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Abstract. The p-median problem, like most location problems, is classified
as N P-hard, and so, heuristic methods are usually used for solving it. The p-
median problem is a basic discrete location problem with real application that
have been widely used to test heuristics. Metaheuristics are frameworks for
building heuristics. In this survey, we examine the p-median, with the aim of
providing an overview on advances in solving it using recent procedures based
on metaheuristic rules.
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1 Introduction

Let us consider a combinatorial or global optimization problem
min{ f(z) |z € X} (1)

where f(z) is the objective function to be minimized and X the set of
feasible solutions. A solution z* € X is optimal if

f@) < f(z), Vo e X. (2)

An ezxact algorithm for problem (1), if one exists, finds an optimal solu-
tion z*, together with the proof of its optimality, or shows that there is



no feasible solution (X = ()), or the problem is ill-defined (solution is un-
bounded). In the other hand, a heuristic algorithm for (1) finds quickly
a solution 7’ that is near to be an optimal solution. The metaheuristics
are general strategies to design heuristic algorithms.

Location analysis is a field of Operational Research that includes
a rich collection of mathematical models. Roughly speaking, a problem
is classified to belong to the location field if some decision regarding the
position of new facilities has to be made. In general, the objective or goal
of the location problem is related with the distance between new facilities
and other elements of the space where they have to be positioned. Lo-
cation models may be divided into three groups: continuous (X C RY),
discrete (X is finite) and network models (X is a finite union of lin-
ear and continuous sets). Another possible classification is as a median
(minisum) or center (minimax) problem, depending on the nature of the
objective function considered. Location models are also deterministic or
stochastic, linear or nonlinear, single or multi criteria, and so on. See
several survey articles and books (Love et al. (1988), Brandau and Chiu
(1989), Mirchandani and Francis (1990), Drezner (1995), Daskin 1995,
etc.). Moreover, several special issues of journals have been devoted to
locational analysis (e.g., more recently, Annals of Operations Research,
Vol. 111, (2002), Computers and Operations Research, Vol. 29, (2002)).
Also, the main topic of two journals (Location Theory (1983 - 1997) and
Studies in Locational Analysis) deals exclusively with location problems.

Numerous instances of location problems, arising in Operational
Research and other fields, have proven too large for an exact solution
to be found in reasonable time. It is well-known from complexity the-
ory (Garey and Johnson, 1978; Papadimitriou, 1994) that thousands of
problems are N P-hard, that no algorithm with a number of steps poly-
nomial in the size of the instance is known, and that finding one for
any such problem would entail obtaining one for any and all of them.
The p-median problem have been proved N P-hard by Kariv and Hakimi
(1969). Moreover, in some cases where a problem admits a polynomial
algorithm, the power of this polynomial may be so large that instances
of realistic size cannot be solved in reasonable time in the worst case,
and sometimes also in the average case or most of the time.

So one is often forced to resort to heuristics, that are capable
of yielding quickly an approximate solution, or sometimes an optimal
solution but without proof of its optimality. Some of these heuristics



have a worst-case guarantee, i.e., the solution xj; obtained satisfies

f(zn) — f(2)
f(zn)

for some e, which is, however, rarely small. Moreover, this ¢ is usually
much larger than the error observed in practice and may therefore be a
bad guide in selecting a heuristic. In addition to avoiding excessive com-
puting time, heuristics address another problem, that of local optima. A
local optimum z, of (1) has the property that

<e VreX, (3)

flzr) < f(z), Vo € N(zp) N X, (4)

where N(z1) denotes a neighborhood of zy. (Ways to define such a
neighborhood will be discussed below.) If there are many local minima,
the range of values they span may be large. Moreover, the globally
optimum value f(z*) may differ substantially from the average value of a
local minimum, or even from the best such value among many, obtained
by some simple heuristic (a phenomenon called by Baum (1986), the
central-limit catastrophe). There are, however, many ways to get out of
local optima, or, more precisely, the valleys which contain them (or set
of solutions followed by the descent method under consideration towards
the local solution).

In the last decade, general heuristic methods, usually called meta-
heuristics, have engendered a lot of success in OR practice. Metaheuris-
tics provide a general framework to build heuristics for combinatorial and
global optimization problems. They have been the subject of intensive
research since Kirkpatrick, Gellatt and Vecchi (1983) proposed Simulated
Annealing as a general scheme for building heuristics able to escape the
local optimum “trap”. Several other metaheuristics were soon proposed.
For a discussion of the best-known among them the reader is referred to
the books edited by Reeves (1993) and Glover and Kochenberger (2003).
Some of the many successful applications of metaheuristics are also men-
tioned there.

In this survey we give an overview of heuristic methods with
emphasis on recent results of metaheuristic approaches used to solve one
of the basic discrete facility location problems, the p-Median problem
(PMP). Significant advances in the state-of-the-art may be attributed to
these newer methods.



2 Formulation

Consider a set L of m facilities (or location points), a set U of n users (or
customers or demand points), and a n x m matrix D with the distances
travelled (or costs incurred) for satisfying the demand of the user located
at ¢ from the facility located at j, for all j € L and ¢ € U. The objective
is to minimize the sum of these distances or transportation costs

(min) ZEZU 1;161}1 dij,

where J C L and |J| = p. PMP can be defined as a purely mathematical
problem: given an n x m matrix D, select p columns of D in order that
the sum of minimum coefficients in each line within these columns be
smallest possible.

The p-median problem and its extensions are useful to model
many real word situations, such as the location of industrial plants, ware-
houses and public facilities (see for example Christofides 1975, for a list
of applications). PMP can also be interpreted in terms of cluster analy-
sis; locations of users are then replaced by points in an m-dimensional
space (see Hansen and Jaumard 1997, for cluster analysis from a math-
ematical programming viewpoint). It may thus offer a powerful tool for
data mining applications (Ng and Han, 1994).

Beside this combinatorial formulation, the PMP has also an in-
teger programming one. Let us define two sets of decision variables: (i)
y; = 1, if a facility is opened in j € L, and 0, otherwise; (ii) x;; = 1, if
customer i is served from a facility located in j € L, and 0, otherwise.
Then the integer programming formulation is as follows:

min Z Z dl'jl‘ij (5)
i
subject to

oy o= 1, Vi, (6)
j

Sy o= p (8)
J
Tij,Y; € {07 1} (9)

Constraints (6) express that the demand of each user must be
met. Constraints (7) prevent any user from being supplied from a site



with no open facility. The total number of open facilities is set to p by
constraint (8).

3 Test problems

Most often test instances used in comparing heuristics for PMP are the
following.

(i) OR-Library instances. There are 40 ORLIB problems from Beasley
(1985), where the set of facilities is equal to the set of users. The problem
parameters range from instances with n = 100 nodes and p = 5, 10,20
and 33 up to instances with n = 900 and p = 5,10,90. All these test
problems are solved exactly (Beasley, 1985), which makes them suitable
for computational comparisons. They are available at the OR-Library
webpage!.

(ii) TSP-Lib instances. The larger problem instances are usually taken
from the travelling salesman library, Reinelt (1991). They are available
at the TSP-Lib webpage?.

(iii) Rolland et al. instances. Rolland et al. (1996) tested their
heuristics with non Euclidean instances with up to 500 nodes and poten-
tial facilities. Distances between nodes are random numbers from some
interval. This set is available (from the authors or from us) upon request.

(iv) Alberta, Galvao, Koerkel, Daskin and Pizzolato instances.
Five old and different sets of instances are recently collected and used in
Alp et al. (2003). They are available at Erkut’s web page?.

(v) Resende and Werneck instances. A new class of instances for
PMP is introduced recently in Resende and Werneck (2004). These
instances are generated in the same way as those in the RSC set above:
each instance is a square matrix in which each entry (i, j) represents the
cost of assigning user i to facility j. Values of 100, 250, 500 and 1000
users were tested, each with values of p ranging from 10 to n/2. This set
is available from the authors upon request.

(vi) Kochetov instances. This collection of test instances is classified
into four groups: (a) instances on perfect codes (PCodes); (b) instances

"http://mscmga.ms.ic.ac.uk/info.html
2http://www.iwr.uni-heidelberg.de/groups/compt/sof tware/TSPLIB9I5
3http://www.bus.ualberta.ca/eeerkut/testproblems



on chess-boards (Chess); (c¢) instances on finite projective planes (FPP);
(d) instances with large duality gap (Gap-A, Gap-B, Gap-C). They are
down-loadable at the Sobolev Institute of Mathematics webpage®. At
the same site the codes of several solution methods are also provided:
(a) exact branch and bound; (b) simulated annealing; (c) probabilistic
TS (described below as well); (d) genetic algorithm.

4 Classical heuristics

Classical heuristics for the p-median problem often cited in the liter-
ature are (i) Greedy, (ii) Stingy, (iii) Dual ascent, (iv) Alternate, (v)
Interchange and (vi) Composite heuristics. The first three are construc-
tive heuristics, while the next two need a feasible initial solution. Several
hybrids of these have also been suggested.

(i) Greedy. The Greedy heuristic (Kuehn and Hamburger, 1963) starts
with an empty set of open facilities, and then the 1-median problem on
L is solved and added to this set. Facilities are then added one by one
until the number p is reached; each time the location which most reduces
total cost is selected. An efficient implementation is given in Whitaker
(1983).

(ii) Stingy. The Stingy heuristic (Feldman, et al., 1966), also known
as Drop or Greedy-Drop, starts with all m facilities opened, and then
removes them one by one until the number of facilities has been reduced
to p; each time the location which least increases total cost is selected. A
modified implementation of the stingy heuristic is to start from a subset
instead of the entire set of potential sites (Salhi and Atkinson, 1995).

(iii) Dual ascent. Another type of heuristic suggested in the literature
is based on the relaxed dual of the integer programming formulation
of PMP and uses the well-known Dual ascent heuristic DUALOC (Er-
lenkotter, 1978). Such heuristics for solving the p-median problem are
proposed in Galvao (1980) and in Captivo (1991).

(iv) Alternate. In the first iteration of Alternate (Maranzana, 1964),
facilities are located at p points chosen in L, users assigned to the closest
facility, and the 1-median problem solved for each facility’s set of users.
Then the procedure is iterated with these new locations of the facilities
until no more changes in assignments occur. Since the iterations consist

‘http://www.math.nsc.ru/AP/benchmarks/P-median/p-med_eng.html



of alternately locating the facilities and then allocating users to them,
this method will be referred to as the alternating heuristic. This heuristic
may switch to an exhaustive exact method if all possible (ZL) subsets of
L are chosen as an initial solution. However, this is not usually the case
since the complexity of the algorithm then becomes of O(mP).

(v) Interchange. The Interchange procedure (Teitz and Bart, 1968) is
commonly used as a standard to compare with other methods. Here a
certain pattern of p facilities is given initially; then, facilities are moved
iteratively, one by one, to vacant sites with the objective of reducing
total cost; this local search process is stopped when no movement of any
single facility decreases the value of the objective function.

(vi) Composite heuristics. Several hybrids of these heuristics have
been suggested. For example, in the GreedyG heuristic (Captivo, 1991),
in each step of Greedy, the Alternate procedure is run. A combination
of Alternate and Interchange heuristics has been suggested in Pizzolato
(1994). In Moreno-Pérez et al. (1991), a variant of Stingy (or Greedy-
Drop) is compared with Greedy + Alternate and Multistart Alternate.
In Salhi’s (1997) perturbation heuristic, Stingy and Greedy are run one
after another, each having a given number of steps. The search allows
exploration of infeasible regions by oscillating around feasibility. The
combination of Greedy and Interchange, where the Greedy solution is
chosen as the initial one for Interchange, has been most often used for
comparison with other newly proposed methods (see for example Voss,
1996, and Hansen and Mladenovié, 1997).

5 Implementation of interchange local search

The Interchange method is one of the most often used classical heuris-
tics either alone or as a subroutine of other more complex methods and
within metaheuristics. Therefore, it would seem that an efficient imple-
mentation is extremely important. The formula of benefit (or profit) w;;
in applying an interchange move is

wyj = Z max{0, [dq(u) — d(u, )]}
we (u)#£j
— Z [min{da(u), d(u,i)} — di(u)], (10)

u:er (u)=j

where u,7 and j are indices of a user, and the ingoing and outgoing fa-
cilities, respectively; c;(u) represents the index of the closest facility of



user u; di(u) = d(u,c1(u)) and do(u) represent distances from u to the
closest and second closest facilities, respectively. The first sum in (10)
accounts for users whose closest facility is not j. The second sum refers
to users assigned to j in the current solution; since they lost their closest
facility, they will be reassigned either to the new facility ¢ or to their
second closest, whichever is more advantageous.

An important study has been done by Whitaker (1983), where he
describes the so-called fast interchange heuristic. It was not widely used
(possibly because of an error in that paper) until Hansen and Mladenovié
(1997) applied it as a subroutine of a variable neighborhood search (VNS)
heuristic. Among other results reported is that Add and Interchange
moves have similar complexity. Moreover, p times fewer operations are
spent for one fast interchange move as compared to one interchange
move of Teitz and Bart (1968). In fact, the following three efficient
ingredients are incorporated in the interchange heuristic in Whitaker
(1983): (i) move evaluation, where a best removal of a facility is found
when the facility to be added is known; (ii) updating of the first and
the second closest facility of each user; (iii) restricted first improvement
strategy, where each facility is considered to be added only once. In
the implementation of Whitaker’s interchange algorithm by Hansen and
Mladenovi¢ (1997), only (i) and (ii) are used; i.e., instead of (iii), a best
improvement strategy is applied. Hence, the restriction of facilities to
be added to the solution is removed as well. Moreover, the complexity
of steps (i) and (ii) is evaluated.

Recently, a new efficient implementation has been suggested by
Resende and Werneck (2003). Its worst case complexity is the same
(O(mn)), but it can be significantly faster in practice. The formula (10)
is replaced with

wij = Z max{0, d; (u) — d(u,1)} — Z [da(u) — di(u)] + ;.

uelU uler (w)=j

The first sum represents gains by inserting facility ¢, the second losses
by dropping facility j, while the last one is from a matrix E = [e;;]
called ertra, which mostly has a value 0, and whose updating makes this
implementation efficient for large problem instances:

eij = Z [do(u) — max{d(u,1),d;(u)}].
uler (w)=5; d(u,i)<d2(u)

Therefore, the extra memory required for the matrix E allows for signif-
icant accelerations. Several variants have been considered: full matrix
(FM) and sparse matrix (SM) representation of F; with preprocessing,



i.e., ranking distances from each user to all potential facilities (FMP
and SMP), and so on. For example, the average speedups obtained by
SMP on OR-Library, RW and TSP-Lib test instances were by factors of
8.7, 15.1 and 177.6, respectively, if the running times for preprocessing
were not included. If they were included, then SMP was faster 1.8, 2.1
and 20.3 times, respectively, than the fast interchange. As expected, the
greatest gains were observed on Euclidean instances, since a significant
number of the e;; are equal to 0 in this case.

Another step forward in solving PMP by interchange local search
has recently been suggested in Kochetov and Alekseeva (2004), where
a new neighborhood structure, called LK (Lin-Keringham), has been
proposed. A depth parameter k that counts the number of interchange
moves within one step of local search is introduced. The LK (k) neighbor-
hood can be described by the following steps: (a) find two facilities 7444
and i4rop such that the best solution in the l-interchange neighborhood
is obtained; (b) exchange them to get a new solution; (c) repeat steps
(a) and (b) k times such that a facility to be inserted has not previously
been dropped in steps (a) and (b). The set LK(k) is thus defined as

LE (k) = {(ibggs irop): t = 1,.. . k}.

The best solution from LK(k) is the local minimum with respect to
the LK neighborhood structure. This local search has successfully been
used within Lagrangian relaxation (LR), random rounding (after linear
relaxation) (RR), and within ant colony optimization (ACO) (Dorigo
and Di Caro (1999), Dorigo and Stiitzle (2004)). Results reported are
of very good quality; e.g., all methods (LR, RR, ACO) solve exactly the
OR-Lib test instances. These methods are also compared on Kochetov
(2004) test instances.

6 Metaheuristics

We briefly describe here some of the metaheuristic methods developed
for solving the PMP. They include: (i) Lagrangian heuristics; (ii) Tabu
search (TS), (iii) Variable neighborhood search (VNS), (iv) Genetic search,
(v) Scatter search, (vi) GRASP with Path relinking (vii) Simulated an-
nealing, (viii) Heuristic concentration, (ix) Ant colony optimization, (x)
Neural Networks and (xi) Other metaheuristics.

(i) Lagrangian heuristics. These heuristics for solving PMP (Cornue-
jols, et al., 1977) are based on the mathematical programming formula-
tion (5)-(9). Different variants of this approach are suggested in Galvao



Type | Heuristic References
CH Greedy Kuehn & Hamburger (1963), Whitaker (1983).
Stingy Feldman et al. (1966), Moreno-Pérez et al. (1991).
Dual ascent Galvao (1977, 1980).
Hybrids Moreno-Pérez et al. (1991), Captivo (1991),
Pizzolato (1994).
LS Alternate Maranzana (1964).
Interchange Teitz & Bart (1968), Whitaker (1983),
Hansen & Mladenovié¢ (1997),
Resende & Warneck (2003),
Kochetov & Alkseeva (2003).
MP Dynamic Hribara and Daskin (1997).
programming
Lagrangian Cornuejols et al. (1977), Mulvey & Crowder (1979),
relaxation Galvao (1980), Beasley (1993), Daskin (1995),
Senne & Lorena (2000), Barahona & Anbil (2000),
Beltran et al. (2004).
MH | Tabu search Mladenovic et al. (1995, 1996), Voss (1996),

Rolland et al. (1996), Ohlemiiller (1997)
Salhi (2002), Goncharov & Kochetov (2002).

Variable neighbor-
hood search

Hansen & Mladenovié¢ (1997), Hansen et al. (2001),
Garcia-Lopez et al. (2002), Crainic et al. (2004).

Genetic search

Hosage & Goodchild (1986), Dibbie & Densham (1993),
Moreno-Perez et al. (1994), Erkut et al. (2001),
Alp et al. (2003).

Scatter search

Garcia-Lopez et al. (2003).

Simulated Murray & Church (1996), Chiyoshi & Galvao (2000),
Annealing Levanova & Loresh (2004).

Heuristic Rosing et al (1996), Rosing & ReVelle (1997),
concentration Rosing et al., (1999).

Ant colony Levanova & Loresh (2004).

Neural Networks

Dominguez Merino and Munioz Pérez (2002),
Dominguez Merino et al. (2003).

Hybrids

Resende & Warneck (2004).

Other

Dai & Cheung (1997), Taillard (2003),
Kochetov et al. (2004).

Table 1: p-median heuristic references (the types are: Constructive heuristics (CH),
Local Search (LS), Mathematical Programming (PM) and MetaHeuristics (MH)).
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(1980), Mulvey and Crowder (1979) and Beasley (1993). Usually, the
constraint (6) is relaxed so that the Lagrangian problem becomes:

max fglynz > (dij — wi)ai + Zui (11)

s.t. (7), (8) and (9).

Note that the objective function (11) is minimized with respect to the
original variables and is maximized with respect to the Lagrangian mul-
tipliers.

In Lagrangian heuristics the following steps are repeated itera-
tively: 1) set the values of the multipliers u;; 2) solve the Lagrangian
model, i.e., find the z;; and y;; 3) adjust the multipliers. Thus, it may be
seen as an “Alternate” type heuristic. The largest value of (11) (over all
iterations) represents a lower bound of PMP. If the variables u; are fixed,
the resulting model (in step 2) is easy to solve (see, e.g., Daskin, 1995).
The solution found may not be feasible, since the constraint (6) may
be violated. However, feasibility is obtained by assigning the users to
their closest open facility. The best of the feasible solutions found over
all iterations would also have the best (lowest) upper bound. There-
fore, Lagrangian heuristics provide both lower and upper bounds of the
problem considered. The final most complex task is to modify the mul-
tipliers based on the solution just obtained. A common approach is by
subgradient optimization. In Beasley (1993), at each subgradient itera-
tion, Lagrangian solutions are made primal feasible and the reallocation
improved by the classical Alternate heuristic. A faster variant, called
the Lagrangian/surrogate heuristic has recently been proposed by Senne
and Lorena (2000). We also refer the reader to the Volume subgradient
approach introduced by Barahona and Anbil (2000). A semi-Lagrangian
relaxation (SLR) method is suggested in Beltran et al. (2004). The idea
is to get a better lower bound in the Lagrangian relaxation by treating
the set of equality constraints in (6) and (8) twice: in the relaxation and
in the set of constraints replacing relation “=" with “<”. In theory SLR
closes the integrality gap.

(ii) Tabu search. Several Tabu Search (Glover 1989, 1990) methods
have been proposed for solving PMP (see also Glover and Laguna, 1997,
for an introduction to Tabu Search). In Mladenovié et al., (1995, 1996),
a l-interchange move is extended into a so-called 1-chain-substitution
move. Two tabu lists (TL) are used with given and random TL sizes.
Another TS heuristic is suggested by Voss, (1996), where a few variants
of the so-called reverse elimination method are discussed. In Rolland
et al., (1996), a l-interchange move is divided into add and drop moves

11



which do not necessarily follow each other and so feasibility is not neces-
sarily maintained during the search; this approach, within TS, is known
as strategic oscillation (see Glover and Laguna, 1993). The same re-
stricted neighborhood structure is used in a more recent TS for solving
PMP in Salhi (2002). After a drop move, the set of potential ingoing
facilities is restricted to the K (a parameter) closest ones to the one
just dropped. Moreover, the functional representation of the TL size
and a flexible concept of the aspiration level are proposed. Although
results reported do not improve significantly upon those obtained by
purely random TL size, this analysis gives possible directions in design-
ing efficient TS heuristics. A simple Probabilistic TS (PTS) is suggested
by Kochetov (2001). Denote by N(z) the l-interchange neighborhood
of any solution z (a set of open facilities). A restricted neighborhood
N,(x) C N(z) (with a given probabilistic threshold » < 1) is obtained
at random: each y € N(z) is included in N,(z) if a random number uni-
formly generated from the interval (0,1) is less than r. The simple TS
heuristic based on N, (x) does not use aspiration criteria, intensification
or diversification rules, but it allows the author to establish a connection
with irreducible Markov chains and to develop asymptotic theoretical
properties. For solving PMP by PTS, good results on Kochetov test
instances (see above) are reported in Goncharov and Kochetov (2002).

(iii) Variable neighborhood search (VNS). There are several papers
that use VNS for solving the PMP. In the first one (Hansen and Mlade-
novié, 1997), the basic VNS is applied and extensive statistical analysis
of various strategies performed. Neighborhood structures are defined
by moving 1,2, ..., knax facilities and correspond to sets of 0-1 vec-
tors at Hamming distance 2,4, ..., 2ky.x from z. The descent heuristic
used is l-interchange, with the efficient fast interchange (FI) compu-
tational scheme described above. Results of a comparison of heuristics
for OR-Library and some TSP-Lib problems are reported. In order to
solve larger PMP instances, in Hansen et al. (2001), both reduced VNS
and a decomposition variant of VNS (VNDS) are applied. Subprob-
lems with increasing numbers of users (that are solved by VNS) are
obtained by merging subsets of users (or market areas) associated with
k (k= 2,...,p) medians. Results on instances of 1400, 3038 and 5934
users from the TSP library show that VNDS improves notably upon
VNS in less computing time, and gives much better results than FI, in
the same time that FI takes for a single descent. Moreover, Reduced
VNS, which does not use a descent phase, gives results similar to those
of FI in much less computing time. Two papers of Parallel VNS for
PMP are Garcia-Lépez et al. (2002) and Crainic et al. (2004). The
first of the three parallelization strategies analyzed in Garcia-Lépez et

12



al. (2002) attempts to reduce computation time by parallelizing the
local search in the sequential VNS. The second one implements an in-
dependent search strategy that runs an independent VNS procedure on
each processor. The third one applies a synchronous cooperation mech-
anism through a classical master-slave approach. The Cooperative VNS
parallelization proposed in Crainic et al. (2004) applies a cooperative
multi-search method based on a central-memory mechanism.

(iv) Genetic algorithm (GA). Several genetic search heuristics have
been suggested. Hosage and Goodchild (1986) encoded a solutions as a
string of m binary digits (genes). In order to reach feasibility (p open
facilities), the authors penalized the number of open facilities. The re-
sults reported are poor, even on small problems. In Dibbie and Densham
(1993), each individual has exactly p genes, and each gene represents a
facility index. This appears to be better representation of the solution.
The authors used conventional genetic operators: selection, cross-over
and mutation. Reported results are similar to Interchange local search,
but with considerably longer processing time. The size of the instances
tested was n = m = 150 (user and facility sites coincide) and p = 9.
Moreno-Perez et al. (1994) designed a parallelized GA for the PMP.
Each gene represents a facility index as well. Beside conventional GA
operators, they used multiple population groups (colonies), which ex-
change candidate solutions with each other (via migrations). Finally,
in Alp et al. (2003), much better results are reported, but still not as
good as those obtained by VNS, TS or hybrid approaches. It is even not
clear if the suggested method belongs to the class of GA. The mutation
operator is avoided, and the new members of the population are not
generated in the usual way (i.e., by using selection and cross-over opera-
tors). Two solutions are selected at random, and then the union of them
taken, obtaining an infeasible solution with number of genes (facilities)
larger than p. To reach feasibility, the Stingy or Greedy-Drop classical
heuristic is applied. Better results would be obtained if the Interchange
heuristic was applied after Stingy and the resulting method would then
be similar to VNS. Results on OR-Library, Galvao, Alberta and Koerkel
test instances are reported.

(v) Scatter search. The Scatter Search (SS) metaheuristic (Glover et
al., 2000) is an evolutionary strategy based on a moderated size set of
good solutions (the Reference Set that evolves mainly by combining its
solutions to construct others exploiting the knowledge of the problem at
hand. Unlike other strategies of combination of solutions the search for
a local optimum in the SS is a guided task. To start the SS, a moderated
size reference set is selected from a wide population of solutions. This set

13



is generated and iteratively updated attempting to intensify and diversify
the search. After combining the solutions in the reference set, a local
search procedure is applied to improve the resulting solution, and the
reference set is updated to incorporate both good and disperse solutions.
These steps are repeated until a stopping condition is met. The method
provides not only a single heuristic solution, like other metaheuristics,
but also a reduced set of disperse high quality solutions.

Garcia-Lopez et al. (2003) design a SS for the PMP by introduc-
ing a distance in the solution space that is used to control the diversi-
fication of the method. The distance between two solutions J and [ is
given by

d(I,J) = % min dij + jze:] min dij.

The reference set consists of k (a parameter) best solutions from the
population and r — k£ randomly chosen following diversification criteria
(r denotes the reference set size). Solutions of a selected subset of the
reference set are combined as follows: first, as in heuristic concentra-
tion, the set of facilities that appear in each solution of the subset is
found; then to get the size p, new facilities are added iteratively accord-
ing predefined rules. The combined solutions are then improved by a
local search based on interchanges. The resulting solution is incorpo-
rated to the reference set because it improves one of its k best solutions
or because it improves the diversity of the set according the distance
between its solutions.

Good results are reported on TSP-Lib instances. Three types
of parallelization have been proposed in Garcia-Lépez et al. (2003) to
achieve either an increase of efficiency or an increase of exploration. The
procedures have been coded in C using OpenMP [?] and compared in a
shared memory machine with large instances.

(vi) GRASP with Path relinking. A hybrid heuristic that combines
elements of several “pure” metaheuristics is suggested in Resende and
Werneck (2004). Like GRASP (Greedy Randomized Adaptive Search
Procedure, Feo and Resende, 1995), their heuristic is a multistart ap-
proach where each iteration consists of the construction of initial points
by a randomized greedy step, followed by local search. Like in TS and
SS, their method borrows the idea of path-relinking (Laguna and Martii,
1999). That is, a path between any two solutions from a set of good or
elite solutions is found and local search performed starting from each
solution on that path. Since the distance between two solutions (defined
by the symmetric difference) is systematically changed by one before
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local search is performed, their path-relinking shares a similarity with
VNS as well. Moreover, they augment path-relinking with the concept
of multiple generations, a key feature of genetic algorithms. A large
empirical analysis includes OR-Library, TSP-Lib, Galvao and RW (see
above) sets of instances. Compared with other methods, their procedure
often provides better results in terms of both running time and solution
quality.

(vii) Simulated annealing (SA). The basic SA heuristic for PMP has
been proposed in Murray and Church (1996). The SA heuristic pro-
posed in Chiyoshi and Galvao (2000) combines elements of the vertex
substitution method of Teitz and Bart with the general methodology
of simulated annealing. The cooling schedule adopted incorporates the
notion of temperature adjustments rather than just temperature reduc-
tions. Computational results are given for OR-Library test instances.
Optimal solutions were found for 26 of the 40 problems tested. Re-
cently, an SA heuristic that uses the LK neighborhood structure has
been proposed in Levanova and Loresh (2004). Results of good quality
are reported on Kochetov data sets, and all 40 OR-Library test instances
are solved exactly.

(viii) Heuristic concentration. The Heuristic concentration HC method
(Rosing and ReVelle, 1997) has two stages. In stage one, a set of solu-
tions is obtained by repeating ¢ times the Drop/Add heuristic, and then
retaining the best m among them. The elements of desirable facility
sites selected from the set of solutions form a concentration set. Stage
two of HC limits the set of potential facilities to this set and resolves
the model. Such a restricted model can be solved heuristically or even
exactly. An extension of HC, known as the Gamma heuristic (Rosing et
al., 1999) includes a third stage as well. Testing is performed on 81 ran-
domly generated instances with 100 to 300 nodes. The results in Rosing
et al. (1998) compare successfully with the TS of Rolland et al. (1996).

(ix) Ant colony optimization (ACO) was first suggested in Colorni
et al. (1991). The motivation for the method comes from nature. The
main idea is to use the statistical information obtained from previous
iterations and to guide the search into the more promising areas of the
solution space. Usually the method contains several parameters, whose
estimation and updating (as in SA) mostly influence the quality of the
obtained solution. In Levanova and Loresh (2004) a randomized stingy
or drop heuristic is used within AC: initially a solution x is set to be
the set of all potential facilities L; a facility j to be dropped is chosen
at random (with probability r;) from the restricted drop neighborhood
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set: S;(A) ={j | Af; < (1 —X)ming Afy + Amaxy Afe}, for A € (0,1)
and Af; = f(z) — f(x \ {j}). The probability r; is defined in a usual
way, also introducing some more parameters. When the cardinality of x
reaches p, the interchange heuristic (Resende and Werneck, 2003) with
LK neighborhood structure (Kochetov and Alkseeva, 2005) is performed
with x as an initial solution. A randomized drop routine followed by LK
interchange is repeated a given number of times, and the best overall
solution is kept.

(x) Neural Networks. In Dominguez Merino and Munoz Pérez (2002),
a new integer formulation for of the p-median problem allows them to
apply a two-layers neural network to solve it. In Dominguez Merino et
al. (2003) a competitive recurrent neural network consisting on a single
layer with 2np neurons is used to design three different algorithms.

(xi) Other metaheuristics. In Dai and Cheung (1997), two decompo-
sition heuristics aiming at problems of large scale are proposed. Firstly,
a level-m optimum is defined. Starting from a local optimum, the first
heuristic efficiently improves it to a level-2 optimum by applying an ex-
isting exact algorithm for solving the 2-median problem. The second
heuristic further improves it to a level-3 optimum by applying a new ex-
act algorithm for solving the 3-median problem. In Taillard (2003), three
heuristics have been developed for solving large centroid clustering prob-
lems. Beside the p-median, this includes the multisource Weber problem
and minimum sum-of-squares clustering. The first heuristic, named can-
didate list strategy (CLS), may be seen as a variant of VNS (in the first
version of the paper appeared as technical report in 1996, CLS was called
VNS): an alternate heuristic is used as a local search procedure; a ran-
dom perturbation, or shaking, of the current solution is done by choosing
solutions from the restricted interchange neighborhood. The other two,
called LOPT and DEC, use decomposition for solving large problem in-
stances. An interesting idea of finding the partition of L, and thus the
number of subproblems, by using dynamic programming is developed in
the DEC procedure.

7 Conclusions

Table 1 presents an overview on the development of heuristics for solving
the p-median problem (PMP). We should ask a basic question given
the nature of this survey: Has the advent of metaheuristics advanced
the state-of-the-art significantly? Based on a large body of empirical
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evidence, the answer should be a resounding Yes! While the earlier
methods of constructive heuristics and local searches have been successful
on relatively small instances of PMP, the empirical results shoe that
solution quality may deteriorate rapidly with problem size. The use of
metaheuristics has led to substantial improvements in solution quality
on large scale instances within reasonable short computing time. Using
nomenclature from tabu search, the success may be attributed to the
ability of these metaheuristic-based methods to “intensify” the search in
promising regions of the solution space, and then “diversify” the search
in a systematic way when needed.

Some brief conclusions on the use of metaheuristics are as fol-
lows: (i) The neighborhood structure used in descent plays the most im-
portant role for the efficiency and effectiveness of any metaheuristic for
PMP. The interchange neighborhood appears to be a better choice than
the alternate, or drop/add. The variable depth neighborhood structure
LK(k) (Kochetov and Alekseeva, 2005) seems to be a better choice than
the 1-interchange. (ii) The implementation of 1-interchange local search
is the second very important issue. The implementation of Whitaker
(1983) is better than that suggested by Teitz and Bart (1968), but not
better than that proposed by Hansen and Mladenovié¢ (1997). This one
in turn is outperformed by the implementation of Resende and Werneck
(2003). Therefore, it is not easy to conclude what metaheuristic ap-
proach dominates others. For example, an SA heuristic with Teitz and
Bart implementation of the interchange heuristic proposed by Chiyoshi
& Galvao (2000) was able to solve 26 out of 40 OR-Library test instances.
However, an SA heuristic suggested by Levanova and Loresh (2004) using
an LK neighborhood and Resende and Werneck (2003) implementation
solved all 40 instances exactly.
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