·) on the edge [vi1 , vj1 ]
have different sign at x1 and the slopes of the functions d(vr′ , ·) and
d(vs′ , ·) on the edge [vi2 , vj2 ] have the same sign at x2.
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3.2.4 The slope of the function d(v, ·) for some v ∈ {vr, vr′ , vs, vs′} is not
defined at the service facility that covers v.

It should be noted that any other configuration reduces to the previous
ones interchanging the name of the points x1 and x2.

Now, we prove that there exists a movement for the first two cases where
the objective value is not increased.

3.2.1 Since the sign of the slopes of the functions d(vr, ·) and d(vs, ·) at x1

are the same, we can assume without loss of generality that vr, vs ∈
Uj1 . In the same way, we assume that vr′ , vs′ ∈ Uj2 .

If we move, the same small enough amount, x1 and x2 towards vj1

and vj2 respectively, we have that the slope of these movements is

mvj1 + mvj2 =
∑

vt∈Ui1
\VT

wtλσ(t) −
∑

vt∈Uj1
\VT

wtλσ(t) +
∑

vt∈Ui2
\VT

wtλσ(t) −
∑

vt∈Uj2
\VT

wtλσ(t)

−
∑

vt∈U=
1

(X2)∩(U j1
∪Uj2

)

wtλσ(t) +
∑

vt∈U=
1

(X2)\(U j1
∪Uj2

)

wtλσ(t)

−wrλσ(r) − wr′λσ(r)+1 − wsλσ(s) − ws′λσ(s)+1,

and if we move by the same amount, x1 and x2 towards vi1 and vi2

respectively, we have that the slope of these movements is

mvi1 + mvi2 =
∑

vt∈Uj1
\VT

wtλσ(t) −
∑

vt∈U i1
\VT

wtλσ(t) +
∑

vt∈Uj2
\VT

wtλσ(t) −
∑

vt∈Ui2
\VT

wtλσ(t)

−
∑

vt∈U=
1

(X2)∩(U i1
∪U i2

)

wtλσ(t) +
∑

vt∈U=
1

(X2)\(U i1
∪U i2

)

wtλσ(t)

+wrλσ(r) + wr′λσ(r)+1 + wsλσ(s) + ws′λσ(s)+1.

Hence, since Ujq ⊆ U jq , Uiq ⊆ U iq for q = 1, 2; U=
1 (X2)\(U j1∪U j2) ⊆

U=
1 (X2)∩(U i1∪U i2) and U=

1 (X2)\(U i1∪U i2) ⊆ U=
1 (X2)∩(U j1∪U j2),

we have that mvj1 + mvj2 + mvi1 + mvi2 is non positive. Therefore,
at least one of these two movements cannot increase the value of the
objective function.

Notice that using the arguments of Case 2, the initial assumptions
vr, vs ∈ Uj1 and vr′ , vs′ ∈ Uj2 are not restrictive.
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3.2.2 Since the sign of the slopes of the functions d(vr, ·) and d(vs, ·) at x1

are different we can assume without loss of generality that vr ∈ Uj1

and vs ∈ Ui1 . In the same way, we assume that vr′ ∈ Uj2 and vs′ ∈ Ui2 .

If we move x1 and x2 by the same small enough amount, towards vj1

and vj2 respectively, we have that the slope of these movements is

mvj1 + mvj2 =
∑

vt∈Ui1
\VT

wtλσ(t) −
∑

vt∈Uj1
\VT

wtλσ(t) +
∑

vt∈Ui2
\VT

wtλσ(t) −
∑

vt∈Uj2
\VT

wtλσ(t)

−
∑

vt∈U=
1

(X2)∩(U j1
∪Uj2

)

wtλσ(t) +
∑

vt∈U=
1

(X2)\(U j1
∪Uj2

)

wtλσ(t)

−wrλσ(r) − wr′λσ(r)+1 + wsλσ(s) + ws′λσ(s)+1.

Besides, if we move the same amount, x1 and x2 towards vi1 and vi2

respectively, we have that the slope of these movements is

mvi1 + mvi2 =
∑

vt∈Uj1
\VT

wtλσ(t) −
∑

vt∈U i1
\VT

wtλσ(t) +
∑

vt∈Uj2
\VT

wtλσ(t) −
∑

vt∈U i2
\VT

wtλσ(t)

−
∑

vt∈U=
1

(X2)∩(U i1
∪U i2

)

wtλσ(t) +
∑

vt∈U=
1

(X2)\(U i1
∪U i2

)

wtλσ(t)

+wrλσ(r) + wr′λσ(r)+1 − wsλσ(s) − ws′λσ(s)+1.

Hence, since Ujq ⊆ U jq , Uiq ⊆ U iq for q = 1, 2; U=
1 (X2)\(U j1∪U j2) ⊆

U=
1 (X2)∩(U i1∪U i2) and U=

1 (X2)\(U i1∪U i2) ⊆ U=
1 (X2)∩(U j1∪U j2),

we have that mvj1 + mvj2 + mvi1 + mvi2 is non positive. Therefore,
at least one of these two movements cannot increase the objective
function.

Notice that using the arguments of Case 2, the initial assumptions
vr ∈ Uj1, vs ∈ Ui1 , vr′ ∈ Uj2 and vs′ ∈ Ui2 are not restrictive.

3.2.3 The pairs in this subcase are included in T and therefore belong to
the the set of candidates to be optimal solutions (see Example 3.2).

3.2.4 Without loss of generality assume that the slope of the function
d(vr, ·) is not defined at x1 when vr ∈ U j1 ∩U i1 (the distance d(vr, ·)
has a breakpoint at x1). In this case, if we move x1 and x2 as
in 3.2.1 or 3.2.2, we have that the expressions of mvj1 + mvj2 and
mvi1 + mvi2 are equal to the ones obtained in cases 3.2.1 or 3.2.2, re-
spectively (depending of the relative position of the nodes {vr′ , vs, vs′}
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and their corresponding service facility), except the term wrλσ(r)

that appears in these two expressions with negative sign. Therefore,
mvj1 + mvj2 + mvi1 + mvi2 is again non positive. A similar argu-
ment can be used when more than one of the slopes of the distance
functions are not defined.

Case 4: There exist vr1
, . . . , vrQ

∈ U1(X2) and vr′
1
, . . . , vr′

Q
∈ U2(X2), with

Q > 2, such that wrl
d(vrl

, x1) = wr′
l
d(vr′

l
, x2) and wrl

= wr′
l
for l = 1, . . . , Q.

(Notice that, if wrl
6= wr′

l
for some l = 1, . . . , Q, we are in a particular

instance of Case 3.1 and the pair (x1, x2) belongs to T .) We assume that
x1 belongs to the edge [vi1 , vj1 ] and that x2 belongs to the edge [vi2 , vj2 ].
We distinguish two subcases:

4.1 There exist no vrlc
, vrld

∈ U1(X2) with lc, ld ∈ {1, . . . , Q} and vr′
lc
, vr′

ld

∈
U2(X2) such that the slopes of the functions d(vrlc

, ·) and d(vrld
, ·) on

the edge [vi1 , vj1] have different signs at x1 and the slopes of the func-
tions d(vr′

lc
, ·) and d(vr′

ld

, ·) on the edge [vi2 , vj2 ] have the same sign

at x2.

4.2 There exist vrlc
, vrld

∈ U1(X2) with lc, ld ∈ {1, . . . , Q} and vr′
lc
, vr′

ld

∈
U2(X2) such that the slopes of the functions d(vrlc

, ·) and d(vrld
, ·)

on the edge [vi1 , vj1 ] have different signs at x1 and the slopes of the
functions d(vr′

lc
, ·) and d(vr′

ld

, ·) on the edge [vi2 , vj2 ] have the same

sign at x2.

In the first case, the four nodes defining each two ties in the sequence
of ordered weighted distances are either in case 3.2.1 or 3.2.2. Therefore,
using the same arguments as in 3.2.1 and 3.2.2, there exits a movement of
x1 and x2 that does not get a worse objective value. The second case is a
particular instance of the Case 3.2.3 and X2 is again included in the set T .

We have proved that in all the cases mvi1 + mvi2 + mvj1 + mvj2 ≤ 0
when X2 = (x1, x2) 6∈ F . Thus, if mvi1 + mvi2 or mvj1 + mvj2 are different
from zero there exists a movement of X2 = (x1, x2) to a new pair X ′

2

which strictly decreases the objective value. Otherwise, if mvi1 + mvi2 =
mvj1 +mvj2 = 0 then the movements of x1 and x2, respectively, towards vi1

and vi2 as well as towards vj1 and vj2 do not increase the objective value.
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One of these two displacements avoid cycling since one of them has not
been used in the opposite direction in the previous step (see Remark 2.2).

The movement from X2 to X ′
2 is valid whenever the sets Uk(X

′
2), U=

k (X ′
2),

U<
k (X ′

2), U ik and U jk
(associated to X ′

2) for k = 1, 2 do not change. Hence,
if the maximal displacement without increasing the objective value trans-
forms X2 into X ′′

2 and X ′′
2 6∈ F , we repeat the same process a finite number

of times until a pair X∗
2 ∈ F is reached.

The following examples show that the set F can not be shrunk because
even in easy cases on the real line all the points are needed. The first
example shows a graph where the optimal solution X2 = (x1, x2) verifies
that x1 is an equilibrium point and x2 is not a equilibrium point which
belongs to Y (r) \ EQ for a given r. In the second example the optimal
solution X2 = (x1, x2) belongs to the set T .

Example 3.1. Let N = (G, l) be a network with underlying graph G =
(V,E) where V = {v1, v2, v3, v4} and E = {[v1, v2], [v2, v3], [v3, v4]}. The
length function is given by l([v1, v2]) = 3, l([v2, v3]) = 20, l([v3, v4]) = 6.
The w-weights are all equal to one and the λ-weights are λ1 = 0.1, λ2 =
0.2, λ3 = 0.4, λ4 = 0.3, see Figure 1.

It should be noted that this example has not an optimal solution on the
edge [v2, v3] because any point of this edge is dominated by v2 or v3. In ad-
dition, using the symmetry of the problem we have omitted the evaluation
of some of the elements of Y .

In Figure 1 we represent the nodes (dots), the equilibrium points (ticks)
and elements of Y (small ticks). Notice that in this case there are no pairs
in T .

b b b b| |
3 20 6

| |

v1 v2 v3 v4

Figure 1: Illustration of Example 3.1

In this example the optimal solution is given by x1 = p([v1, v2], 1.5)
and x2 = p([v3, v4], 1.5) (see Table 1). It is easy to check that x1 is an
equilibrium point between v1 and v2, and x2 ∈ Y (1.5). It is worth noting
that the radius 1.5 is given by the distance from the equilibrium point,
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Candidate pair X2 Value Candidate pair X2 Value
p([v1, v2], 0), p([v3, v4], 0) 3 p([v1, v2], 1.5), p([v3, v4], 0) 2.7
p([v1, v2], 0), p([v3, v4], 1.5) 2.85 p([v1, v2], 1.5), p([v3, v4], 1.5) 2.4
p([v1, v2], 0), p([v3, v4], 3) 2.7 p([v1, v2], 1.5), p([v3, v4], 3) 2.55

Table 1: Evaluation of the candidate pairs of Example 3.1

p([v1, v2], 1.5), generated by v1 and v2 to any of these nodes.

Example 3.2. Let N = (G, l) be a network with underlying graph G =
(V,E) where V = {v1, v2, v3, v4, v5} and E = {[v1, v2], [v2, v3], [v3, v4], [v4, v5]}.
The length function is given by l([v1, v2]) = 5, l([v2, v3]) = 20, l([v3, v4]) =
5.1, l([v4, v5]) = 1. The w-weights are all equal to one and the λ-weights
are λ1 = 0, λ2 = 1, λ3 = 0, λ4 = 1, λ5 = 1.1, see Figure 2.

In Figure 2, we use the same notation as in Figure 1 and pairs of T are
represented by (⋆). By domination and symmetry arguments not all the
candidates are necessary and therefore, they are not depicted.

b b b b b| | |
5 20 5.1 1

| | |⋆ | ⋆| |
v1 v2 v3 v4 v5

Figure 2: Illustration of Example 3.2

In this example the optimal solution is given by x1 = p([v1, v2], 2) and
x2 = p([v3, v4], 3.1) (see Table 2). Therefore the optimal pair (x1, x2) be-
longs to the set T . Indeed, d(v1, x1) = d(v4, x2) and d(v2, x1) = d(v5, x2)
and the slopes of d(v1, ·), d(v2, ·) in the edge [v1, v2] at x1 are 1,−1 respec-
tively; and the slopes of d(v4, ·), d(v5, ·) in the edge [v3, v4] at x2 are −1,−1
respectively.

Once we have proved that F is an essential set to describe the set of
optimal solutions of the 2-facility ordered median problem we want to know
its cardinality.

Proposition 3.1. The cardinality of F is O(m3n6).

Proof. In each edge there are at most two equilibrium points associated
to each pair of nodes. Thus |EQ| = O(mn2) and |R| = O(mn3). The
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Candidate pair X2 Value Candidate pair X2 Value
p([v1, v2], 0), p([v3, v4], 0) 11.81 p([v1, v2], 2.05), p([v3, v4], 3.05) 8.455
p([v1, v2], 0), p([v3, v4], 2.55) 11.6 p([v1, v2], 2.45), p([v3, v4], 2.55) 9.005
p([v1, v2], 0), p([v3, v4], 3.05) 10.6 p([v1, v2], 2.5), p([v3, v4], 0) 14.31
p([v1, v2], 0), p([v4, v5], 0) 10.61 p([v1, v2], 2.5), p([v3, v4], 2.5) 9.06
p([v1, v2], 0), p([v4, v5], 0.5) 11.66 p([v1, v2], 2.5), p([v3, v4], 2.55) 8.955
p([v1, v2], 0), p([v4, v5], 1) 11.71 p([v1, v2], 2.5), p([v3, v4], 2.6) 8.95
p([v1, v2], 0.5), p([v4, v5], 0.5) 11.16 p([v1, v2], 2.5), p([v3, v4], 3.05) 8.905
p([v1, v2], 1), p([v4, v5], 0) 10.61 p([v1, v2], 2.5), p([v3, v4], 3.6) 8.96
p([v1, v2], 1), p([v4, v5], 1) 11.71 p([v1, v2], 2.5), p([v4, v5], 0) 9.11
p([v1, v2], 1.45), p([v3, v4], 2.55) 10.005 p([v1, v2], 2.5), p([v4, v5], 0.5) 9.16
p([v1, v2], 1.95), p([v3, v4], 3.05) 8.455 p([v1, v2], 2.5), p([v4, v5], 1) 10.21
p([v1, v2], 2), p([v3, v4], 3.1) 8.41

Table 2: Evaluation of the candidate pairs of Example 3.2

maximum degree of a node vi ∈ V is m (the star network) so |Y (r)| =
O(mn) with r ∈ R. Thus, |Y | = O(m2n4). On the second hand, on
each edge, each pair of nodes may determine an element of a pair in T .
Therefore, the set T has a cardinality O((n2m)2). In conclusion |F | =
O(m3n6 + m2n4) = O(m3n6).

It is worth noting that F is an actual set of finite elements to be optimal
solutions of Problem (1.3). The difference with previous approaches is that
this set is not a set of candidates for each individual facility but it is the
set of candidate pairs to be optimal solutions.

4 A discouraging result for the p-facility case

It is well-known that FDS of polynomial size exist for the classical p-median,
p-center and p-centdian problems (see Hooker et al. (1991)). In the previous
section we have found a finite set of candidates to be optimal solutions
of the 2-facility ordered median problem in a network. However, despite
the similarity existing between those problems and the p-facility ordered
median problem, these results can not be extended to our model.

The reason for this is the following. For the 1-facility ordered median
problem we have that the set of candidates to be optimal solutions is EQ,
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that means, the equilibrium points (see Nickel and Puerto (1999)). For
the 2-facility ordered median problem we have obtained that the set of
candidates to be optimal solutions is EQ × Y ∪ T , that means, the points
generated by the distances between each node and each equilibrium point
and the set T. It should be noted that in this case we have added these
points because there may exist ties which do not allow to move the service
facility improving the objective function. In the 3-facility ordered median
problem, the previous candidate set is not enough because if x1 ∈ EQ and
x2 ∈ Y \ EQ, the distances between each node and x2 don’t have to be
included in the set of radius, R. Therefore, it may occur that there exists a
tie between two nodes and the service facilities x2 and x3 respectively, so
that there is no movement of the facilities at x2 and x3 which improves the
objective function (see Example 4.1).

Example 4.1. Let N = (G, l) be a network with underlying graph G =
(V,E) where V = {v1, v2, v3, v4, v5, v6} and E = {[v1, v2], [v2, v3], [v3, v4],
[v4, v5], [v5, v6]}. The length function is given by l([v1, v2]) = 3, l([v2, v3]) =
50, l([v3, v4]) = 6, l([v4, v5]) = 50, l([v5, v6]) = 10. The w-weights are all
equal to one and the λ-modeling weights are λ1 = 0.1, λ2 = 0.2, λ3 =
0.4, λ4 = 0.3, λ5 = 0.6, λ6 = 0.55, see Figure 3 (in this figure we use the
same notation used in Figure 1).

b b b b b b| | |
3 50 6 50 10

| | |||

v1 v2 v3 v4 v5 v6

Figure 3: Illustration of Example 4.1

In this example the optimal solution is given by x1 = p([v1, v2], 1.5),
x2 = p([v3, v4], 1.5) and x3 = p([v4, v5], 4.5) (see Table 3). It can be seen
that x1 is an equilibrium point, x2 ∈ Y (1.5) and x3 neither belongs to Y
nor is a component of a pair of T .

This example illustrates that in order to obtain the optimal solution for
the 3-facility problem new points have to be added. Our conjecture is that
these points can be generated using recursively the construction of the set
of radii but now regarding the distances from the points in π2(F ) := {x2 :
(x1, x2) ∈ F}, that is, the points in A(G) which correspond to the second
candidate of any pair in F , and the node set:

R1 = {r : r = wid(vi, y), vi ∈ V, y ∈ π2(F )},
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Y1(r) = {y : y ∈ A(G), wid(vi, y) = r, vi ∈ V },
Y1 =

⋃

r∈R1

Y1(r).

The same situation occurs in the p-facility case, so that in general this
construction must be repeated p-times in order to obtain a finite candidate
set to be optimal solutions for that problem. Therefore the structure of
the candidate set defined in the previous section depends on the number of
facilities to be located. Hence, we conjecture that there exists no candidate
set of points to be optimal solutions of Problem (1.3) with polynomial
cardinality.

5 Conclusions

In this paper we have characterized a finite set of candidates to be opti-
mal solutions for the 2-facility ordered median problem with cardinality
O(m3n6). Although the cardinality of this set is larger than the cardinality
of the FDS for all the classical location problems, this set allows us to solve
problems that cannot be solved with any other formulation. The main dif-
ference of the set F in (3.1) with respect to previously known FDS for other
problems is that it is not valid for p > 2.

In fact, we show in Section 4 that the structure of the candidate set
depends on the number of facilities to be located. These results shed light
on the validity of general finite dominating sets for the p-facility ordered
median problem. Nevertheless, it is still an open line of research whether
there exists polynomial cardinality FDS for the ordered p-median problem
when no hypothesis are made on the set of λ-weights.
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