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Preface

The idea for this book was born on the coast of Montenegro, in October 2003,
when we were invited to the Sym-Op-Is Serbian Conference on Operations
Research. During those days we talked about many optimization problems,
going from discussion to implementation in a matter of minutes, reaping good
profits from the whole “hands-on” process, and having a lot of fun in the
meanwhile. All the wrong ideas were weeded out almost immediately by failed
computational experiments, so we wasted little time on those. Unfortunately,
translating ideas into programs is not always fast and easy, and moreover
the amount of literature about the implementation of global optimization
algorithm is scarce.

The scope of this book is that of moving a few steps towards the system-
atization of the path that goes from the invention to the implementation and
testing of a global optimization algorithm. The works contained in this book
have been written by various researchers working at academic or industrial
institutions; some very well known, some less famous but expert nonetheless
in the discipline of actually getting global optimization to work.

The papers in this book underline two main developments in the imple-
mentation side of global optimization: firstly, the introduction of symbolic
manipulation algorithms and automatic techniques for carrying out algebraic
transformations; and secondly, the relatively wide availability of extremely ef-
ficient global optimization heuristics and metaheuristics that target large-scale
nonconvex constrained optimization problems directly.

The book is divided in three parts. The first part is about new global
optimization methods. The chapters in the first part are rather theoretical
in nature, although a computational experiments section is always present.
The second part is oriented towards the implementation, focusing on descrip-
tion of existing solvers and guidelines about building new global optimization
software. This part follows two main trends: the first four chapters deal with
continuous methods, the last three with combinatorial ones. The third (and
last) part presents two applications of global optimization in Data Mining and
Molecular Conformation.
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More specifically, a lot of work has been carried out on the application
of Variable Neighbourhood Search to global optimization (Chapters 6, 8, 10
and 11). A MultiStart-type algorithm based on low-discrepancy sequences
generated deterministically has also been thoroughly explored (Chapters 5,
8). A full description of an API for interfacing to metaheuristic codes is given
in Chapter 11. Deterministic algorithms can be found in Chapters 1 (Branch-
and-Bound algorithms), 3 (a cutting-plane algorithm), 4 and 8.

As has been mentioned, a particularly important development is the in-
troduction of symbolic manipulation algorithms in optimization. Chapter 7
describes a modelling language by which it is possible to keep track of the
convexity property of the optimization problem being described. Although
Chapter 7 is about convex programming, the role of convexity is so important
in Branch-and-Bound-type algorithms for global zoptimization that it was
decided to include it in this book. In Chapter 8 the reader can find the de-
scription of some symbolic algorithms for differentiation, algebraic simplifica-
tion and generation of convex relaxations. Chapter 3 introduces some effective
convexity transformations for a large class of multilinear problems, as well as
discussing some nonlinear cuts. Chapter 10 employs even more sophisticated
symbolic techniques about automated theorem proving.

Chapter 1 and 2 are more theoretical than most other chapters. Chapter
1 considers global optimization problems where the objective functions and
constraints are difference of monotonic functions, and proposes some deter-
ministic solution methods; Chapter 2 reports on a special local search method
for reverse convex problems. In both chapters, a section on computational
results is presented, discussing the efficiency of different solution approaches.

Chapter 4 describes one of the very few existing implementations of a
deterministic global optimization software targeting robust nonconvex pro-
gramming. In order to face the huge computational resources needed to solve
multi-scenario nonconvex problems, the author proposes a Branch-and-Bound
approach where the lower bounds are computed by solving a nonconvex La-
grangian relaxation through a standard global optimization algorithm. This
multi-level solution method requires careful software design to obtain a work-
ing implementation.

Chapters 9 and 12 describe working implementations of commercial-grade
software. In particular, Chapter 9 is about the Lipschitz Global Optimiza-
tion (LGO) solver suite, and its embedding within the Mathematica software
framework; Chapter 12 describes a solver for Mixed-Integer Linear Program-
ming problems (sold by Process Systems Enterprise, Ltd.): this software relies
on CORBA techniques to automate the parallelization and distributed run-
ning of the solver.

As far as the applications are concerned, Chapter 13 describes an ex-
tremely interesting class of problems arising in Data Mining and Nonlinear
Classification. Chapter 14 describes a new way to generate instances for the
Molecular Distance Geometry Problem, which is one of the hardest problems
in Molecular Conformation.
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Some of these papers have inter-relations and cross-references, due both
to collaborations among the authors and to emergence of new trends in global
optimization. Most of these inter-relations have been emphasized by means of
footnotes, which have all been added by the editors.

We hope that the reader will find this book interesting and enlightening,
and that it will serve as a source of ideas as well as a desktop companion for
people who need to implement global optimization software.

Milano, Rio de Janeiro Leo Liberti
June 2005 Nelson Maculan
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P. Hansen, L. Hiesse, J. Lacheré, A. Monhait . . . . . . . . . . . . . . . . . . . . . . . 281
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
2 AGX 2 Interactive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3 Algebraic Syntax Used in AutoGraphiX . . . . . . . . . . . . . . . . . . . . . . . . . 291
4 Optimization Using Variable Neighborhood Search . . . . . . . . . . . . . . . 294
5 AutoGraphiX Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6 Automated Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
7 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

From Theory to Implementation: Applying Metaheuristics.
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Optimization under Composite Monotonic
Constraints and Constrained Optimization
over the Efficient Set

Hoang Tuy and N.T. Hoai-Phuong

Institute of Mathematics, VAST, 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
{htuy,htphuong}@math.ac.vn

Summary. We present a unified approach to a class of nonconvex global opti-
mization problems with composite monotonic constraints. (By composite monotonic
function is meant a function which is the composition of a monotonic function on
Rn with a mapping from Rn → Rp with p ≤ n.) This class includes problems
with constraints involving products of linear functions, sums of ratio functions, etc.,
and also problems of constrained optimization over efficient/weakly efficient points.
The approach is based on transforming the problem into a monotonic optimization
problem in the space Rp, which can then be efficiently solved by recently developed
techniques. Nontrivial numerical examples are presented to illustrate the practica-
bility of the approach.

Key words: Global optimization. Monotonic optimization, difference of
monotonic (d.m.) optimization. Composite monotonic constraint. Noncon-
vex optimization. Branch-reduce-and-bound method. Constrained optimiza-
tion over the efficient/weakly efficient set. Multiplicative constraint. Sum-of-
ratio constraint.
Mathematics Subject Classification 90C26, 65K05, 90C20, 90C30, 90C56, 78M50

1 Introduction

Convexity is essential to modern optimization theory. However, it is not al-
ways the natural property to be expected from many nonlinear phenomena.
Another property, perhaps at least as pervasive in the real world as convexity,
is monotonicity.

A function f : Rn → R is said to be increasing on a box [a, b] = {x ∈
Rn| a ≤ x ≤ b} if f(x) ≤ f(x′) whenever a ≤ x ≤ x′ ≤ b (throughout this pa-
per, inequalities between vectors are understood in the componentwise sense);
it is said to be decreasing if −f(x) is increasing, monotonic if it is either in-
creasing or decreasing. A function which can be represented as a difference
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of two monotonic functions is referred to as a d.m. function. For instance, a
polynomial in x ∈ Rn with positive coefficients is increasing on Rn

+, whereas
an arbitrary polynomial in x ∈ Rn is a d.m. function on Rn

+. An optimiza-
tion problem which can be described by means of d.m. functions is termed a
d.m. optimization problem. In particular polynomial programming problems
or, more generally, synomial programming problems are d.m. optimization
problems.

Obviously, d.m. optimization problems form a very broad class of highly
nonconvex problems encountered in different fields of mathematical, physi-
cal, engineering and economical sciences. In the last few years a theory of
monotonic optimization has emerged which provides a general mathematical
framework for the study of these problems. The basic concepts and problems
of monotonic optimization, together with the basic methods of polyblock and
reverse polyblock (copolyblock) approximation were introduced in [24], while
their relation to and their analogy with d.c. optimization were discussed in
[27], [30]. Applications to special problems were considered in [14], [25], [10],
[28], [30], while improved outer approximation and branch and cut methods
were developed in [29], and extended to discrete problems in [32].

Computational experience with numerical methods of monotonic optimiza-
tion has demonstrated their efficiency for problems of limited dimension ([25],
[14], [10], [28]). On the other hand, a host of large scale nonconvex opti-
mization problems can be reduced to monotonic problems of much smaller
dimension tractable by conventional monotonic optimization methods. An
important class of such problems includes d.m. optimization problems with
an additional composite monotonic constraint, i.e. a constraint of the form
h(C(x)) ≥ 0, where C : Rn → Rm is some continuous mapping with m < n,
and h : Rm → R is an increasing function.

The aim of the present paper is to investigate this class of problems using
the approach earlier developed in [24] and recently refined in [29].

In the next section we will first review some basic concepts and results
from monotonic optimization. In Section 3 the class of optimization prob-
lems involving a composite monotonic constraint will be introduced. From a
numerical point of view, our interest in this class stems from the important
property that by passing to the image space of the above mentioned mapping
C they can be converted into a prototype monotonic optimization problem
(Q) of much reduced dimension. This property allows them to be tractable
by a unified approach. In Section 4 it will be shown that this class includes as
special case the problem of constrained optimization over the weakly efficient
set. Although the problem of optimization over the efficient set does not sat-
isfy all requirements for this class, it can be solved via solving a problem (Q),
subject to some additional inexpensive manipulations. In Section 5, a method
is developed for solving the prototype problem (Q). On the basis of a branch
and bound scheme, this method involves, aside from branching and bounding,
also a basic operation called reduction aimed at exploiting monotonicity to
reduce the size of the current partition sets before computing the bounds. The
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corresponding algorithm is formulated and its convergence established under
mild conditions. In Section 6 several substantial improvements of the algo-
rithm for the problem of optimization over the efficient set are discussed in
the most usual case when C is concave. In Section 7, the approach is extended
to problems with a composite monotonic objective function, such as multi-
plicative programs and the like. Finally, Section 8 closes the paper with some
nontrivial numerical examples illustrating the practicability of the approach.

2 Some basic concepts and results of monotonic
optimization

In this section we review some basic concepts and results from the theory of
monotonic optimization as developed in [24], [29] (see also [27], [32]).

In its general form a d.m. optimization problem can be formulated as

min{f(x)| gi(x) ≤ 0 (i = 1, . . . ,m), x ∈ [a, b]}, (DM)

where f, gi, i = 1, . . . ,m, are d.m. functions.

Let gi(x) = ui(x)−vi(x) with ui(x), vi(x) being increasing functions. Since
gi(x) ≤ 0(i = 1, . . . ,m)⇔ g(x) := maxi=1,...,m gi(x) ≤ 0, while

g(x) = max
i

[ui(x) +
∑

j 6=i

vj(x)]−
∑

j

vj(x) = u(x)− v(x)

with u(x) = maxi[ui(x) +
∑

j 6=i vj(x)], v(x) =
∑

j vj(x) being increasing, the
set of d.m. constraints gi(x) ≤ 0, i = 1, . . . ,m can always be replaced by a
single d.m. constraint g(x) = u(x)− v(x) ≤ 0.

Furthermore, it can be shown (see e.g. [24]) that by simple manipulations
and using additional variables, any d.m. optimization problem can be con-
verted into the canonical form

min{f(x)| g(x) ≤ 0 ≤ h(x), x ∈ [a, b]} (MO)

where f, g, h are increasing functions.

In this paper we will assume that the functions f(x), g(x) are l.s.c., and
h(x) is u.s.c., so that the sets

G := {x ∈ [a, b]| g(x) ≤ 0}, H := {x ∈ [a, b]| h(x) ≥ 0} (1)

are closed. It can be easily verified that these sets have the following properties:

x ∈ G⇒ [a, x] ⊂ G; x ∈ H ⇒ [x, b] ⊂ H.

These properties are expressed by saying that G is a normal set, and H is a
conormal set (or a reverse normal set).
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Obviously, [a, b] is the largest normal set in [a, b] and the intersection or
the union of an arbitrary collection of normal sets is normal. For any given
set A ⊂ [a, b], the intersection of all normal sets containing A, i.e. the smallest
normal set containing A, is called the normal hull of A, and is denoted by Ae.
Analogously, the smallest conormal set containing A is called the conormal
hull of A and is denoted by bA.

Proposition 1. Ae = ∪x∈A[a, x], bA = ∪x∈A[x, b]. If A is compact then so
are Ae and bA.

Proof. The set ∪x∈A[a, x] is obviously normal, so Ae ⊂ ∪x∈A[a, x]. Conversely,
if y ∈ [a, x] for some x ∈ A ⊂ Ae then y ∈ Ae because Ae is normal. This
proves that Ae = ∪x∈A[a, x]. For any sequence {zr} ⊂ Ae there exists a
subsequence {zrν} converging to some z̄ ∈ [a, b]. Let zrν ∈ [a, xrν ] ⊂ A. By
taking a subsequence if necessary, we can assume xrν → x̄ and since A is
closed, x̄ ∈ A. Thus, z̄ ∈ [a, x̄] with x̄ ∈ A, proving that Ae is compact. The
proof is analogous for bA.

A point z ∈ G is called an upper boundary point of a closed normal set
G ⊂ [a, b] if (z, b] ⊂ [a, b] \ G. (here and throughout (a, b] = {x| a < x ≤ b},
while [a, b) = {x| a ≤ x < b}). The set of upper boundary points of G is called
its upper boundary and is denoted by ∂+G.

Similarly, a point z ∈ H is called a lower boundary point of a closed
conormal set H if [a, z) ⊂ [a, b] \H. The set of lower boundary points of G is
called its lower boundary and is denoted by ∂−H.

Proposition 2. A closed nonempty normal set G (conormal set H, resp.)
has a nonempty upper boundary ∂+G (lower boundary ∂−H, resp.) and is
just equal to the normal (conormal, resp.) hull of this upper (lower, resp.)
boundary. For the normal set G and conormal set H in (1) we have

∂+G = {x ∈ [a, b]| g(x) = 0}, ∂−H = {x ∈ [a, b]| h(x) = 0}.

Proof. It suffices to prove the Proposition for a normal set G. Take an arbi-
trary point x ∈ G and let z = a+λ(x−a) with λ = max{α| a+α(x−a) ∈ G}.
Then z ∈ G because G is closed and if u > z, i.e., ui > zi, i = 1, . . . , n then
ui = ai + λi(xi − ai) with λi > λ, so that if α = mini=1,...,m λi > λ and
ũi = ai + α(xi − ai) then ũ = a + α(x − a) /∈ G. Thus, (z, b] ⊂ [a, b] \ G,
and so z ∈ ∂+G. Therefore ∂+G 6= ∅. Since ∂+G ⊂ G, we have ∂+G ⊂ Ge.
Conversely, since any x ∈ G belongs to the line segment joining a to a point
z = a+λ(x− a) ∈ ∂+G, it follows that G ⊂ (∂+G)e, hence G = (∂+G)e. The
last assertion is obvious in view of the l.s.c. of g(x).

A point z ∈ ∂+G is called an upper extreme point of G if x ∈ G, x ≥ z
always implies that x = z. A point z ∈ ∂−H is called a lower extreme point
of H if x ∈ H, x ≤ z always implies that x = z.
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Proposition 3. A closed normal set G ⊂ [a, b] (conormal set H ⊂ [a, b],
resp.) has at least one upper (lower, resp.) extreme point and is equal to the
normal (conormal, resp.) hull of the set V of its upper (lower, resp.) extreme
points.

Proof. In view of Proposition 2 V e ⊂ (∂+G)e = G, so it suffices to show
that ∂+G ⊂ V e. Let z ∈ ∂+G. Define x1 ∈ argmax{x1| x ∈ G, x ≥ z}, and
xi ∈ argmax{xi| x ∈ G, x ≥ xi−1} for i = 2, . . . , n. Then v := xn ∈ G and
v ≥ x for all x ∈ G satisfying x ≥ z. Therefore, x ∈ G, x ≥ v implies that
x = v. This means that z ≤ v ∈ V , hence z ∈ V e, as was to be proved.

3 Problems With Composite Monotonic Constraints

Let there be given a compact convex set D ⊂ Rn, a continuous mapping
C : Rn → Rm, an u.s.c. increasing function h : Rm

+ → R, together with a
continuous d.m. function f : D → R. Consider the problem

min{f(x)| x ∈ D, h(C(x)) ≥ 0}. (P)

This problem includes as special case the problem earlier studied in [25] where
f(x) is linear and Ci(x), i = 1, . . . ,m are concave. Since C(D) = {y =
C(x), x ∈ D} is compact we can assume that it is contained in some box
[a, b] ⊂ Rm

+ . Define the set

Ω = {y ∈ [a, b]| h(y) ≥ 0} (2)

and for each fixed y ∈ [a, b], let

ϕ(y) := min{f(x)| x ∈ D, C(x) ≥ y}. (R(y)).

Proposition 4. Ω is a conormal and compact set, while ϕ(y) is an increasing
function, convex if f(x) is convex and Ci : Rn → R, i = 1, . . . ,m, are concave
functions.

Proof. The set Ω is conormal and compact because h(y) is increasing and
u.s.c.. The function ϕ(y) is increasing because every x feasible to R(y) is
feasible to R(y′) whenever y′ ≤ y. Let y1, y2 ∈ [a, b], α ∈ [0, 1] and ϕ(yi) =
f(xi), i = 1, 2. Then x = αx1 + (1 − α)x2 ∈ D, and if Ci, i = 1, . . . ,m, are
concave then C(x) ≥ αC(x1) + (1− α)C(x2) ≥ αy1 + (1− α)y2 = y, so that
ϕ(y) ≤ f(x) ≤ αf(x1) + (1 − α)f(x2) = αϕ(y1) + (1 − α)ϕ(y2), proving the
convexity of ϕ(y).

Proposition 5. Problem (P) is equivalent to the problem

min{ϕ(y)| y ∈ Ω}. (Q)

Specifically, if y∗ solves (Q) then any optimal solution x∗ of R(y∗) solves (P)
and conversely, if x∗ solves (P), then y∗ = C(x∗) solves (Q).
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Proof. This can be easily seen by writing the problem as

min
x,y
{f(x)| x ∈ D, C(x) ≥ y, y ∈ [a, b], h(y) ≥ 0}

= min
y∈[a,b],h(y)≥0

min
x
{f(x)| x ∈ D, C(x) ≥ y}

= min{ϕ(y)| y ∈ [a, b], h(y) ≥ 0}.

In more detail, let y∗ be an optimal solution of (Q) and let x∗ be an optimal
solution of (R(y∗)), so that ϕ(y∗) = f(x∗), x∗ ∈ D, C(x∗) ≥ y∗. For any
x ∈ D satisfying h(C(x)) ≥ 0, we have h(y) ≥ 0 for y = C(x), so f(x) ≥
ϕ(y) ≥ ϕ(y∗) = f(x∗), proving that x∗ solves (P).

Conversely, let x∗ be an optimal solution of (P), so that x∗ ∈ D, h(y∗) ≥ 0
with y∗ = C(x∗). For any y ∈ Ω satisfying h(y) ≥ 0, we have ϕ(y) = f(x) for
some x ∈ D with C(x) ≥ y, hence h(C(x)) ≥ h(y) ≥ 0, so that x is feasible
to (P), and hence ϕ(y) = f(x) ≥ f(x∗) ≥ ϕ(y∗), i.e. y∗ is an optimal solution
of (Q).

Remark 3.1 Define the normal compact set

∆ = {y ∈ [a, b] | y ≤ C(x), x ∈ D}. (3)

Since ϕ(y) = +∞ for y /∈ ∆ the problem (Q) can also be written as

min{ϕ(y)| y ∈ ∆ ∩Ω}. (4)

Thus, (P) is equivalent to (Q) which is a conventional monotonic optimization
problem in Rm (with m usually much smaller than n).

Note, however, that the objective function ϕ(y) in (Q) is given implicitly
as the optimal value of a subproblem R(y). In the cases of interest to be con-
sidered in the sequel, R(y) is solvable by standard methods, while the problem
(Q) itself can be solved by monotonic optimization techniques previously de-
veloped in [24] and recently refined in [29].

Below are some of the most important examples of problems of the class
(P).

Example 3.1

min{f(x)| x ∈ D,

m
∑

i=1

ui(x)

vi(x)
≥ 1}, (5)

where D is a polytope, f(x), ui(x), vi(x), i = 1, . . . ,m are continuous d.m.

functions such that vi(x) > 0 ∀x ∈ D and the set {y| yi = ui(x)
vi(x) (i =

1, . . . ,m), x ∈ D} is contained in a box [a, b] ⊂ Rm
+ .

Here Ci(x) = ui(x)/vi(x), h(y) =
∑m

i=1 yi − 1, so this problem can be
rewritten as a problem (Q) with
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ϕ(y) = min{f(x)| x ∈ D, yivi(x) ≤ ui(x) (i = 1, . . . ,m)}, (6)

Ω = {y ∈ [a, b]|
m
∑

i=1

yi ≥ 1}. (7)

Example 3.2

min{f(x)| x ∈ D, max
i=1,...,m

ui(x)

vi(x)
≥ 1} (8)

with D, f(x), ui(x), vi(x) as in Example 3.1. Here Ci(x) = ui(x)/vi(x),
h(y) = max{y1, . . . , ym}, so the problem is equivalent to (Q) with ϕ(y) as in
(6) and

Ω = {y ∈ [a, b]| max
i=1,...,m

yi ≥ 1}.

Example 3.3

min{f(x)| x ∈ D,
m
∏

i=1

ui(x)

vi(x)
≥ 1} (9)

with D, f(x), ui(x), vi(x), as in Example 3.1. Here Ci(x) = ui(x)/vi(x),
h(y) =

∏m
i=1 yi − 1, so the problem can be rewritten as a problem (Q) with

ϕ(y) as in (6) and

Ω = {y ∈ [a, b)|
m
∏

i=1

yi ≥ 1}.

A special case of this problem when vi(x) ≡ 1 has been studied earlier in [25].

Example 3.4

min{f(x)| x ∈ D,

r
∑

j=1

cj

m
∏

i=1

[

ui(x)

vi(x)

]αj

≥ 1} (10)

with r being a natural number, cj , αij being real positive numbers and
D, f(x), ui(x), vi(x) as in the previous examples. Here again Ci(x) =
ui(x)/vi(x), h(y) =

∑r
j=1 cj

∏m
i=1[yi]

αij , so the problem is equivalent to (Q)
with ϕ(y) as in (6) and

Ω = {y ∈ [a, b]|
r
∑

j=1

cj

m
∏

i=1

[yi]
αij ≥ 1}.

Example 3.5 (Constrained optimization over the weakly efficient set)

min{f(x)| x ∈ X, g(x) ≤ 0, x ∈ XWE} (OWE)

where f(x), g(x) are continuous d.m. functions, X is a compact convex set
in Rn, and XWE denotes the set of weakly efficient points of X w.r.t. a given
continuous mapping C : X → Rm.
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Recall that a point x0 ∈ X is said to be weakly efficient w.r.t. C if there
is no point x ∈ X such that C(x) > C(x0).

Up to now the problem (OWE), a weak variant of the problem (OE) to
be discussed in the next Section, has been studied mostly in the special case
when f(x), Ci(x) are linear, g(x) ≡ 0, and X is a polytope (see e.g. [23], [13]
and references therein). Although multi-ratio measures of efficiency such as
return/investment, return/risk, cost/time, output/input occur in many prac-
tical applications, the case when Ci(x) = ui(x)/vi(x) with ui(x), vi(x) affine,
while f(x) is linear and X is a polytope, has received attention only recently,
and to a much lesser degree ([15], [16], [17]).

Assume that C(X) := {C(x)| x ∈ X} ⊂ [a, b] ⊂ Rm
+ and let

Γ = {y ∈ [a, b] | y ≤ C(x), x ∈ X}. (11)

Proposition 6. Γ is a normal compact set such that Γ = C(X)e and

x ∈ XWE ⇔ C(x) ∈ ∂+Γ. (12)

Proof. Clearly Γ is normal; it is compact because of the continuity of C(x)
and the compactness of X. Since C(X)e = [a, b] ∩ (C(X) − Rm

+ ) = {y ∈
[a, b]| y ≤ z, z = C(x), x ∈ X}, the equality Γ = C(X)e follows. To prove
(12) observe that if x0 ∈ XWE then y0 := C(x0) ∈ Γ and there is no x ∈ X
such that C(x) > C(x0) i.e. no y = C(x), x ∈ X, such that y > C(x0) = y0,
hence y0 ∈ ∂+Γ. Conversely, if x0 ∈ X satisfies C(x0) ∈ ∂+Γ, then there is
no y ∈ Γ such that y > C(x0), i.e. no x ∈ X with C(x) > C(x0), hence
x0 ∈ XWE .

Proposition 7. Γ = {y ∈ [a, b] | h(y) ≤ 0}, where

h(y) = min{t| yi − Ci(x) ≤ t, i = 1, . . . ,m, x ∈ X} (13)

is an increasing, continuous function.

Proof. By definition, y ∈ Γ if and only if there exists x ∈ X such that
max

i=1,...,m
(yi − Ci(x)) ≤ 0. Since X is compact and the function x 7→ max

i
(yi −

Ci(x)) is continuous, this is equivalent to saying that min
x∈X

max
i

(yi−Ci(x)) ≤ 0,

i.e. h(y) ≤ 0, with h(y) being defined by (13). Clearly the function h(y) is
increasing. Suppose yν → y0, and let l(yν) = yν

iν
−Ciν

(xν) ≥ yν
i −Ci(x

ν) ∀i =
1, . . . ,m. By taking a subsequence if necessary we can assume xν → x0, iν =
i0 ∀ν. Then l(yν) → y0

i0
− Ci0(x

0) ≥ y0
i − Ci(x

0) ∀i, i.e. l(yν) → maxi(y
0
i −

Ci(x
0)) = l(y0). Therefore, h(y) is continuous, and obviously Γ = {y| h(y) ≤

0}.

Corollary 1.
x ∈ XWE ⇔ h(C(x)) ≥ 0
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Proof. By Proposition 6, x ∈ XWE if and only if C(x) ∈ ∂+Γ, hence, by
Proposition 7, if and only if h(C(x)) = 0. Since for x ∈ X we have C(x) ∈ Γ,
i.e., by Proposition 7, h(C(x)) ≤ 0, the equality h(C(x)) = 0 is equivalent to
h(C(x)) ≥ 0.

Setting D = {x ∈ X| g(x) ≤ 0}, the problem (OWE) can thus be written
as

min{f(x)| x ∈ D, h(C(x)) ≥ 0}.
In this form it provides a further important example of optimization under
composite monotonic constraints. Here h(y) is given by (13) and the equivalent
problem (Q) is

min{ϕ(y)| y ∈ Ω}, (14)

with

Ω = {y ∈ [a, b] | h(y) ≥ 0},
ϕ(y) = min{f(x) | x ∈ X, g(x) ≤ 0, C(x) ≥ y}.

Setting ∆ = {y ∈ [a, b] | y ≤ C(x), g(x) ≤ 0, x ∈ X}, the problem can also
be written as

min{ϕ(y)| y ∈ ∆ ∩Ω}. (15)

In the simplest case when f(x), C(x) are linear with C(X) ⊂ Rm
+ , and the

constraint g(x) ≤ 0 is absent, the above formulation of (OWE) was earlier
established in [14].

4 Constrained Optimization over the Efficient Set

A general problem in multi-criteria decision making, of which (OWE) is only
a relaxed variant, is the following constrained optimization problem over the
efficient set:

α := min{f(x)| x ∈ X, g(x) ≤ 0, x ∈ XE}, (OE)

where XE denotes the set of efficient points of X w.r.t. C.

Recall that a point x0 ∈ X is said to be efficient w.r.t. C if there is no
x ∈ X such that C(x) ≥ C(x0) and C(x) 6= C(x0).

The concept of efficiency and the properties of the efficient set, as well as
the problem (OE), have been extensively discussed in the literature (see e.g.
[18], [33], [3] and references therein, [11], [9], [6], [7], [20], [13] and references
therein).

Although efficiency is a much stronger property than weak efficiency, it
turns out that the problem (OE) can be solved, roughly speaking, by the
same method as (OWE). To see this, consider, as previously, the set Γ = {y ∈
[a, b]| y ≤ C(x), x ∈ X} (see (11)). Recall that ext+Γ denotes the set of
upper extreme points of the normal set Γ.



DRAFT

12 Hoang Tuy and N.T. Hoai-Phuong

Proposition 8. x ∈ XE ⇔ C(x) ∈ ext+Γ.

Proof. If x0 ∈ XE then y0 = C(x0) ∈ Γ and there is no x ∈ X such that
C(x) ≥ C(x0), C(x) 6= C(x0) i.e. no y = C(x), x ∈ X, such that y ≥ y0, y 6=
y0, hence y0 ∈ ext+Γ. Conversely, if y0 = C(x0) ∈ ext+Γ with x0 ∈ X, then
there is no y = C(x), x ∈ X, such that y ≥ y0, y 6= y0, i.e. no x ∈ X with
C(x) ≥ C(x0) C(x) 6= C(x0), hence x0 ∈ XE .

For every y ∈ Rm
+ define

ρ(y) = min{
m
∑

i=1

(yi − zi)| z ≥ y, z ∈ Γ}. (16)

Proposition 9. The function ρ(y) : Rm
+ → R+ ∪ {+∞} is increasing and

satisfies

ρ(y)







≤ 0 if y ∈ Γ
= 0 if y ∈ ext+Γ
= +∞ if y /∈ Γ.

(17)

Proof. If y′ ≥ y then z ≥ y′ implies that z ≥ y, hence ρ(y′) ≥ ρ(y). Suppose
ρ(y) = 0. Then y ∈ Γ since there exists z ∈ Γ such that y ≤ z. There cannot
be any z ≥ y, z 6= y, for this would imply that zi > yi for at least one i, hence
ρ(y) ≤∑m

i=1(yi − zi) < 0, a contradiction. Conversely, if y ∈ ext+Γ then for
every z ∈ Γ such that z ≥ y one must have z = y, hence

∑m
i=1(yi − zi) = 0,

i.e. ρ(y) = 0. That ρ(y) ≤ 0 ∀y ∈ Γ, ρ(y) = +∞ ∀y /∈ Γ is obvious.

Setting D = {x ∈ X | g(x) ≤ 0}, h̃(y) = min{h(y), ρ(y)}, the problem
(OE) can thus be formulated as

min{f(x)| x ∈ D, h̃(C(x)) ≥ 0}, (18)

which has the same form as (P) with the difference, however, that h̃(y), though
increasing, is not u.s.c. as required. Upon the same transformations as previ-
ously, this problem can be rewritten as

min{ϕ(y)| y ∈ Ω, ρ(y) = 0}, (Q̃)

where ϕ(y), Ω are defined as in (14).

Clearly (Q̃) differs from problem (Q) only by the additional constraint
ρ(y) = 0, whose presence is what makes (OE) a bit more complicated than
(OWE).

There are two possible approaches for solving (OE). In the first approach,
proposed by [20], the problem (OE) is approximated by an (OWE) differing
from (OE) only in that the criterion mapping C is slightly perturbed and
replaced by
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Cε(x) = C(x) + ε

m
∑

i=1

Ci(x), (19)

where ε > 0 is sufficiently small. Denote by Xε
WE and Xε

E resp. the weakly
efficient set and the efficient set of X w.r.t. the mapping Cε(x) and consider
the problem

α(ε) := min{f(x)| g(x) ≤ 0, x ∈ Xε
WE} (OWE

ε
).

Lemma 1. ([20]) (i) For any ε > 0 we have Xε
WE ⊂ XE (equivalently,

∂+Γ ε ⊂ ext+Γ ).
(ii) α(ε)→ α as ε↘ 0.
(iii) If X is a polytope, and C is linear, then there is ε0 > 0 such that

Xε
WE = XE (equivalently, ∂+Γ ε = ext+Γ ) for all ε satisfying 0 ≤ ε ≤ ε0.

Proof. (i) Let x∗ ∈ X \ XE . Then there is x ∈ X satisfying C(x) ≥
C(x∗), Ci(x) > Ci(x

∗) for at least one i. This implies that
∑m

j=1 Cj(x) >
∑m

j=1 Cj(x
∗), hence Cε(x) > Cε(x∗), so that x∗ /∈ Xε

WE . Thus if x∗ ∈ X \XE ,
then x∗ ∈ X \Xε

WE , i.e. Xε
WE ⊂ XE .

(ii) The just established property (i) implies that α(ε) ≥ α. Define

Γ ε = {y ∈ [a, b]| y ≤ Cε(x), x ∈ X}, (20)

ϕε(y) = min{f(x)| x ∈ X, g(x) ≤ 0, Cε(x) ≥ y}, (21)

so that the problem (OWEε) reduces to

min{ϕε(y)| y ∈ cl([a, b] \ Γ ε}. (22)

Next consider an arbitrary point x̄ ∈ XE \Xε
WE . Since x̄ /∈ Xε

WE , there exists
xε ∈ X such that Cε(xε) > Cε(x̄). Then xε is feasible to the problem (OWEε),
and, consequently, f(xε) ≥ α(ε) ≥ α. In view of the compactness of X, by
passing to a subsequence if necessary, one can suppose that xε → x∗ ∈ X
as ε ↘ 0. Therefore, f(x∗) ≥ lim α(ε) ≥ α. But from Cε(xε) > Cε(x̄) we
have C(x∗) ≥ C(x̄) and since x̄ ∈ XE it follows that x∗ = x̄, and hence
f(x̄) ≥ lim α(ε) ≥ α. Since this holds for arbitrary x̄ ∈ XE \Xε

WE we conclude
that lim α(ε) = α.

(iii) We only sketch the proof, referring the interested reader to [12], Propo-
sition 15.1, for the details. Since C(x) is linear we can consider the cones
K := {x|Ci(x) ≥ 0, i = 1, . . . ,m},Kε = {x| Cε

i (x) ≥ 0, i = 1, . . . ,m}. Let
x0 ∈ XE and denote by F the smallest facet of X that contains x0. Since
x0 ∈ XE we have (x0 + K)∩ F = ∅, and hence, there exists εF > 0 such that
(x0+Kε)∩F = ∅ ∀ε ∈ (0, εF ]. Then we have (x+Kε)∩F = ∅ ∀x ∈ F whenever
0 < ε ≤ εF . If F denotes the set of facets of X such that F ⊂ XE , then F is
finite and ε0 = min{εF | F ∈ F} > 0. Hence, (x+Kε)∩F = ∅ ∀x ∈ F,∀F ∈ F ,
i.e. XE ⊂ Xε

WE whenever 0 < ε ≤ ε0.

As a consequence, an approximate optimal solution of (OE) can be ob-
tained by solving (OWEε) for any ε such that 0 < ε ≤ ε0.
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A second approach consists in solving (OE) as a problem (Q) with some
additional manipulations to take account of the additional constraint ρ(y) = 0.

Given any point y ∈ Γ the next proposition can be used to compute an
efficient point x̄ such that C(x̄) ≥ y.

Proposition 10. For any y ∈ Γ, there exists an ȳ ∈ ext+Γ such that ȳ ≥ y,
and any optimal solution x̄ of the problem

max{
m
∑

i=1

Ci(x) | y ≤ C(x), x ∈ X} (23)

is an efficient point in X.

Proof. By Proposition 3, there is an ȳ ∈ ext+Γ such that y ∈ [a, ȳ], hence
ȳ ≥ y. To show the second part of the Proposition, observe that, since y ∈
Γ, the feasible set of the problem (23) is nonempty (and compact), so the
problem (23) has an optimal solution x̄. If there exists x ∈ X such that
C(x) ≥ C(x̄) then C(x) ≥ y (because C(x̄) ≥ y), i.e. x is feasible to (23),
hence

∑m
i=1 Ci(x) ≤ ∑m

i=1 Ci(x̄). This in turn implies that
∑m

i=1 Ci(x) =
∑m

i=1 Ci(x̄), hence C(x) = C(x̄). Therefore, x̄ ∈ XE .

Proposition 11. For a box [p, q] ⊂ [a, b] such that p ∈ Γ, q /∈ Γ let λ =
max{α| p + α(q − p) ∈ Γ}, z = p + λ(q − p). If

zi := z + (qi − zi)e
i /∈ Γ ∀i = 1, . . . ,m

then [p, q) ∩ ext+Γ 6= ∅.
Proof. The hypothesis implies that for any i = 1, . . . ,m, there is no point
y ∈ [z, q]∩Γ with yi = qi. Indeed, if such an y exists then zi := z +(qi− zi)e

i

satisfies zi
i = qi = yi, whereas zi

j = zj ≤ yj ∀j 6= i, hence zi ≤ y and

since y ∈ Γ, it follows that zi ∈ Γ, contradicting the hypothesis. Now, by
Proposition 3, since z ∈ Γ there exists a ȳ ∈ [z, b] such that ȳ ∈ ext+Γ,
and since, as has just been proved, we must have ȳi < qi ∀i, it follows that
ȳ ∈ [z, q) ⊂ [p, q).

Remark 4.1 If C : Rn → Rm is a concave mapping (i.e. every function
Ci(x), i = 1, . . . , p is concave) then Γ is a convex set. It is then easily seen
that in the most favourable case when f(x) = F (C(x)), with F (y) a decreasing
(strictly decreasing, resp.) function, then the optimization problem

min{f(x)| x ∈ XWE}, (min{f(x)| x ∈ XE}, resp.)

reduces to the monotonic optimization problem

min{F (y)| y ∈ Γ},

and hence, can be solved efficiently by standard monotonic optimization meth-
ods (see e.g. [An, Kim and Thanh (2004)]).
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5 Solution Method for Problem (Q)

For small values of p the monotonic optimization problem (Q) can be solved
fairly efficiently by the copolyblock approximation algorithm even in its initial
version [24] (see e.g. [25], [14]). Below we will use, instead, a BRB (branch-
reduce-and-bound) algorithm which is more suitable for problems with larger
values of p. This BRB algorithm was initially developed in [24] and signifi-
cantly improved in [29].

As the name indicates, the BRB algorithm proceeds according to the stan-
dard branch and bound scheme with three basic operations: branching, reduc-
ing (the partition sets) and bounding.

-Branching consists in a successive rectangular partition of the initial box
M0 = [a, b] following an exhaustive subdivision rule, i.e. such that any in-
finite nested sequence of partition sets generated by the algorithm shrinks
to a singleton. A commonly used exhaustive subdivision rule is the standard
bisection.

-Reducing consists in applying valid cuts to reduce the size of the current
partition set M = [p, q] ⊂ [a, b]. The box [p′, q′] obtained from M as a result
of the cuts is referred to as a valid reduction of M .

-Bounding consists in estimating a valid lower bound β(M) for the ob-
jective function value ϕ(y) over the feasible portion contained in the valid
reduction [p′, q′] of a given partition set M = [p, q].

5.1 Valid Reduction

At a given stage of the BRB algorithm for (Q), a feasible point ȳ ∈ Ω is
available which is the best so far known. Let γ = ϕ(ȳ) and let [p, q] ⊂ [a, b] be
a box generated during the partitioning procedure which is still of interest.
Since an optimal solution of (Q) is attained at a point on the lower boundary
of Ω, i.e. in the set h(y) = 0, the search for a feasible solution of (Q) in [p, q]
such that ϕ(y) ≤ γ can be restricted to the set Bγ ∩ [p, q], where

Bγ := {y| ϕ(y)− γ ≤ 0, h(y) ≤ 0 ≤ h(y)}. (24)

The reduction operation aims at replacing the box [p, q] with a smaller box
[p′, q′] ⊂ [p, q] without losing any point y ∈ Bγ ∩ [p, q], i.e. such that

Bγ ∩ [p′, q′] = Bγ ∩ [p, q].

The box [p′, q′] satisfying this condition is referred to as a γ-valid reduction
of [p, q] and denoted by redγ [p, q].

In the sequel, ei denotes the i-th unit vector, i.e. a vector with 1 at the
i-th position and 0 everywhere else.
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Lemma 2. (i) If min{ϕ(p) − γ, h(p)} > 0 or h(q) < 0, then Bγ ∩ [p, q] = ∅,
i.e. redγ [p, q] = ∅.

(ii) If ϕ(p) ≤ γ, h(p) ≤ 0, and h(q) ≥ 0, then redγ [p, q] = [p′, q′] with

p′ = q −
n
∑

i=1

αi(qi − pi)e
i, q′ = p′ +

n
∑

i=1

βi(qi − p′i)e
i (25)

where, for i = 1, . . . , n,

αi = sup{α| 0 < α ≤ 1, h(q − α(qi − pi)e
i)) ≥ 0} (26)

βi = sup{β| 0 < β ≤ 1, ϕ(p′ + β(qi − p′i)e
i) ≤ γ,

h(p′ + β(qi − p′i)e
i) ≤ 0}. (27)

Proof. (i) If θ(p) := min{ϕ(p)− γ, h(p)} > 0, then, since θ(y) is increasing,
θ(y) ≥ θ(p) > 0 for every y ∈ [p, q]. Similarly, if h(q) < 0, then h(y) < 0 for
every y ∈ [p, q]. In both cases, Bγ ∩ [p, q] = ∅.

(ii) Let y ∈ [p, q] satisfy ϕ(y) ≤ γ and h(y) = 0. If y 6≥ p′ then there
is i such that yi < p′i = qi − αi(qi − pi), i.e. yi = qi − α(qi − pi) with
α > αi. In view of (26), this implies that h(q − α(qi − pi)e

i)) < 0 and hence,
h(y) < 0), conflicting with h(y) = 0. Similarly, if y 6≤ q′ then there is i such
that yi > q′i = p′i+βi(qi−p′i), i.e. yi = p′i+β(qi−p′i) with β > βi and from (27)
it follows that either ϕ(p′+β(qi−p′i)e

i) > γ, (which implies that ϕ(y) > γ), or
h(p′ + β(qi− p′i)e

i > 0 (which implies that h(y) > 0, in either case conflicting
with y ∈ Bγ). Therefore, {y ∈ [p, q]| ϕ(y) ≤ γ, h(y) = 0} ⊂ [p′, q′].

Remark 5.1 It can easily be verified that the box [p′, q′] = redγ [p, q] still
satisfies ϕ(p′) ≤ γ, h(p′) ≤ 0, h(q′) ≥ 0.

Remark 5.2 When applying the above reduction procedures to problem
(OWE) note that in this problem (see (13), (14))

ϕ(y) = min{f(x)| x ∈ X, g(x) ≤ 0, y ≤ C(x)},
h(y) = min{t| yi − Ci(x) ≤ t, i = 1, . . . ,m, x ∈ X}.

5.2 Valid Bounds

Let M := [p, q], be a partition set which is supposed to have been reduced, so
that according to Remark 5.1:

ϕ(p) ≤ γ, h(p) ≤ 0, h(q) ≥ 0.

Let us now examine how to compute a lower bound β(M) for

min{ϕ(y)| y ∈ [p, q], h(y) = 0}.
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Since ϕ(y) are increasing, an obvious lower bound is ϕ(p). We will shortly see
that to ensure convergence of the BRB Algorithm, it suffices that the lower
bounds satisfy

β(M) ≥ ϕ((p). (28)

We shall refer to such a bound as a valid lower bound.

Define θ(y) = min{ϕ(y)− γ, h(y)},∆ = {y ∈ [p, q]| θ(y) ≤ 0}.
If θ(p) ≤ 0 ≤ h(p), then obviously p is an exact minimizer of ϕ(y) over the

feasible points in [p, q] at least as good as the current best, and can be used to
update the current best solution. Suppose therefore that θ(p) ≤ 0, h(p) < 0,
i.e. p ∈ ∆ \Ω.

For each y ∈ [p, q] such that h(y) < 0 let π(y) be the first point where the
line segment from y to q meets the lower boundary of Ω, i.e.

π(y) = y + λ(q − y), with
λ = max{α| h(y + α(q − y)) ≤ 0}. (29)

Obviously, h(π(y)) = 0.

Lemma 3. If z = π(p), zi = p+(zi−pi)e
i, i = 1, . . . ,m, and I = {i| zi ∈ ∆},

then a valid lower bound over M = [p, q] is

β(M) = min{ϕ(zi)| i ∈ I}
= min{f(x)| x ∈ D, C(x) ≥ zi, i ∈ I}.

Proof. Let Mi = [zi, q]. From the definition of z it is easily seen that h(u) <
0 ∀u ∈ [p, z), i.e. [p, q] ∩∆ ∩Ω ⊂ [p, q] \ [p, z). Noting that {u| p ≤ u < z} =
∩m

i=1{u| pi ≤ ui < zi}, we can write [p, q] \ [p, z) = [p, q] \ ∩m
i=1{u| ui < zi} =

∪i=1,...,m{u ∈ [p, q]| zi ≤ ui ≤ qi} = ∪m
i=1Mi. Thus, if I = {i| zi ∈ ∆} then

[p, q]∩∆∩Ω ⊂ ∪i∈IMi. Since ϕ(zi) ≤ min{ϕ(y)| y ∈Mi}, the result follows.

Remark 5.3 Each box Mi := [zi, q] can be reduced by the method presented
above. If [p′i, q′i] = red[zi, q], i = 1, . . . ,m, then without much extra effort,
we can have a more refined lower bound, namely

β(M) = min
i∈I

ϕ(p′i), I = {i| zi ∈ ∆}.

The above constructed points zi, i ∈ I, determine a set Z := ∪i∈I [z
i, q] con-

taining Bγ ∩ [p, q] := [p, q] ∩∆ ∩ Ω. Such a set Z is called a copolyblock (re-
verse polyblock) with vertex set zi, i ∈ I, see [24]. The above procedure thus
amounts to constructing a copolyblock Z ⊃ Bγ – which is possible because
ϕ(y) is increasing. To have a tighter lower bound, one can even construct a
sequence of copolyblocks Z1 ⊃ Z2, . . . , approximating the set Bγ ∩ [p, q] more
and more closely. For the details of this construction the interested reader is
referred to [24], or better, [29]. By using copolyblock approximations one could
compute a bound as tight as we wish. Since, however, the computation cost in-
creases rapidly with the accuracy requirement for copolyblock approximation,
a trade-off must be made, so practically just one approximating copolyblock
as in the above Lemma is used.
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5.3 Algorithm and convergence

We are now in a position to state the proposed algorithm for (Q).

Basic BRB Algorithm for (Q)
Step 0. Start with P1 = {M1},M1 = [a, b],R1 = ∅. If a current best
feasible solution (CBS) is available let CBV (current best value) denote
the value of f(x) at this point. Otherwise, set CBV = +∞. Set k = 1.
Step 1. For each box M ∈ Pk :

- Compute the γ-valid reduction redγM of M for γ = CBV ;
- Delete M if redγM = ∅;
- Replace M by redγM if redγM 6= ∅;
- If redγM = [p, q] then compute a valid lower bound β(M) for ϕ(y)

over the feasible solutions in M.
Step 2. Let P ′

k be the collection of boxes that results from Pk after com-
pletion of Step 1. From Rk remove all M ∈ Rk such that β(M) ≥ CBV
and let R′

k be the resulting collection. Let Mk = R′
k ∪ P ′

k.
Step 3. If Mk = ∅ then terminate: the problem is infeasible (if CBV =
+∞), or CBV is the optimal value and the feasible solution ȳ with
ϕ(ȳ) = CBV is an optimal solution (if CBV < +∞).

Otherwise, let Mk ∈ argmin{β(M)| M ∈Mk}.
Step 4. Divide Mk into two subboxes by the standard bisection. Let Pk+1

be the collection of these two subboxes of Mk.
Step 5. Let Rk+1 =Mk \ {Mk}. Increment k and return to Step 1.

Proposition 12. Whenever infinite, the Basic BRB Algorithm generates an
infinite filter of boxes {Mkl

} whose intersection yields a global optimal solu-
tion.

Proof. If the algorithm is infinite, it must generate an infinite filter of boxes
{Mkl

} and ∩∞l=1Mkl
= {y∗}. Since Mkl

= [pkl , qkl ] with h(pkl) ≤ 0 ≤ h(qkl),
and y∗ = lim pkl = lim qkl , it follows that h(y∗) ≤ 0 ≤ h(y∗), i.e. y∗ is a
feasible solution. Therefore, if the problem is infeasible, the algorithm must
stop at some iteration where no box remains for consideration, giving evidence
of infeasibility. Otherwise,

ϕ(pkl) ≤ β(Mkl
) ≤ ϕ(qkl),

whence liml→+∞ β(Mkl
) = ϕ(y∗). On the other hand, since Mkl

corresponds
to the minimum of β(M) among the current set of boxes, we have β(Mkl

) ≤
min{ϕ(y)| y ∈ [a, b] ∩Ω} and, consequently,

ϕ(y∗) ≤ min{ϕ(y)| y ∈ [a, b] ∩Ω}.
Since y∗ is feasible, it follows that y∗ is an optimal solution.

Remark 5.4 As said above, the problem (OE) can be approximated, as
closely as desired, by a problem (OWEε) with a suitable ε. Therefore, the
above Algorithm can be applied for solving (OE), by replacing C(x) with
Cε(x) defined by (19).
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6 Improvements for problems (OWE) and (OE)

In the special cases of problems (OWE) and (OE) the above algorithm can be
improved by using more efficient reduction, bounding and branching opera-
tions. Also alternative bounding methods can be developed by simultaneously
exploiting the monotonic and d.c. structures of the problem.

6.1 Improved Bounds when C is concave

Recall from (14) that the problem (Q) equivalent to (OWE) is

min{ϕ(y)| y ∈ Ω}

where Ω = {y ∈ [a, b] | h(y) ≥ 0}, h(y) = min{t| yi − Ci(x) ≤ t, i =
1, . . . ,m, x ∈ X} (see (13), and

ϕ(y) = min{f(x)| x ∈ X, g(x) ≤ 0, C(x) ≥ y}.

Lemma 4. If the functions Ci(x), i = 1, . . . ,m, are concave, the set Γ =
{y ∈ [a, b] | h(y) ≤ 0} is convex.

Proof. By Proposition 7, Γ = {y ∈ [a, b] | y ≤ C(x) for some x ∈ X}. Let
y, y′ ∈ Γ and 0 ≤ α ≤ 1. Then y ≤ C(x), y′ ≤ C(x′), with x, x′ ∈ X
and αy + (1 − α)y′ ≤ αC(x) + (1 − α)C(x′) ≤ C(αx + (1 − α)x′), where
αx + (1− α)x′ ∈ X because X is assumed to be convex.

The convexity of Γ permits a simple method for computing a tight lower
bound for the minimum of ϕ(y) over the feasible solutions still of interest in
[p, q].

For each i = 1, . . . ,m let yi be the last point of Γ on the line segment
joining p to pi := p + (qi − pi)e

i, i.e. yi = p + λi(qi − pi)e
i with

λi = max{α| p + α(qi − pi)e
i) ∈ Γ, 0 ≤ αi ≤ 1}.

Proposition 13. If the functions Ci(x), i = 1, . . . ,m, are concave then a
lower bound for ϕ(y) over the feasible portion in M = [p, q] is

β(M) = min{f(x)| x ∈ X, g(x) ≤ 0, C(x) ≥ p,
∑m

i=1(Ci(x)− pi)/(yi
i − pi) ≥ 1}. (30)

Proof. First observe that, by convexity of Γ, the simplex S = [y1, . . . , ym]
satisfies [p, q] ∩ ∂+Γ ⊂ S + Rm

+ , and since ϕ(y) is increasing, we have ϕ(y) ≤
ϕ(π(y)) ∀y ∈ S, where π(y) = y+λ(q−y) with λ = max{α| h(y+α(q−y)) ≤
0}, so that h(π(y)) = 0. Hence,
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β(M) := min{ϕ(y)| y ∈ S} (31)

≤ min{ϕ(y)| y ∈ [p, q] ∩ ∂+Γ}
≤ min{ϕ(y)| y ∈ [p, q], h(y) = 0},

so (31) gives a valid lower bound. On the other hand, letting

E = {(x, y)|x ∈ X, g(x) ≥ 0, C(x) ≥ y, y ∈ S},
Ey = {x ∈ X| g(x) ≤ 0, C(x) ≥ y} = {x| (x, y) ∈ E}

for every y ∈ S, we can write

min
y∈S

ϕ(y)

= min
y∈S

min{f(x)| x ∈ Ey}

= min{f(x)| (x, y) ∈ E}
= min{f(x)| x ∈ X, g(x) ≤ 0, C(x) ≥ y, y ∈ S},

Since S = {y ≥ p| ∑m
i=1(yi − pi)/(yi

i − pi) = 1}, (30) follows.

Remark 6.1 In particular, when X is a polytope, C is a linear mapping,
g(x), f(x) are affine functions, as e.g. in problems (OWE) with linear objective
and criteria, then (R(y)) as well as (30) are linear programs. Also note that
the linear programs (R(y)) for different y differ only by the right-hand side of
the linear constraints, and the linear programs (30) for different partition sets
M differ only by the last constraint and the right-hand side of the constraints
C(x) ≥ p. Taking account of these facts, reoptimization techniques can be
used to save time for solving these linear programs.

6.2 Adaptive Subdivision Rule

Let yM be an optimal solution of the problem (30) and zM = π(yM ). If
it so happens that yM = zM , then β(M) = min{ϕ(y)| y ∈ [p, q] ∩ ∂+Γ}.
This motivates a usually more efficient subdivision method than the standard
bisection, which is often referred to as an adaptive bisection (see [23]) and
proceeds according to the following rule.

Determine the index i ∈ {1, . . . ,m} such that

|yM
i − zM

i | = max
j=1,...,m

|yM
j − zM

j |,

and divide M by a hyperplane parallel to the i-th coordinate axis, passing
through the middle of the line segment joining yM to zM .

With this subdivision rule the convergence of the algorithm is still ensured,
because if Mk is a filter of partition sets generated by the algorithm (see the
proof of Proposition 12), then, as proved in [23]), yMk − zMk → 0, hence
y∗ = min yMk will yield an optimal solution. Experience has shown that the
adaptive subdivision rule often helps to reduce the gap ‖yMk − zMk)‖ faster
than the standard bisection rule.
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6.3 Special Reduction-Deletion Rule for (OE)

As we saw in Section 3, the problem (OE) can be converted to the form (Q̃):

min{ϕ(y)| h(y) ≥ 0, ρ(y) = 0}, (32)

which differs from problem (Q) by the presence of the additional constraint
ρ(y) = 0.

As was said in Section 4, one way to deal with this additional constraint
is to replace the mapping C by a slightly perturbed mapping Cε, thus trans-
forming (OE) into an (OWEε) approximating (OE); then the problem (Q)
corresponding to (OWEε) can be solved by the Basic BRB Algorithm.

Alternatively, to solve (32), i.e. (Q̃), the Basic BRB Algorithm can be
applied with the following precautions:

(i) A “feasible solution” is an y ∈ [a, b] satisfying ρ(y) = 0, i.e. a point of
ext+Γ. The current best solution is the best among all so far known feasible
solutions.

(ii) In Step 1, after completion of the reduction operation described in Sub-
section 5.1, a special supplementary reduction-deletion operation is needed,
to identify and to fathom any box [p, q] that contains no point of ext+Γ. This
supplementary operation will ensure that every infinite nested sequence of
partition sets {[pkν , qkν ]} collapses to a point corresponding to an efficient
point.

Recall that Cε
i = Ci(x) + ε

∑m
i=1 Ci(x), i = 1, . . . ,m, and let hε(y), Γ ε be

defined as in (13) and (11), resp., with Cε(x) replacing C(x). Since C(x) ≥
a ∈ Rm

+ ∀x ∈ X, we have C(x) ≤ Cε(x) ∀x ∈ X, hence Γ ⊂ Γ ε.

Let [p, q] be a box which has been reduced according to the rules described
in Subsection 5.1, so that p ∈ Γ, q /∈ Γ. Since p ∈ Γ we have ρ(p) ≤ 0 where
ρ(y) is defined by (16).

Supplementary reduction-deletion rule
Fathom [p, q] if either of the following events occurs:
a) ρ(q) ≤ 0 (so that ρ(y) ≤ 0 ∀y ∈ Γ ∩ [p, q] ⊃ ∂+Γ ∩ [p, q]); if ρ(q) = 0

then q gives an efficient point and can be used to update the current best.
b) For some chosen small enough ε > 0

min{t| x ∈ X, qi − Ci(x)− ε
m
∑

i=1

Ci(x) ≤ t, i = 1, . . . ,m} ≤ 0

(In that case q ∈ Γ ε, see (20), so the box [p, q) contains no point of ext+(Γ ε),
and hence no point of ext+Γ ).

Proposition 14. If the Basic BRB Algorithm is applied with precautions
(i),(ii), then, whenever infinite, it generates an infinite filter of boxes whose
intersection is a global optimal solution y∗ of (Q̃), corresponding to an optimal
solution x∗ of (OE).
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Proof. Because of precautions (i) and (ii) the box chosen for further partition-
ing in each iteration contains either a point of ext+Γ or a point of ext+Γ ε.
Therefore, any infinite filter of boxes generated by the Algorithm either col-
lapses to a point y∗ ∈ ext+Γ, (yielding an x∗ ∈ XE) or collapses to a point
y∗ ∈ ext+Γ ε (yielding x∗ ∈ Xε

WE ⊂ XE).

6.4 Alternative Solution Methods

In the case of the constrained optimization over the weakly efficient set, when
Ci(x), i = 1, . . . ,m, are concave, while f(x), g(x) are convex, each problem
(R(y)) is a convex program. Since ϕ(y) is a convex function the problem (Q)
thus reduces to a convex minimization problem under the complement of a
convex set Γ :

min{ϕ(y)| y ∈ [a, b] ∩ cl(Rm
+ \ Γ )}. (33)

Therefore, the problem can be treated by d.c. optimization methods as devel-
oped e.g. in [23].

In fact, the d.c. approach is quite common for solving (OWE) (and (OE))
when X is a polytope, while g(x) ≡ 0, f(x), Ci(x) are linear, convex or con-
cave. In [20] (see also [12]), by noting that, under the stated assumptions,
a point x ∈ XWE can be characterized by a vector λ ∈ Rm

+ such that
∑m

i=1 λi = 1 and x is a maximizer of the problem

max{
m
∑

i=1

λiCi(x
′)| x′ ∈ X}, (34)

the problem (OWE) can be formulated as

min
x,λ
{f(x)| x ∈ X,λ ∈ Rm

+ ,
m
∑

i=1

λi = 1,

〈λ,C(x)〉 ≥ max
x′∈X
〈λ,C(x′)〉}. (35)

In view of the compactness of X and the continuity of C(x), without loss of
generality we can assume that C(x) > 0 ∀x ∈ X, so that maxx′∈X〈λ,C(x′)〉 >
0. The problem can then be rewritten as

min
x,λ
{f(x)| x ∈ X,λ ∈ Rm

+ , 〈λ,C(x)〉 ≥ 1 = max
x′∈X
〈λ,C(x′)〉},

which, in turn, is equivalent to

min{Φ(λ)| λ ∈ Rm
+ , max

x′∈X
〈λ,C(x′)〉 ≤ 1}, (36)

with
Φ(λ) = min{f(x)| x ∈ X, 〈λ,C(x)〉 ≥ 1}.
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Since, as can easily be verified, the function Φ(λ) is quasiconcave, while
λ 7→ maxx∈X〈λ,C(x)〉 is convex, the problem (36) is a quasiconcave mini-
mization over a convex set. In [20] a cutting plane method has been developed
for solving this problem and hence, the problem (OWE). As for (OE), these
authors propose to approximate it by an (OWEε) for a sufficiently small value
of ε > 0 (see Section 4).

In [13] an alternative d.c. formulation of (OWE) and (OE) is used which
is closely related to the formulation (36) . Specifically, setting h(λ, x) :=
maxx′∈X〈λ,C(x′ − x)〉, the problem (35) can be reformulated as

min{f(x)| x ∈ X, h(λ, x) ≤ 0, λ ∈ Rm
+ ,

m
∑

i=1

λi = 1},

which, by setting

Ψ(λ) = min{f(x)| x ∈ X, h(λ, x) ≤ 0}, Λ = {λ ∈ Rm
+ |

m
∑

i=1

λ = 1}

is equivalent to
min{Ψ(λ)| λ ∈ Λ}. (37)

Furthermore, it follows from a known result ( [18]) that there exists δ ∈
(0, 1/m) such that x ∈ XE if and only if x solves (34) for some λ ∈ Rm

+

satisfying λi ≥ δ, i = 1, . . . ,m. Therefore, setting Λδ = {λ ∈ Rm
+ | λi ≥

δ,
∑m

i=1 λi = 1}, we can also write (OE) (with linear C) as

min{Ψ(λ)| λ ∈ Λδ}. (38)

When f(x) is a concave function as assumed in [13], the value of Ψ(λ) is de-
termined by solving a concave minimization under a convex constraint. In the
just cited paper this concave minimization is rewritten as a d.c. optimization
problem

Ψ(λ) = min{f(x)− th(λ, x)| x ∈ X}
with t > 0 being a suitable penalty parameter. Thus, the problem reduces to
(37) or (38), with Ψ(λ) computed by solving a d.c. optimization problem.

Also in the case Ci(x) = (Aix + αi)/(Bix + βi) (linear-fractional multi-
criteria) with Bix + βi > 0 ∀x ∈ X, that was studied in [15], [16], [17], we
have

x ∈ XE ⇔ (∃λ > 0) x ∈ argmax{〈λ,C(x′)〉| x′ ∈ X}
and it is plain to check that the latter condition reduces to

x ∈ argmax{
m
∑

i=1

λi[Bix
′ + αi)Ai − (Aix

′ + βi)Bi]x
′| x′ ∈ X}
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([15]). Based on this property, the problem (OE) with linear-fractional criteria
can be reformulated as

minx,λ f(x), s.t. x ∈ X,λ > 0,

maxx′∈X

∑m
i=1 λi[Bix + αi)Ai − (Aix + βi)Bi](x− x′) ≤ 0

No algorithm is given in [15], [16], while in [17] the just formulated problem
is in turn converted to a bilinear program in x, λ and solved by a method
that may require computing a large number of vertices of X (assuming, as
previously, that X is a polytope and f(x) is linear).

Other methods for solving (OWE) and (OE) can be considered as special-
izations of global optimization methods developed over the last three decades
for problems of convex minimization under complementary convex constraints
of the form (33):

min{ϕ(y)| h(y) ≥ 0}
(see e.g. [12] or [23]). In particular, the conical algorithm in [21]) for (OE)
is just a specialization of the conical branch and bound method for these
problems. Observe in passing, however, that, as it stands, the algorithm of
Thoai, devised for solving (OE), may converge to a weakly efficient but not
efficient point which is, consequently, neither an optimal solution of (OE)
nor even an optimal solution of (OWE). In fact, the partition set chosen for
subdivision in a current iteration of this algorithm is not guaranteed to contain
a feasible solution, so that the intersection of a nested sequence of partition
sets is not guaranteed to give an efficient point.

It should be further noticed that, since the function Φ(λ) is decreasing
while the set Λ (or Λδ) is a normal compact subset of Rm

+ , the problem (36)
is also a monotonic optimization problem and, consequently, can be solved
by the same method as that presented above for problem (Q). Thus, under
usual assumptions, there are several alternative d.c. formulations of the prob-
lems (OWE), (OE), which could also be treated as monotonic optimization
problems. However, the monotonic approach, aside from requiring much less
restrictive assumptions and being applicable to a wider range of problems,
seems to be more flexible and more easily implementable.

In this connection, it is useful also to mention that in certain cases the
best results may be obtained by a hybrid approach combining monotonic
with d.c. methods. In particular, local optimization methods may be useful
for improving the bounds and accelerating the convergence. Specifically, recall
from Proposition 7 that Γ = {y| h(y) ≤ 0}, where

h(y) = min{t| yi − Ci(x) ≤ t, i = 1, . . . ,m, x ∈ X}

is a convex increasing function (assuming C(x) to be concave). Given a feasible
solution ȳ ∈ ∂+Γ (the current best) one can take a vector w ∈ ∂h(y) and
compute a minimizer of ϕ(y) over the polytope {y ∈ [p, q]| 〈w, y − ȳ〉 ≥ 0} ⊂
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{y ∈ [p, q]| h(y) ≥ h(ȳ) = 0} ⊂ (p + Rm
+ ) \ Γ. If y′ is such a minimizer then

the intersection ŷ of ∂+Γ with the line segment from p to y′ satisfies h(ŷ) = 0
and ŷ ≤ y′, hence ϕ(ŷ) ≤ ϕ(y′) ≤ ϕ(ȳ) (in most cases ϕ(ŷ) < ϕ(ȳ), otherwise
ȳ is already a local minimizer of ϕ(y) on ∂+Γ ). This procedure requires the
knowledge of a vector w ∈ ∂h(ȳ). But is easy to see that one can always take
w to be an optimal solution of the dual to the linear program defining h(ȳ).

Indeed, since h(ȳ) = minx∈X,t{t− 〈w, t + C(x)− ȳ〉}, one can write

h(y)− h(ȳ)

≥ min
x∈X,t

{t− 〈w, t + C(x)− y)〉 − min
x∈X,t

{t− 〈w, t + C(x)− ȳ〉}

≥ 〈w, y〉 − 〈w, ȳ〉 = 〈w, y − ȳ〉 ∀y
proving that w ∈ ∂h(ȳ). Also 〈w, y − ȳ〉 ≥ 0⇒ h(y) ≥ h(ȳ) = 0.

7 Problems With a Composite Monotonic Objective
Function

A class of problems closely related to the above problem (P) is constituted by
problems with a composite monotonic objective function, i.e. problems of the
form

min{F (C(x))| x ∈ D} (R)

where F (y) is an increasing function, C : Rn → Rm
+ a continuous mapping

and D a polytope in Rn.
This general class includes many nonconvex optimization problems such

as multiplicative programming and related problems, extensively studied over
the last fifteen years (see [12], see also [4], [5]). A unified approach to a large
subclass of this class that includes linear-fractional programming problems
has also been developed in [10] in the framework of monotonic optimization.

Clearly the problem (R) can be rewritten as

min
x,y
{F (y)| y ≥ C(x), x ∈ D, y ∈ Rm

+}

and by setting Ω = {y ∈ Rm
+ | y ≥ C(x), x ∈ D} it can be reduced to a

problem in the image space of C, i.e. of much less dimension, namely

min{F (y)| y ∈ Ω}. (39)

Since F (y) is an increasing function while Ω is obviously a conormal set in
Rm

+ the problem (39) is a standard monotonic optimization problem in y,
tractable by well developed methods.

In [10] the problem (39) has been solved by the copolyblock approxima-
tion method initially proposed in [24]. Although the computational results
with this copolyblock approximation algorithm as obtained in [10] are quite
satisfactory on problems with m ≤ 7, they should be significantly improved,
if the BRB algorithm in [29] were used.
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8 Illustrative Examples and Computational Results

To show the practicability of the proposed method we present some numerical
examples together with the computational results, focussing on the problems
(OWE) and (OE) with convex objective function f(x) and/or linear-fractional
criteria. The algorithm was coded in C++ and run on a PC Pentium IV
2.53GHz, RAM 256Mb DDR, with linear subproblems solved by the LP soft-
ware CPLEX 8.0. In all cases the algorithm is terminated when η-optimality
is achieved, i.e. when the current best lower bound differs from the current
best upper bound by no more than η, where η = 0.01 is the tolerance.

1. Problem (OWE) with linear input functions.

Example Solve

min{f(x)| x ∈ X, g(x) ≤ 0, x ∈ XWE

with following data:

f(x) = 〈c, x〉, c = (4,−8,−3,−1,−7, 0,−6,−2, 9,−3),

X = {x ∈ R10
+ | A1x ≤ b1, A2x ≥ b2}, where

A1 =













7 1 −3 −7 0 9 2 1 −5 1
−5 8 −1 7 5 0 −1 −3 4 0

2 −1 0 −2 3 −2 2 −5 −1 −3
−1 −4 2 9 −4 3 −3 4 0 −2
−3 −1 0 8 −3 −1 −2 −2 5 −5













b1 = (−66, 150,−81, 79, 53)

A2 =

























−2 9 −1 −2 2 1 4 −1 5 2
−2 3 2 4 5 4 1 −9 −2 −1
−4 −8 1 1 −5 3 −2 0 −2 9

2 7 −1 −2 −5 −9 4 −1 −2 0
2 3 −1 −1 4 3 −1 0 0 −6
−6 0 0 0 −4 3 −2 −2 4 −6

2 2 3 −5 6 −4 0 0 −1 −4
−1 4 4 6 0 3 −4 2 −4 −1

























b2 = (126, 12,−52,−23, 2,−23,−28, 90)

g(x) := Gx ≤ d where

G =

[

−1 1 2 4 −4 4 −1 −4 −6 3
4 9 0 −1 −2 1 −6 5 0 0

]

d = (−14, 89)

C =





5 1 7 1 4 9 0 −4 −3 7
−1 −2 −5 −4 −1 −6 −4 0 −3 0
−3 −3 0 4 0 1 −2 1 4 0
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C(X) ⊂ [a, b] with

a = ((0, 0, 0, 0, 0, 0, 0, 0, 0, 0), b = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10)

Results of computation
Optimal solution:
x∗ = (0, 8.741312, 8.953411, 9.600323, 3.248449, 3.916472,

6.214436, 9.402384, 10, 4.033163)
(found at iteration 78 and confirmed at iteration 316)
Optimal value: -107.321065
Computational time: 1.406 sec.
Maximal number of nodes generated: 32

2. Problem (OWE) with convex objective function.

Example Solve (OWE) with following data:

f(x) = 〈c, x〉+ 〈x,Qx〉 where c = (6, 0,−3,−2,−6, 3,−4,−4, 3, 1)

Q = diag[1, 4, 3, 3, 5, 7, 8, 7, 8, 8]

g(x) ≡ 0.

X = {x ∈ R10| A1x ≤ b1, A2x ≥ b2, A3x = b3} where

A1 =





0 3 2 2 6 −1 2 2 4 −3
−4 −2 −8 1 3 3 4 −2 −7 −4
−2 −3 0 0 −8 −7 −2 1 −3 4





b1 = (139,−94,−140)

A2 =

[

3 4 0 2 3 0 1 3 −6 −4
4 −6 −5 2 −4 3 −2 4 −7 −2

]

b2 = (11,−121)

A3 = [6, 7,−4,−6,−4,−1, 2, 5,−7, 5] b3 = −92

C =













2 0 8 4 −1 5 −8 −6 −5 −7
6 0 1 −4 5 2 −1 5 −4 3
−9 −4 4 4 1 −5 0 −3 −5 −3
−5 6 −1 −6 −2 −8 2 −6 −8 −5
−3 4 1 −4 −8 6 −7 3 3 0













C(X) ⊂ [a, b] with

a = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), b = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10).

Results of computation:
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Optimal solution:
x∗ = (4.954651, 1.816118, 10, 2.442424, 10, 4.198649, 0, 0, 5.083933, 0)
(found at iteration 11 and confirmed at iteration 11)

Optimal value: 1148.500433
Computational time: 0.156 sec.
Maximal number of nodes: 8

3. Problem (OE) with convex objective function

Example Solve

min{f(x)| x ∈ X, g(x) ≤ 0, x ∈ XWE}

with f(x), g(x), X,C(x) as in the previous example.

Results of computation:
Optimal solution:

x∗ = (5.343288, 1.482599, 10, 2.803773, 9.260545, 5.081512, 0, 0, 5.070228, 0)
(found at iteration 39 and confirmed at iteration 39)

Optimal value: 1147.469164
Computational time: 0.39 sec.
Maximal number of nodes: 15

4. Problem (OE) with linear-fractional multicriteria

Example (taken from [17]) Solve

min{f(x)| x ∈ X, x ∈ XE}

with following data:

f(x) = −x1 − x2

X = {x ∈ R2
+| Ax ≤ b} where

A =









1 −2
−1 −2
−1 1

1 0









, b = (2,−2, 1, 6)T

C1(x) =
x1

x1 + x2
, C2(x) =

−x1 + 6

x1 − x2 + 3

Results of computation:
Optimal solution:
x∗ = (1.991962, 2.991962) (found at iteration 16 and confirmed at iteration

16)
Optimal value: -4.983923
Computational time: 0.484 sec.
Maximal number of nodes: 6
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5. Computational Experiments
The algorithm was tested on a number of problem instances with varying

n and m. Tables 1 and 2 report the computational results for the problems
(OWE) and (OE), resp., with convex quadratic objective function. Table 3
reports the computational results for the problem (OE) with linear-fractional
criteria. In all the test problems g(x) is taken to be ≡ 0.

Table 1
Prob. n m Iteration Nodes Time (in seconds)
1-10 10 3 4483 441 38.311
11-20 20 3 26823 2185 385.647
21-30 30 3 29782 2074 1147.655
31-40 10 4 11679 1220 114.717
41-50 20 4 34783 2885 908.922

Table 2
Prob. n m Iteration Nodes Time (in seconds)
1-10 10 3 2209 208 15.742
11-20 20 3 25960 2045 309.975
21-30 30 3 18340 1841 646.466
31-40 10 4 10880 1205 84.864
41-50 20 4 29043 2960 471.725

Table 3
Prob. n m Iteration Nodes Time (in seconds)
1-5 10 4 507 59 40.159
6-10 15 3 2644 622 320.375
11-15 15 4 14790 969 1781.613
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On a Local Search for Reverse Convex
Problems
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Summary. In this paper we propose two variants of Local Search Method for re-
verse convex problems with the first based on well-known theorem of H. Tuy as well
as on Linearization Principle. The second variant is due to the idea of J. Rosen. Also
we demonstrate the practical effectiveness of the proposed methods by a computa-
tional testing.

Key words: Nonconvex optimization, reverse convex problem, local search,
computational testing.

1 Introduction

The present situation in Continuous Nonconvex Optimization may be viewed
as dominated by methods transferred from other sciences [1, 3], as Discrete
Optimization (Branch&Bound, cuts methods, outside and inside approxima-
tions, vertex enumeration and so on), Physics, Chemistry (simulated annealing
methods), Biology (genetic and ant colony algorithms) etc.

On the other hand the classical method [11] of convex optimization have
been thrown aside because of its inefficiency [1, 6]. As well-known the conspicu-
ous limitation of convex optimization methods applied to nonconvex problems
is their ability of being trapped at a local extremum or even a critical point
depending on a starting point [1, 3]. So, the classical apparatus shows itself
inoperative for new problems arising from practice.

In such a situation it seems very probable to create an approach for finding
just a global solution to nonconvex problems in particular to Reverse Convex
Problem (RCP) on one side connected with Convex Optimization Theory and
secondly using the methods of Convex Optimization.

Nevertheless we ventured to propose such an approach [12] and even to
advance the following principles of Nonconvex Optimization.
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I. The linearization of the basic (genetic) nonconvexity of a problem of
interest and consequently a reducing of the problem to a family of (partially)
linearized problems.

II. The application of convex optimization methods for solving the lin-
earized problems and, as a consequence, within special local search methods.

III. Construction of “good” (pertinent) approximations (resolving sets) of
level surfaces and epigraph boundaries of convex functions.

Obviously, the first and the second are rather known. The deepness and
effectiveness of the third may be observed in [12, 23].

Developing the principles we get the solving methodology for nonconvex
problems which can be represented as follows.

1. Exact classification of a problem under study.
2. Application of special (for a given class of problems, for instance, RCP)

local search methods.
3. Applying the special conceptual global search methods (strategies).
4. Using the experience of similar nonconvex problems solving to construct

pertinent approximations of levels surfaces of corresponding convex func-
tions.

5. Application of convex optimization methods for solving linearized prob-
lems and within special local search methods.

It is easy to note that this approach lifts Classical Convex Optimization up
a new altitude, where the effectiveness and the fastness of the methods be-
come of paramount importance not only for Convex Optimization, but for
Nonconvex, in particular, for RCP, that we will see below.

Our computational experience suggests that if you follow the methodology
above you have more chance to reach a global solution of a nonconvex problem
of a big size (≥ 1000) than applying the Branch&Bound or cuts methods.

In one paper it is difficult to demonstrate the power of the principles
and the methodology. That is why we decides to focus only on advantages
of Principle I — Linearization applied for Local Search Problem. In order
to do it we propose two variants of Local Search Method. The first is based
on well-known theorem of H. Tuy [1] as well as on Linearization Principle.
The second variant is due to the idea of J. Rosen [10], we have only slightly
modified the method adding the procedure of free decent on the constraint
g = 0. Finally we demonstrate the practical effectiveness of the proposed
methods by a computational testing and propose to unify two methods into
a combination.

Before this we recall a few facts from Reverse Convex Theory.

2 Some features of RCP

Let us consider the problem
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h(x) ↓ min, x ∈ S, g(x) ≥ 0, (P )

where h is a continuous function and the function g is a convex function on
IRn, S ∈ IRn.

Denote the feasible set of the problem (P ) by D

D := {x ∈ S | g(x) ≥ 0} 6= ∅. (1)

Further, suppose

h∗ := inf(h,D)
4
= inf

x
{h(x) | x ∈ S, g(x) ≥ 0} > −∞. (2)

It can be easily seen that the nonconvexity of (P ) is generated by the
reverse convex constraints g ≥ 0 defining the complement of convex open set
{x ∈ IRn | g(x) < 0}. That is why we suppose this constraint to be active at
any solution of (P ) (Sol(P )). Otherwise, by solving the relaxed problem

(PW ) : h(x) ↓ min, x ∈ S, (3)

(which is simpler than (P )) one can simultaneously find a solution to (P ).
The regularity conditions (when g ≥ 0 is substantial) [1, 6] are rather

closed, although may be given by different ways. For instance,

(G) : There is no any solution x∗ ∈ D
to (P ) such that g(x∗) > 0.

}

(4)

The latter is equivalent to

(G′) : Sol(P ) ∩ {x ∈ IRn | g(x) > 0} = ∅, (2.4′)

where Sol(P ) is the solution set of the problem (P )
Sol(P ) = Argmin(P ).

One can express the regularity condition with the help of the optimal value
function for problem (P ) and the relaxed problem (PW )–(3)

V(PW ) := inf
x
{h(x) | x ∈ S} < V(P )

4
= inf

x
{h(x) | x ∈ S, g(x) ≥ 0}. (5)

One of corollaries of the last condition is the fact that by solving the
relaxed problem (PW )–(3), say, with convex h and S it is possible to perform
a descent to the constraint g = 0 by means, for instance, one of the classical
methods of convex optimization. As a consequence, one has

Sol(P ) ⊂ {x ∈ IRn | g(x) = 0}.

The following result is one of the fundamental for RCP theory. In addition
this theorem establishes a relation between Problem (P ) and the problem of
convex maximization [1, 4, 12].
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Theorem 1. (H. Tuy [1, 2]) Let us suppose the assumption (G)–(4) to be
fulfilled, and a point z to be a solution to (P ). Then

max
x
{g(x) | x ∈ S, h(x) ≤ h(z)} = 0. (6)

If the following assumption takes place

(H1) : ∀y ∈ S : g(y) = 0, ∃ε > 0,
∃u ∈ S ∩B(y, ε) : g(u) > 0;

}

(7)

then the condition (6) becomes sufficient for z to be a global solution to (P ).

According to this result, instead of solving the Problem (P ) one can con-
sider the convex maximization problem

(Qβ) : g(x) ↑ max, x ∈ S, h(x) ≤ β. (8)

If one got that the value of (Qβ)

V (β) := max
x
{g(x) | x ∈ S, h(x) ≤ β}

with β = h(z) is equal to zero, then z ∈ Sol(P ).
Theorem of H. Tuy generated a tendency in Solving Methods Theory for

RCP leading to a reducing Problem (P ) to the dual problem (Qβ). Let us note
two properties of such a reducing. First, the basic (generic) nonconvexity of
the Problem (P ) has not been dissipated. It stays in the goal function of
(Qβ)–(8) so that even with convex h and S the problem (8) is nonconvex.
Second, it is not clear how to choose the parameter β.

Finally, the question is obvious: is it possible to apply convex optimization
methods to solve (8)? It will be show below, that there exists another way to
solve the Problem (P ) [12] in particular, to organize an effective local search
process.

3 Local search methods

Let us suppose the function h and the set S to be convex and, besides, the
following regularity condition to be fulfilled (cf. (5))

(H0) : ∃v ∈ S, h(v) < h∗
4
= V(P ), g(v) < 0. (9)

Under this hypothesis we propose a special local search method consisting
of two parts. The first procedure begins at a feasible point y ∈ S, g(y) ≥ 0,
and constructs a point x(y) ∈ S, such that

g(x(y)) = 0, h(x(y)) ≤ h(y).
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The second procedure consists in the consecutive solution of the Linearized
problems:

(LQ(u, β)) : 〈∇g(u), x〉 ↑ max,
x ∈ S, h(x) ≤ β;

}

(10)

where the parameters u and β will be defined below.
It can be readily seen, that the linearized problems (LQ(u, β)) are con-

vex. So, corresponding convex optimization method can be applied to get an
approximate global solution to (10).

Now let us move to a more detailed description of the calculation process.
Procedure 1. [12, 20] Let us given a point y ∈ S, g(y) ≥ 0. If g(y) = 0,

we set x(y) = y. In the case g(y) > 0, there exists λ ∈]0, 1[ such that g(xλ) = 0,
where xλ = λv + (1− λ)y, since g(y) > 0 > g(v). due to (H0)–(9).

In addition, because of the convexity of h(·) one has

h(xλ) ≤ λh(v) + (1− λ)h(y) < λh∗ + (1− λ)h(y) ≤ h(y). (11)

That is why
h(x(y)) < h(y), (12)

which is what we wanted. Usually one calls Procedure 1 “free descent” (free
from the constraint g(x) ≥ 0).

Procedure 2. This starts at a feasible point x̃ ∈ S, g(x̃) = 0, and
constructs a sequence {ur} such that (r = 0, 1, 2, . . .)

ur ∈ S, g(ur) ≥ 0, h(ur) ≤ β, (13)

where β := h(x̃), u0 := x̃.
The sequence {ur} is constructed as follows. If it is given a point ur, r ≥ 0,

verifying (13), then the next point ur+1 is constructed as an approximative
solution to the linearized problem (LQ(ur, β)), so that the following inequality
takes place

〈∇g(ur), ur+1〉+ δr ≥ sup
x
{〈∇g(ur), x〉 | x ∈ S, h(x) ≤ β}, (14)

where a number consiquence {δr} is such that

δr > 0, r = 0, 1, 2, . . . ,
∞
∑

r=1

δr < +∞. (15)

Theorem 2. [12] Let us suppose that the optimal value of the dual problem:

(Qγ) : g(x) ↑ max, x ∈ S, h(x) ≤ γ, (16)

is finite for some γ ≥ β:

V(Qγ) := sup
x
{g(x) | x ∈ S, h(x) ≤ γ} < +∞. (17)
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In addition, the function g(·) is convex and continuously differentiable on a
open domain Ω containing the set

S ∪ {x ∈ IRn | g(x) = 0}. (18)

i) Then the sequence {ur} generated by Procedure 2 verifies the condition

lim
r→∞

[sup
x
{〈∇g(ur), x− ur〉 | x ∈ S, h(x) ≤ β}] = 0. (19)

ii) For every cluster point u∗ of the sequence {ur} the following conditions
holds:

〈∇g(u∗), x− u∗〉 ≤ 0 ∀x ∈ S : h(x) ≤ β, (20)

g(u∗) ≥ 0. (21)

iii) If S is closed, then a cluster point u∗ turns out to be normally critical
(stationary) to the problem (Qβ).

Now let us show how to construct the point y(x̃) with the help of the
sequence {ur}. If it is given numbers ε > 0 and r ≥ 0. and the inequalities
take place δr ≤ ε/2,

〈∇g(ur), ur+1 − ur〉 ≤ ε/2, (22)

then we set y = y(x̃, ε) := ur. It can be shown [12] that the point y verifies
the condition

sup
x
{〈∇g(y), x− y〉 | x ∈ S, h(x) ≤ β} ≤ ε, (23)

i.e. y turns out to be an ε-solution to the linearized problem (LQ(y, β))–(10)
where β = h(x̃).

Let us now unify the procedures 1 and 2 into one method. To do it suppose
given a feasible point x0 ∈ S, g(x0) ≥ 0, and also number sequences {δr}
and {εs} verifying (15) and

εs > 0, s = 0, 1, 2, . . . , εs ↓ 0 (s→ +∞).

Special Local Search Method (SLSM).
Step 0. Sets := 0, xs := x0, βs := h(xs).
Step 1. (Procedure 2) Beginning at the point xs, construct a point ys =
y(xs, εs):

ys ∈ S, g(ys) ≥ 0, h(ys) ≤ βs,

which is εs-solution to linearized problem (LQ(ys, βs)), i.e.

〈∇g(ys), x− ys〉 ≤ εs ∀x ∈ S : h(x) ≤ βs.

Step 2. (Stopping criterion) If g(ys) ≤ 0, STOP.
Step 3. (Procedure 1) With the help of the point ys construct
u := x(ys) such that
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u ∈ S, g(u) = 0, h(u) < h(ys) ≤ βs.

Step 4. Set s := s + 1, xs := u, βs := h(u) and loop to Step 1.

It is easy to see [12] that SLSM described above
(a) either is finite with N iterations, g(yN ) = 0;
(b) or generates two sequences {xs} and {ys} with the properties

xs ∈ S, g(xs) = 0, ys ∈ S, g(ys) > 0, (24)

βs+1 := h(xs+1) < h(ys) ≤ βs := h(xs). (25)

Besides, the following equalities hold

β∗ := lim
s→∞

βs = lim
s→∞

h(ys). (26)

Theorem 3. Let us given a convex function h(·) and a convex set S. In ad-
dition, suppose the set F0 = {x ∈ S | h(x) ≤ h(x0)} to be bounded and the
regularity condition (H0)–(9) to be fulfilled.

Then SLSM
(a) either (in the finite case) obtains a point yN ∈ S, g(yN ) = 0, that is

an εN -solution to linearized problem (LQ(yN , βN )) where N is the number of
the stopping iteration;

(b) or (in general case) in addition to the properties (24)–(26) the se-
quences {xs} and {ys} verify the conditions:

0 = g(xs) = lim
s→∞

g(ys), (27)

x∗ = lim
s→∞

xs = lim
s→∞

ys, (28)

with a point x∗ ∈ IRn, g(x∗) = 0.
Besides, the point x∗ turns out to be a solution to linearized problem

(LQ(x∗, β∗)):

〈∇g(x∗), x− x∗〉 ≤ 0 ∀x ∈ S, h(x) ≤ β∗, (29)

and a normal stationary to the dual problem (Q(β∗)).

Remark. If one changes the stopping criterion of SLSM
g(ys) ≤ 0 for another one more realistic and consisting, say, in simultane-
ous fulfilling of the three inequalities as follows

g(ys) ≤ τ, εs ≤ τ, βs−1 − βs ≤ τ, (30)

where τ is a given tolerance, then it is easy to see that SLSM turns out to be
finite. Besides, it yields the point yN with the properties

g(yN ) ≤ τ, h(yN ) ≤ βN ,
〈∇g(yN ), x− yN 〉 ≤ τ ∀x ∈ S, h(x) ≤ βN ,

}

(31)
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what is rather suitable for a local search.
Let us separately note that SLSM yields an approximate stationary point

to the dual problem (Qβ) (for some β), but not for Problem (P ), what com-
pletely corresponds to the duality Theorem 1 of H. Tuy [1].

Further, in addition to SLSM we consider a variant of well-known method
proposed by Rosen J.B. in 1966 [10]. This method consists in a consecutive
solving of linearized problems of the type different from (LQ(u, β)):

(PLRr) :
h(x) ↓ min, x ∈ S,

〈∇g(ur), x− ur〉+ g(ur) ≥ 0,

}

(32)

where ur ∈ S is a given point. The next point ur+1 is defined as an exact
solution to (32).

In [9, 10] they investigated the convergence of the method. We proposed
[12] a modification of Rosen method (MRM) which consists of two procedures,
as well as SLSM.

The first procedure is an approximate solving the problem (PLRr)–(32)
that is obviously convex, if h(·) and S are convex. Then it becomes possible to
apply a suitable convex optimization method to find a global (approximate)
solution of (32).

The second procedure coincides with Procedure 1 of free decent on the con-
straint g = 0 (see description of SLSM). We are able to prove the convergence
of the developed method [12] as it was for SLSM.

But the principal question is: what is the real effectiveness of the developed
local search theory? One of the possible answer may be found in the following
section.

4 Computational testing

In this paragraph we present the results of computational solving by two local
search methods presented above of a series of RCP of the following type:

〈c, x〉 ↓ min,

x ∈ S
4
= {x ∈ IRn | Ax ≤ b, x ≥ 0},

g(x) ≥ 0,







(33)

with the function g of two forms:

g1(x)
4
=‖ x ‖ 2 − 〈d, x〉 − γ, (34)

g2(x)
4
= 〈x,Qx〉 − 〈d, x〉 − γ, (35)

Here Q is symmetric (Q = QT ) positively defined (Q > 0) matrix (n×n), d ∈
IRn, γ ∈ IR.
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The result of computational experiments are presented in the Table 1. Let
us do some comments on the particularities of the computational implemen-
tation.

First, note, that Linearized problems (LQ)–(10) and (PLRr)–(32) turns
out to be Linear Programming (LP) problems and have been solved by one
of the standard methods of LP [11].

Table 1.
SLSM MRM

name h0 hf PL T (10) hf PL T (10)

jm11x5h1 13,78 -12,000000 2 00.00 -12,000000 3 00.00
6,00 -11,733224 2 00.00 -11,733224 2 00.00

388,00 -11,725533 4 00.00 -11,725533 3 00.00

jm30x10h1 21,54 -25,998666 4 00.00 -25,998666 2 00.00
-3,00 -25,998666 4 00.00 -25,998666 2 00.00

-19,00 -26,000000 1 00.00 -26,000000 2 00.00

jm11x15h1 802,45 -502,000000 17 00.23 -502,000000 3 00.05
-18,00 -498,348422 17 00.23 -498,348422 3 00.05
90,79 -502,000000 16 00.19 -502,000000 4 00.05

jm10x20h1 1156,52 -723,996423 8 00.07 -723,996423 3 00.00
23,00 -723,996423 8 00.07 -723,996423 3 00.00

-701,00 -724,000000 7 00.06 -724,000000 2 00.00

sr15x10 17,03 -117,309715 29 00.22 -117,309716 5 00.05
-29,78 -109,218649 9 00.11 -109,218649 4 00.00
-5,61 -116,691999 23 00.16 -116,692001 5 00.06

sr20x15 22,86 -156,013872 72 01.26 -156,013874 6 00.17
-25,41 -146,763729 19 00.38 -146,763729 6 00.16
-69,45 -146,632051 8 00.16 -146,632052 3 00.11

sr25x15 35,31 -37,911422 16 00.33 -37,833231 5 00.11
3,93 -62,031119 176 03.90 -62,031121 8 00.16

-10,43 -51,415461 52 01.37 -51,415462 5 00.17

sr30x15 40,24 -13,725476 44 01.31 -13,725477 11 00.33
4,96 -12,712342 31 00.93 -12,712343 5 00.22

-24,47 -10,876227 2 00.00 -10,335201 9 00.55

SLSM MRM

name h0 hf PL T (10) hf PL T (10)

sr25x18 40,63 -30,511466 184 07.96 -30,511469 8 00.39
-10,31 -27,049467 59 02.14 -27,049468 5 00.22

8,02 -7,707654 35 01.16 -7,707655 5 00.22

sr30x18 37,24 -101,765161 16 00.88 -101,765161 5 00.28
-21,32 -102,354811 17 01.10 -102,354811 5 00.22
-25,72 -122,043711 102 09.62 -122,043711 6 00.25

sr25x20 84,75 -262,645181 95 07.19 -262,645181 6 00.39
-15,31 -276,171787 429 29.17 -276,171789 8 00.60

-126,16 -240,721359 18 01.16 -240,721361 4 00.28

sr10x40 6197,17 -11644,52285 25 05.50 -11644,52285 4 00.77
-5,23 -11634,37336 24 06.87 -11634,37336 7 00.88

1736,43 -11634,37336 24 06.87 -11634,37336 8 00.88
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In Table 1 one use the following notation: name is the test problem name,
which expresses the size (m×n) of the problem and the type of the function g,
so that ”jm . . . h1” notes the problems with the function g1(·) while ”sr . . . ”
marks the problems with the function g2(·)). Further, h0 stands for the goal
function value at an initial point. For each method (SLSM or MRM) the goal
function value at obtained critical points have been denoted by hf . Besides,
PL means the number of solved linearized problems, and T (10) is the solving
time for 10 problems (since the solving time for one problem has turned out
to be too small).

It can be easily seen from the Table 1 that SLSM and MRM have found
the same τ -critical points in almost all test problems. At the same time the
number of solved linearized problems is smaller for MRM in some cases (cf.,
for instance, problems sr25× 15, sr25× 18, sr25× 20) in tens times.

On the other hand, in some problems SLSM has found critical points which
are better than these ones for MRM (cf., problems sr25× 15 and sr30× 15).

So, MRM works, roughly speaking, faster but SLSM sometimes finds a
better critical point. Therefore according the results of computational exper-
iments it would be rather practical for solving similar problems to apply a
combination of SLSM and MRM. For instance, from the beginning one ap-
plies MRM to get a critical point and after that one tries to improve be SLSM
already obtained point.

5 Conclusion

In this paper, after presenting the principles and the methodology of Noncon-
vex Optimization:

• we discussed some features of RCP;
• further, we proposed two Local Search Methods for RCP and gave a con-

vergence theorem for one of them;
• finally, we presented a computational testing of Special Local Search

Method (SLSM) and Modified Rosen Method (MRM) on a series of special
RCP.

The analysis of computational testing results led the author to propose a
combination of SLSM and MRM.
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Summary. In this chapter some transformation techniques, useful in deterministic
global optimization, are discussed. With the given techniques, a general class of non-
convex MINLP (mixed integer non-linear programming) problems can be solved to
global optimality. The transformations can be applied to signomial functions and
the feasible region of the original problem can be convexified and overestimated by
the transformations. The global optimal solution of the original nonconvex problem
can be found by solving a sequence of convexified MINLP sub-problems. In each
such iteration a part of the infeasible region is cut off and the algorithm terminates
when a solution point is sufficiently close to or within the feasible region of the
original problem. The principles behind the algorithm are given in this chapter and
numerical examples are used to illustrate how the global optimal solution is obtained
with the algorithm.

Key words: Transformation techniques, reformulation, mixed integer non-
linear programming, signomial functions.

1 Introduction

The transformations, discussed in this chapter, are applicable to signomial
functions and can be applied to problems where the objective function or
some of the constraints are composed of a convex and a signomial function.
The transformations are made in two steps. Single variable transformations are
first applied term-wise to convexify every signomial term. Secondly, the trans-
formations are selected such that the signomial terms are not only convexified
but also underestimated. The latter property is important when developing
a global optimization approach and this property is obtained by carefully
selecting the transformations such that they can be applied together with
piecewise linear approximations of the inverse transformations. This allows
us not only to convexify and to underestimate every generalized signomial
constraint but also to convexify the entire nonconvex problem and to over-
estimate the feasible region of it. When generalized signomial constraints are
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included in the problem, the originally nonconvex feasible region is divided
into convex sub-regions, by this approach, each sub-region being defined by
the binary variables used in the piecewise linear approximations of the inverse
transformations.

2 The MINLP Problem

MINLP problems for which the method guarantees global optimal solutions
can, in mathematical terms, be written as follows

min
z∈L∩N∩S

f(z)

L = {z |Az = a,Bz ≤ b} ∩X × Y
N = {z |g(z) ≤ 0}
S = {z |q(z) + s(z) ≤ 0}

(P)

The class of problems that can be solved to global optimality with the
transformation approach is slightly dependent on the MINLP algorithm used
to solve the intermediate convexified problems. If the extended cutting plane
method discussed in Westerlund and Pörn (2002) is used as a sub-algorithm
then the intermediate MINLP problems may be pseudo-convex. In this case we
can allow the objective function, f , in the problem (P ), to be a differentiable
pseudo-convex function and g,q and s vectors of differentiable pseudo-convex,
convex and signomial functions respectively, all defined on the set L. N and
S are sets defined by the pseudo-convex and generalized signomial inequality
constraints respectively. The vector of variables, z, is composed of continuous
variables x in X, and integer variables y in Y , where X is a compact subset
of a finite dimensional Euclidean space and Y a finite dimensional integer set,
defined by appropriate bounds of the variables. A, B, a and b are matrices
and vectors of constants respectively.

If the intermediate MINLP sub-problems in the proposed algorithm are
solved using a method that guarantees global optimal solution for convex
MINLP problems only, (for example the outer approximation method by
Duran and Grossmann (1986)) then the objective function, f , and the con-
straints, g, in (P ) need be convex.

A signomial function is composed of a sum with products of power terms,
where each product with power terms is multiplied by a real constant accord-
ing to

s(z) =

J
∑

j=1

cj

n
∏

i=1

z
pi,j

i (1)

All constants, cj , and powers, pi,j , may be positive or negative. The spe-
cial case, when all constants in a signomial function are positive, is called a
posynomial. Generally, variables in a signomial function need be positive. Ap-
propriate bounds on the variables included in the signomial functions must,
therefore, be defined. A generalized signomial function is defined as a sum of
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a convex and a signomial function. If each signomial term in a signomial func-
tion is convex, the signomial function is obviously convex. This is, of course,
not a strict requirement; a signomial function may be convex also when only
some of the terms are convex. However, the convexification strategies used in
the following are applied on each term in the signomial functions. We thus
convexify all signomial functions such that every signomial term will be con-
vex.

Observe, further, that since the considered transformation approach is
valid for signomial constraints with both positive and negative constants, cj ,
signomial equality constraints can also be handled by the approach. In this
case each signomial equality constraint and its negative counterpart may be
relaxed into two signomial inequality constraints, being then defined in the
set S. If the objective function is defined as a generalized signomial function,
then one can obviously rewrite the problem such that an additional variable
is minimized and the generalized signomial objective function is rewritten as
a generalized signomial constraint.

3 The transformation approach

In the following we will show how signomials terms (and thus also signomial
functions) can be transformed into convex signomial form by using single
variable power transformations. In order to obtain appropriate properties for
the convexified signomial terms we will, further, show how the signomial terms
and thus also the signomial functions can be underestimated, by properly
selecting the power transformations.

A signomial term in n variables with m positive powers, pi > 0,i =
1, 2, ...,m and n − m negative powers, pi < 0,i = m + 1, ..., n can be writ-
ten according to

czp1

1 zp2

2 · · · zpm
m z

pm+1

m+1 · · · zpn
n (2)

Different sets of transformations for both positive and negative signomial
terms have been given in Pörn et al. (1999), Pörn (2000), Björk (2002), West-
erlund and Björk (2002a and 2002b) and Björk et al. (2003). Power transfor-
mations for both positive and negative signomial terms are given below.

3.1 Convexifying negative signomial terms

A negative signomial term (c < 0) can be convexified by applying the following
power transformations:

zi = ZR
i i = 1, 2, ...,m (3)

zi = Z−S
i i = m + 1, ..., n (4)

When applying the power transformations (3) and (4) on (2) we obtain,
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cZR·p1

1 ZRp2

2 · · ·ZRpm
m Z

−Spm+1

m+1 · · ·Z−Spn
n (5)

When applying the transformations to the signomial term it can be convexified
since a negative signomial term with positive powers, where the sum of the
powers is less or equal to one, is convex (Maranas and Floudas (1995)).

This convexifying requirement is fulfilled if the parameters R and S used
above are positive and in addition fulfill the condition

R

m
∑

i=1

pi − S

n
∑

i=m+1

pi ≤ 1 (6)

IfR and S are positive the left hand side of (6) is composed of a sum of two
positive terms (the latter sum is negative). Thus, it is obvious that the given
condition can always be satisfied with sufficiently small R and S values.

3.2 Underestimating negative signomial terms

In addition to being convexified by the transformations, the signomial term
should also be underestimated with the given transformation technique. Now,
if the inverse transformations are approximated by piecewise linear functions
and the estimated transformation variables, obtained from the piecewise linear
functions, are used in the convexified signomial term, we obtain,

cẐRp1

1 ẐRp2

2 · · · ẐRpm
m Ẑ

−Spm+1

m+1 · · · Ẑ−Spn
n , (7)

where Ẑi are the estimated transformation variables for each i = 1, . . . , n. The
reason for using an estimated transformation variable instead of the transfor-
mation variable itself is threefold. First of all, the properties of the convexified
signomial term do not change by replacing a transformation variable itself with
its corresponding estimate. Secondly, by approximating the inverse transfor-
mations, with piecewise linear functions, the original inverse transformations,
represented by nonlinear equality constraints, can be represented by linear ex-
pressions. This second property is important because it enables us, not only
to convexify the signomials but, also to convexify the entire problem, since no
parts of the signomials or the transformations will remain nonconvex in the
resulting convexified model.

Finally, we are able to underestimate the original signomial term with
the convexified signomial term using the estimated transformation variables,
when using the piecewise linear approximation of the inverse transformations,
if the transformations are properly selected.

The inverse transformations corresponding to the transformations (3) and
(4) are simply given by,

Zi = z
1
R

i i = 1, 2, ...,m (8)
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Zi = z
− 1

S

i i = m + 1, ..., n (9)

The underestimating property means that the following inequality should
hold:

cẐRp1

1 · · · ẐRpm
m Ẑ

−Spm+1

m+1 · · · Ẑ−Spn
n ≤ cZRp1

1 · · ·ZRpm
m Z

−Spm+1

m+1 · · ·Z−Spn
n

(10)
Since all powers in (10) are positive, for positive values on R and S, and we are
dealing with negative signomial terms (c < 0), the inequality (10) is generally
valid if,

Ẑi ≥ i = 1, 2, ...,m,m + 1, ..., n (11)

Now, since the estimated transformation variables, Ẑi, are obtained from
piecewise linear approximations of the inverse transformations (8) and (9),
we, find that (11) and, thus, also (10) will be generally valid if (8) and (9) are
convex functions.

The condition for (8) to be a convex function is fulfilled if the parameter
R is chosen in the interval

0 < R ≤ 1 (12)

For S it is sufficient that S¿0for (9) to be a convex function. Thus no additional
requirement on the parameter S is needed to satisfy the underestimating
property of the convexified signomial term, while the additional requirement
(12) is set on the parameter R.

A negative signomial term will thus be convexified by applying the power
transformations, (3) and (4) with the additional condition (6), on the original
signomial term. The original signomial term will, further, be underestimated
if the transformation variables, in the convexified signomial term, are replaced
by their estimates obtained from piecewise linear approximations of the inverse
transformations (8) and (9) and the additional condition (12) is set on the
transformation (3).

Observe that a signomial term can, in this way, not only be transformed
to convex form, but the entire problem can be convexified with the additional
property that the feasible region of the convexified problem overestimates the
feasible region of the original nonconvex problem.

3.3 Convexifying positive signomial terms

In an almost similar way as with negative signomial terms, positive signomial
terms can be convexified and underestimated. In this case single variable power
transformations need be applied only on variables with a positive power in the
original signomial term. The following power transformations may be used for
positive (c > 0) signomial terms (5):

zi = Z−T
i i = 1, 2, ...,m− 1 (13)

zm = ZW
m (14)
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A positive signomial term will be convexified as well as underestimated by us-
ing the transformations (13) and (14), in a similar way as negative signomial
terms, if the inverse transformations are approximated by piecewise linear
functions, and the estimated transformation variables are used in the convex-
ified signomial term. The convexified signomial term that underestimates the
original signomial term will then be:

cẐ−Tp1

1 Ẑ−Tp2

2 · · · ẐWpm
m z

pm+1

m+1 · · · zpn
n (15)

Ẑi,i = 1,m are the estimated transformation variables. Each estimated trans-
formation variable will be obtained from a piecewise linear approximation of
the corresponding inverse transformation. Observe, that the transformations
are, in the case with positive signomial terms, only applied on those variables
having positive power. The last n−m variables, with negative power are un-
affected by the transformations. The variables in the original signomial term
may also be arranged, for example, such that the transformation (14) is ap-
plied on the variable in the original signomial term with the largest positive
power.

In the case with a positive signomial term, there are several alternative
ways of convexifying the term (Björk, (2002), Börk et al. (2003)). If all powers
in a positive signomial term are negative, then the term is convex. From the
properties of power-convex functions, as given in Lindberg (1981), it can also
be shown that a positive signomial term, with at most one positive power, is
convex if the sum of the powers is greater or equal to one. If the sum is equal
to one, the signomial term is a 1-convex function.

Thus, if the powers Tand Ware positive, then the latter requirement for
convexification will be:

−T
m−1
∑

i=1

pi + Wpm +
n
∑

i=m+1

pi ≥ 1 (16)

Since the first and third terms, in the expression (16), are negative (and finite
for finite T ) and the second term can be made infinitely large, the expression
(16) is valid for any sufficiently large W .

3.4 Underestimating positive signomial terms

In addition to being convexified by the transformations, the positive signomial
terms should also be underestimated. The inverse transformations of (13) and
(14) are given by:

Zi = z
− 1

T

i i = 1, 2, ...,m− 1 (17)

Zm = z
1

W
m (18)

If the inverse transformations are approximated by piecewise linear functions
and the estimated transformation variables obtained from the piecewise linear
functions are used in the convexified signomial term, the inequality
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cẐ−Tp1

1 · · · ẐWpm
m z

pm+1

m+1 · · · zpn
n ≤ cZ−Tp1

1 ...ZWpm
m z

pm+1

m+1 · · · zpn
n (19)

should hold true for positive (c >0) signomial terms. This will be the case if,

Ẑi ≥ Zi i = 1, 2, ...,m− 1 (20)

Ẑm ≤ Zm (21)

This is particularly true since the first m−1 variables in the convexified sig-
nomial term (15) have negative powers and thus correspond to decreasing
functions, while the m-th transformation variable in (15) has a positive power
and, thus, corresponds to an increasing function. Since the approximate trans-
formation variables are obtained from piecewise linear approximations of the
inverse transformations (17) and (18) we find that (20) will be generally valid
if the inverse transformations (17) are given by convex functions. In addition
(21) will generally be valid if the inverse transformation (18) is given by a
concave function.

The, additional, underestimating condition is, thus, fulfilled if T > 0 and

W ≥ 1 (22)

A positive signomial term will thus be convexified by applying the power trans-
formations, (13) and (14) with the additional condition (16), on the original
signomial term. The original signomial term will, further, be underestimated
if the transformation variables, in the convexified signomial term, are replaced
by their estimates obtained from piecewise linear approximations of the in-
verse transformations (17) and (18) and the additional condition (22) is set
on the transformation (14).

3.5 Piecewise linear approximations of the inverse transformation

The transformations above, for both negative and positive signomial terms,
were selected so that every signomial term can be convexified as well as under-
estimated if the inverse transformations are approximated by piecewise linear
functions. Piecewise linear functions can be modeled in different ways. Some
alternatives are given in Floudas and Pardalos (2001).

An appropriate way to model a piecewise linear function in K intervals
is given below. An inverse transformation is then represented by K binary
variables, bk, and equal many nonnegative real variables, sk, by the following
linear expressions:

Ẑ =
K
∑

k=1

(Zkbk + (Zk+1 − Zk)sk) (23)

z =

K
∑

k=1

(zkbk + (zk+1 − zk)sk) (24)
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K
∑

k=1

bk = 1 (25)

0 ≤ sk ≤ bk (26)

k = 1, 2, ...,K; bk ∈ {0, 1}; sk ∈ IR+

Ẑ is the estimated transformation variable obtained from the piecewise linear
function at z. Zk; k=1, 2,. . . , K+1 are given values of the transformation
variable Z, obtained from the original inverse transformation, at K+1 grid
points, z1 < z2 < . . . < zK+1.

The binary variables in the expressions used in modeling the piecewise lin-
ear functions can be defined as so-called special ordered sets in MILP solvers,
since the sum of the binary variables is equal to one. Also observe that no
binary variables are initially needed when the linear approximations are made
in one step from the lower bound on the variable to its upper bound, since
Eq. (25) indicates that the one and only binary variable, corresponding to
each piecewise linear function, should be equal to one. Observe, further, that
a piecewise linear function in 2N intervals can be modeled by using only N
binary variables, as shown in the appendix. The formulation above is, how-
ever, usually computationally equal efficient since the additional requirement
(25) can be used as a special ordered set, as mentioned above. The formula-
tion above also has the advantage that each binary variable will correspond
to own convex sub-regions when using the formulation in the given global
optimization approach.

When applying several transformations in one original variable, zi to dif-
ferent signomial terms (in the same or different signomial constraints), each
transformation needs its own transformation variable Z. However, it should
be observed that the same binary variables, bk, (and real variables, sk) can be
used in all different piecewise linear approximations, being a function of the
same original variable zi which substantially reduces the number of binary
variables, in the problem.

Geometrically each binary variable divides the original feasible region into
new convex sub-regions. When applying the algorithm discussed below, the
original feasible region may, thus, be divided into one new or several new
convex sub-regions in a subsequent iteration.

4 Examples of transformations

In the following, a few examples are given in order to illustrate the transfor-
mation procedure.

4.1 An example of applying the transformations on a negative
signomial term

Consider the negative signomial term:
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−z0.2
1 z−0.1

2

In this case m=1 and n=2 and since one of the powers is negative we need to
convexify the term. From (6) we obtain the condition,

R

m
∑

i=1

pi − S

n
∑

i=m+1

pi = R0.2 + S0.1 ≤ 1

The parameters R and S should be positive, but in order to satisfy the under-
estimating condition we need, further, to consider the additional requirement,

0 < R ≤ 1

Thus, for example, if R=1 and S=1 all conditions are satisfied. Since R can
be set equal to one, we, thus, only need to transform the variablez2.

Applying the transformation (4) with S=1 on the signomial term, it will
be convexified. The convexified signomial term will further underestimate the
original signomial term if we replace the transformation variable by its esti-
mate obtained from a piecewise linear approximation of the inverse transfor-
mation (9).

The convexified term underestimating the original signomial term is thus
given by,

−z0.2
1 · Ẑ0.1

2

The estimated transformation variable, Ẑ2, is obtained by approximating the
inverse transformation

Z2 = z−1
2

in the intervalz2,min ≤ z≤2 z2,max using a piecewise linear function (Eqs. (23-
26)).

4.2 An example of applying the transformations on a positive
signomial term

Consider the positive signomial term:

z1.2
1 z−0.5

2 z−1.5
3

In this case m=1 and we find that the sum of the powers is equal to -0.8.
Thus, we need to convexify the term. From (15) we obtain the condition,

Wpm +
n
∑

i=m+1

pi = W1.2− 2 ≥ 1

If the signomial term is convexified such that RHS=1, we obtain W=2.5. The
additional underestimating requirement (22) (W ≥ 1) is, thus, also fulfilled.
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Applying the transformations and inserting the estimated transformation vari-
able into the convexified signomial term we obtain,

Ẑ3
1z−0.5

2 z−1.5
3

We, thus, obtain a transformed signomial term that is both convexified and
will underestimate the original signomial term. The approximate transforma-
tion variable, Ẑ1, is obtained from the approximation of the inverse transfor-
mation,

Z1 = z0.4
1

with a piecewise linear function, Eqs. (23-26), in the interval z1,min ≤ z1 ≤
z1,max.

4.3 Illustration of the underestimation of a one-dimensional
signomial function

Consider the function f(x) = x4 − 3x3 − 1.5x2 + 10x. This function should
be convexified and underestimated in the interval−2 ≤ x ≤ 3. Since, in this
particular case, the variable range includes negative variable values, we first
apply a translation such that our function is written in a positive variable.
Let our translation be z = x + 3. The function can then be written as,

f(z) = (z − 3)4 + 25.5z2 − 62z + 37.5− 3z3

The interval to be considered is now 1 ≤ z ≤ 6.
Observe that only the last term in f(z) is non-convex and since this concave

term is a negative signomial term it can be convexified using the transforma-
tion (3). The convexification condition (6) is 3R ≤ 1, which directly also fulfills
the underestimating condition 0 < R ≤ 1 for this power transformation. Let
R = 1/3, apply the transformation and replace the transformation variable, in
the convexified expression, with the corresponding estimated transformation
variable. We then obtain,

f(z, Ẑ) = (z − 3)4 + 25.5z2 − 62z + 37.5− 3Ẑ

The estimated transformation variable, Ẑ, is given by a piecewise linear ap-
proximation of the inverse transformation Z = z3. A piecewise linear approxi-
mation, for example, in two steps with selected grid points at: (z1, Z1) = (1,1 ),
(z2, Z2) = (4,6 4) and (z3, Z3) = (6,2 16) is, according to Eqs. (23-26), given
by

Ẑ = b1 + 63s1 + 64b2 + 152s2

z = b1 + 3s1 + 4b2 + 2s2

b1 + b2 = 1
0 ≤ s1 ≤ b1

0 ≤ s2 ≤ b2

b1, b2 ∈ {0, 1} ; s1, s2 ∈ IR+
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In Figure 4.3 the original function f(z)as well as the functionf(z, Ẑ)are plotted
versus z. From the figure it can be observed that the original function is
underestimated by the functionf(z, Ẑ)in the entire interval. From the figure
it can further be observed that the function f(z, Ẑ) is convex in the two sub-
regions defined by the binary variables, i.e. when b1 = 1 (1 ≤ z ≤ 4) and when
b2 = 1 (4 ≤ z ≤ 6).

Fig. 1. Illustration of the underestimation of a function in one-dimension.

5 The GGPECP algorithm

The transformations for signomial terms (applicable on signomials and gen-
eralized signomials), discussed above, can be used to solve the nonconvex
MINLP problem (P ) to global optimality. This can be achieved by solving
a sequence of convexified MINLP problems, or to include the transformation
approach as an integrated part in a MINLP solver. When implementing the
transformation approach as an integrated part of a cutting plane approach
such as the extended cutting plane (ECP) algorithm (Westerlund and Pörn
(2002)) the algorithm can utilize additional information from previous it-
erations, making the solution approach much more efficient. All techniques,
including the use of previous cutting planes and encapsulating the optimal so-
lution by the use of supports from the reduction constraint, can thus be used
in the integrated algorithm. These features have been used together with the
transformation approach, in the GGPECP algorithm (Westerlund and West-
erlund (2003)). For example, cutting planes, created in previous iterations,
are used in different ways to improve the solution efficiency of the algorithm.
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An initial transformation step, an additional termination criterion and a
transformation step, applied after each subsequent iteration, need be added
in an algorithm utilizing the transformation techniques.

Generalized signomial functions are included only as constraints in the
nonconvex MINLP problem (P ) considered. Since the transformation ap-
proach allows us to underestimate these constraints, the feasible region of the
original problem will be overestimated when solving the convexified MINLP
problem. Thus, if the original generalized signomial constraints are satisfied at
an optimal solution point of the approximate problem, the procedure can be
terminated. Otherwise new grid points need be added to the piecewise linear
approximations.

By adding one new or several new grid points, the feasible region will be
divided into new, tighter, convex sub-regions. These sub-regions are defined
by the binary variables used in modeling the piecewise linear approximations.

In order to terminate, the original signomial constraints need be satisfied.
The additional termination criterion can, thus, be written as:

max
i=1,...,I

(qi(zk) + si(zk)) ≤ ε (27)

where I is the number of generalized signomial inequality constraints and ε is
an appropriate tolerance. The algorithm will terminate at the global optimal
solution of the original problem if all the generalized signomial constraints are
satisfied, with the given accuracy, at the optimal solution of an approximate
problem. This is particularly true since the solution of the convexified problem
can be verified to be the global optimal solution, with the used sub-algorithm,
and this solution is obtained in a region which overestimates the feasible region
of the original nonconvex problem. If the termination criterion Eq. (27) is not
satisfied, then the termination criterion also indicates in which directions new
grid points may be selected. Several alternatives selecting new grid points can
be used and are discussed in section 8.

It may be mentioned that the number of binary variables added in a subse-
quent iteration will not be dependent on the number of signomial constraints,
signomial terms, the number of transformations used or the number of origi-
nal variables. The number of additional binary variables added to the problem
in a subsequent iteration will only correspond to the number of appropriate
directions (in each of which a new grid point is defined) indicated by the
termination criteria. At least one direction, one new grid point, with its cor-
responding binary variable, must be added in a subsequent iteration. The
total number of appropriate directions is, however, of course always less or
equal to the number of transformed original variables included in the signo-
mial constraints. In Figure 5 the main iteration loop to handle the signomial
constraints is shown.
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Fig. 2. Iteration loop to handle signomial constraints.

6 Convergence to the globally optimal solution

When applying the transformations approach to the problem (P ), the prob-
lem is transformed to a convexified problem (P conv

k ) where, in addition, the
feasible region of the original problem is overestimated. By solving a sequence
of convexified MINLP problems (P conv)0,(P

conv)1,(P
conv
2,... ) the global optimal

solution to the original problem (P ) will be obtained.
Let Ŝ denote the set defined by the convexified generalized signomial con-

straints, where the transformation variables have been replaced with their
estimates, according to Ŝ = {(z, Ẑ) | g(z) + ŝ(z, Ẑ) ≤ 0}. Furthermore, let
Lk = {(z, Ẑ, z̃k) | weseqs. (23-26)} ∩ L denote the linear set Lextended with
the linear constraints (23-26) defining the piecewise linear approximations of
the inverse transformations, which are used at iteration k. Ẑ is a vector with
the estimated, approximate, transformation variables and z̃kis a vector with
the additional variables required in the expressions for the piecewise linear
approximations of the inverse transformations, at iteration k.

According to the properties of the transformations discussed above the fea-
sible region of a convexified MINLP sub-problem, where the signomial terms
are underestimated, overestimates the feasible region of the original nonconvex
problem. We thus have,

{L ∩N ∩ S} ⊂ {Lk ∩N ∩ Ŝ} (28)

Since a subsequent set {Lk ∩ N ∩ Ŝ}, again, overestimates a previous set

{Lk−1 ∩N ∩ Ŝ} we obtain when solving the sequence of convexified problems
and inserting new grid points
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{LK ∩N ∩ Ŝ} ⊂ {LK−1 ∩N ∩ Ŝ} ⊂ . . . ⊂ {Lk ∩N ∩ Ŝ} ⊂ . . . ⊂ {L0 ∩N ∩ Ŝ}.
(29)

The solution point of the problem, (P conv)k , at iteration k is given
by(z∗k, Ẑ∗

k, z̃∗k) and the optimal value of the objective function at this iter-
ation isf(z∗k). Since the algorithm is able to obtain the global optimal value
of the objective function, in every iteration, we will obtain a monotonically
increasing sequence

f(z∗K) ≥ f(z∗K−1) ≥ ... ≥ f(z∗k) ≥ ... ≥ f(z∗0) (30)

This sequence will, in a finite number of iterations K, and at least with an ep-
silon tolerance, converge to the global optimal solution f(z∗) of the nonconvex
problem (P ).

This is particularly true since a solution point(z∗k, Ẑ∗
k, z̃∗k) will always

be found in a certain interval of the piecewise linear approximations. If all
the variables, at an optimal solution point (z∗K , Ẑ∗

K , z̃∗K) of the convexified
problem, are at grid points of the inverse transformations, thens(z∗K) =

ŝ(z∗K , Ẑ∗
K , z̃∗K). In this case the value of each generalized signomial constraint

will be exactly equal to the value of its corresponding convexified constraint.
Since the convexified constraints are satisfied with an epsilon tolerance, at
this solution point, this is obviuously also the case for the generalized sig-
nomial constraints. We have thus found the global optimal solution to the
original problem, within an epsilon tolerance defined by Eq. (27), and the
global optimal value on the objective function is given byf(z∗K).

If, on the other hand, some of the variables are not at the grid points of
the piecewise linear approximations and Eq. (27) is not satisfied, new tighter
approximations can always be obtained for the signomials. New grid points,
for the actual variables, can, in this case, be selected at the actual solution
point or, for example, in the middle of the actual interval. In this case the
solution procedure continues. Since adding a new grid point to a piecewise
linear approximation always makes the approximation tighter, we will even-
tually obtain a solution when Eq. (27) is satisfied. In this case we have again
obtained the global optimal solution with at least an ε tolerance of the gener-
alized signomial constraints. It may be observed that the sequences are finite
since the new grid points can always be selected so that the maximum dis-
tance between two grid points of any of the variables in a piecewise linear
function, form a Cauchy sequence.

Thus, in the first case we directly obtained the global optimal solution
to the problem (P ) within the tolerance defined by Eq. (27). In the latter
case, the signomial constraints need be accurate enough in order to fulfill the
criterion Eq. (27) at termination. In both cases we obtain the global optimal
solution to the problem (P) with a finite number of iterations and at least an
ε tolerance on the generalized signomial constraints ?.
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7 A numerical example

In the following a numerical example including one linear constraint and one
generalized signomial inequality constraint is considered. The problem can be
written as follows:

min
x,y

y − 2x

s.t.
y + 5x ≤ 36
(2y2 − 2y0.5 + 11y + 8x− 35) + x0.5 − 1.5x1.1y1.5 ≤ 0
1 ≤ x ≤ 7; 1 ≤ y ≤ 6
x ∈ IR; y ∈ Z+

The generalized signomial constraint consists of a sum of a convex function,
given within the parenthesis, and a signomial function, the latter being com-
posed of one positive and one negative signomial term. In Figure 7 the (integer
relaxed) feasible region of the problem is illustrated.

Fig. 3. Integer relaxed feasible region of the nonconvex problem.

From the figure, it can be observed that the feasible region of the problem
is divided into two disjoint regions (considering the regions as integer relaxed
regions) by the generalized signomial constraint. One of the disjoint regions is
in the lower left corner. In this region the feasible values of the integer variable
are 1 and 2 while the continuous variable xshould be greater or equal to one
and less or equal to a value constrained by the signomial constraint. In the
upper left corner we find the other disjoint region with feasible values 4, 5 and
6 on the integer variable while the continuous variable is constrained, from
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below, by the signomial constraint and its upper value is constrained by the
linear constraint.

If the problem is solved with a local MINLP solver, then the global optimal
solution may not be obtained. If the problem is, for example, solved with the
Outer Approximation method given in Duran and Grossmann (1989) then
the solution (x=3.513, y=1) is obtained. At this solution point the value of
the objective function is -6.025, but this solution is, however, not the global
optimal one. The OA method is based on solving an alternating sequence of
MILP masters and NLP problems. The method can be started in different
ways. If a first MILP masters problems is solved, we obtain the solution x=7
and y=1. As an alternative we could start the algorithm with the candidate
solution y=1. However, in both these alternatives, the value of the integer
variable is fixed, at this point, and the solution of the following NLP problem
result in x=3.513, which is the point where the OA algorithm terminates. With
other local MINLP solvers, similar non-optimal results may be obtained.

We will, however, in the following, examine how the given transformations
approach and the corresponding global optimization approach solves the prob-
lem. As mentioned above the nonlinear constraint contains both a positive and
a negative signomial term. The transformations for the positive and negative
signomial terms, discussed in section 3, can thus directly be applied. Observe
also that both powers for the variables in the negative signomial term are
greater than one. This indicates that both variables need to be transformed.
The transformation for the positive signomial term is (with W=2) given by,

x = X2
1

whist our selected transformations for the negative signomial term (with
R=1/2.6) are given by,

x = X
1/2.6
2 ; y = Y 1/2.6

By applying piecewise linear approximations of the inverse transformations,
the convexified generalized signomial constraint underestimating the original
one, can be written as follows:

(2y2 − 2y0.5 + 11y + 8x− 35) + X̂1 − 1.5X̂0.4231
2 Ŷ 0.5769 ≤ 0

Using the given bounds on the variables x and y, initial piecewise linear ap-
proximations of the inverse transformations can be written as:
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X̂1 = bx,1 + 1.6458sx,1

X̂2 = bx,1 + 156.49sx,1

x = bx,1 + 6sx,1

bx,1 = 1
0 ≤ sx,1 ≤ bx,1

Ŷ = by,1 + 104.49sy,1

y = by,1 + 5sy,1

by,1 = 1
0 ≤ sy,1 ≤ by,1

bx,1, by,1 ∈ {0, 1} ; sx,1, sy,1 ∈ IR+

Initially no binaries are needed, although each piecewise linear function in one
interval uses one binary variable in the given formulation. This is because the
value of the binary variable is fixed to one by the sum of the binaries in the
expression for the piecewise linear function. In addition, initially no additional
continuous variables, s, are needed either. But in order to illustrate the given
form of the piecewise linear expressions, the s variables are also included in the
expressions above. From the formulation it can, furthermore, be found that
the different piecewise linear approximations in the same original variable,
can use the same additional variables. In Figure 7 the convexified and initially
overestimated feasible region of the problem is illustrated.

Fig. 4. Convexified and overestimated feasible region at the first iteration.

In Figure 7 the boundaries defined by the original generalized signomial
constraint are also illustrated. The boundaries of the convexified overestimated
feasible region are illustrated by the darker continuous curves. From Figure 7
it can be observed that the integer relaxed feasible region of the transformed
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problem is both convex and that it overestimates the feasible region of the
nonconvex problem.

The optimal solution to the convexified problem is further illustrated in
the figure. The optimal solution to this sub-problem is obtained at x=6.8
and y=2. At this solution point the value of the original generalized signomial
constraint is 14.233. One additional or several additional grid points may thus
be added to the piecewise linear approximations to be used in the following
iteration. At this point we can make different choices, which are discussed in
the next section. However, if new grid points are selected at the solution, x=6.8
and y=2, we obtain the following updated piecewise linear approximations,

X̂1 = bx,1 + 1.6077sx,1 + 2.6077bx,2 + 0.038070sx,2

X̂2 = bx,1 + 145.06sx,1 + 146.06bx,2 + 11.433sx,2

x = bx,1 + 5.8sx,1 + 6.8bx,2 + 0.2sx,2

bx,1 + bx,2 = 1
0 ≤ sx,1 ≤ bx,1; 0 ≤ sx,2 ≤ bx,2

Ŷ = by,1 + 5.0629sy,1 + 6.0629by,2 + 99.423sy,2

y = by,1 + 1sy,1 + 2by,2 + 4sy,2

by,1 + by,2 = 1
0 ≤ sy,1 ≤ by,1; 0 ≤ sy,2 ≤ by,2

bx,i, by,i ∈ {0, 1} ; sx,i, sy,i ∈ IR+

In Figure 7 the convexified and overestimated feasible region at iteration 2 is
illustrated.

Fig. 5. The convexified and overestimated feasible region at iteration 2.

Since, grid points were added for both variables the feasible region is, in
this particular case, divided into four sub-regions defined by the new grid-
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points and the binary variables. In the figure the borders of the sub-regions
are illustrated by the dashed lines and the boundaries of the convexified over-
estimated feasible region are illustrated by darker continuous curves. From
the figure it can be observed that there are no feasible solutions in the con-
vex sub-regions to the right, whilst feasible solutions can be found in both
of the convex sub-regions to the left. The optimal solution to the convexified
overestimated problem at iteration two is found at x=6.6 and y=3 which is
in the upper left convex sub-region. The optimal solution is also illustrated in
the figure. The value of the original generalized signomial constraint can be
calculated at this point and is 5.7792. This point is infeasible to the original
problem. Thus, one new or several new grid points need be added to the piece-
wise linear approximations. Adding one grid point at the solution x=6.6 and
one grid point at y=3 to the piecewise linear approximations of the inverse
transformations result in the following expressions,

X̂1 = bx,1 + 1.569sx,1 + 2.569bx,2 + 0.038634sx,2 + 2.608bx,3 + 0.03807sx,3

X̂2 = bx,1 + 134.15sx,1 + 135.15bx,2 + 10.908sx,2 + 146.06bx,3 + 11.433sx,3

x = bx,1 + 5.6sx,1 + 6.6bx,2 + 0.2sx,2 + 6.8bx,3 + 0.2sx,3

bx,1 + bx,2 + bx,3 = 1
0 ≤ sx,1 ≤ bx,1; 0 ≤ sx,2 ≤ bx,2; 0 ≤ sx,3 ≤ bx,3

Ŷ = by,1 + 5.0629sy,1 + 6.0629by,2 + 11.336sy,2 + 17.399by,3 + 88.087sy,3

y = by,1 + 1sy,1 + 2by,2 + 1sy,2 + 3by,3 + 3sy,3

by,1 + by,2 + by,3 = 1
0 ≤ sy,1 ≤ by,1; 0 ≤ sy,2 ≤ by,2; 0 ≤ sy,3 ≤ by,3

bx,i, by,i ∈ {0, 1} ; sx,i, sy,i ∈ IR+

In Figure 7 the convexified and overestimated feasible region at iteration 3 is
illustrated.

In the figure the borders of the sub-regions are again illustrated by dashed
lines while the boundaries of the convexified overestimated feasible region are
illustrated by darker continuous curves. From the figure it can be observed that
now there are nine convex sub-regions, which are defined by the grid-points
and the binary variables. From the figure it can be observed that feasible
solutions for the convexified problem can only be found in the three sub-
regions to the left. In all these sub-regionsbx,1 = 1. The optimal solution to
the convexified overestimated problem at iteration 3 is found at x=6.4 and
y=4. This point is feasible to the original problem, the value of the original
generalized signomial constraint being -1.7356 at this solution point. Since the
solution is feasible in both the overestimated and the original problem and the
solution is optimal in the overestimated convexified problem, the solution is
consequently the global optimal solution to the original nonconvex problem.
The global optimal solution is illustrated in the figure. At this point the value
of the objective function is -8.8. In Table 7 the solution values obtained at
iterations 1-3 are further given.

From Table 7 and Figure 7 it can be verified that the global optimal
solution is obtained after the third main iteration. With the GGPECP solver
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Fig. 6. The convexified and overestimated feasible region at iteration 3.

Iteration x y Objective function Ω Solution Status

1 6.8 2 -11.6 14.233 Subprob-opt

2 6.6 3 -10.2 5.7792 Subprob-opt

3 6.4 4 -8.8 -1.7356 Glob-opt

Table 1. Solution data obtained for the example problem. Ω = (2y2−2y0.5 +11y +
8x− 35) + x0.5 − 1.5x1.1y1.5.

described in Westerlund and Westerlund (2003), the solution to the above
problem could be obtained in 0.2CPUsec on a 3GHz PC.

8 Some aspects on the numerical solution approach

As indicated above there are different alternative ways to implement the trans-
formation approach in a numerical algorithm. These alternatives are, for ex-
ample, connected to the way new grid points are selected and how the infor-
mation from the solution of the previous convexified MINLP problems can
be utilized when solving a subsequent MINLP problem in the algorithm. In
the following some aspect in connection to these issues are discussed. Other
important issues, such as choices connected to different transformations, are
left out of this discussion.

8.1 The selection of new grid points

After the solution of a convexified MINLP sub-problem the numerical values
of the generalized signomial constraints should be evaluated, as indicated in
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the algorithm in Figure 5. The termination criterion is given by Eq. (27). If the
termination criterion is satisfied then the solution is the global optimal solu-
tion to the original non-convex problem. On the other hand, if the termination
criterion is not satisfied then appropriate directions and new grid points for
the piecewise linearizations should be selected for the following iteration. At
this point there are several alternative choices that can be made.

Selection of appropriate directions

When evaluating if the original generalized signomial constraints are satisfied,
Eq. (27) is used. Since Eq. (27) is defined such that the generalized signomial
constraint that violates the most should be satisfied with a certain tolerance,
then consequently all other generalized signomial constraints are also satisfied
at the considered solution point. If considering the most violating signomial
constraint, one may evaluate which of the original variables are involved in
transformations in the signomial terms in this constraint. In the example
problem we find that both variables are involved. However, generally one
could, when Eq. (27) is not valid, select the new appropriate directions and
thus the grid points, only in those variables involved in transformation in the
most violating signomial constraint. The reason for not selecting all variables
involved in transformations for the problem, and new grid points for them,
would be to minimize the additional number of binary variables needed in the
piecewise linear approximations in the following iteration.

Another possibility, for selecting the appropriate directions, would be to
consider the signomial terms in the most violating signomial constraint more
carefully. In the example problem the solution of the first convexified MINLP
problem is x = 6.8 andy = 2. The value of the generalized signomial constraint
is 14.233 at this solution point (and the value of the convexified underesti-
mated generalized signomial constraint is -25.45 at the same point). Since this
constraint has two signomial terms we may calculate which of the signomial
terms is underestimated the most. Then we could select the appropriate di-
rections only from those variables that are involved in transformations in the
signomial term which is underestimated the most. In our example problem,
the first signomial term is given byx0.5and this term is underestimated by the
convexified term X̂1. The second signomial term is given by −1.5x1.1y1.5and
this term is underestimated by the convexified term −1.5X̂0.4231

2 Ŷ 0.5769.
The solution of the first convexified MINLP sub-problem resulted in the

valuesX̂1 = 2.5909, X̂2 = 152.27 and Ŷ = 21.897on the estimated transfor-
mation variables. From the solution point we, thus, find that

x0.5 − X̂1 = 0.0168

and that
(−1.5x1.1y1.5)− (−1.5X̂0.4231

2 Ŷ 0.5769) = 39.67

Thus, we find that the second signomial term, in the most violating generalized
signomial constraint, is underestimated the most. Since the second signomial
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term includes transformations for both x and y, then we could select new grid
points only for these variables. In this particular example, however, x and y
are the only variables in the original problem. But, if the first term would
have been underestimated the most, then a possible choice would have been
to select only xas the new direction in which a grid point is added to the
piecewise linear approximations in the following iteration.

A more focused alternative to select the appropriate direction(s) would be
to make the choice by considering the impact, of the underestimation of the
generalized signomials, from each variable, included in the transformations,
separately. Also in this case one could focus on the impact of the underestima-
tion only on the generalized signomial constraint, violating the most. In this
case the new appropriate direction(s) could be selected from the variable (or
some of the variables) giving rise to the largest underestimation. The impact
of the underestimation, from a certain variable, can be calculated from the
difference between the convexified signomial function using the (true) transfor-
mation variables and the corresponding convexified signomial function using
the estimated transformation variables that corresponds to the studied vari-
able. In our numerical example, the impact on the underestimation from the
xvariable would, after the first iteration, be

(X1 − 1.5X0.4231
2 Y 0.5769)− (X̂1 − 1.5X̂0.4231

2 Y 0.5769) = 0.6386

while the impact on the underestimation from the yvariable would be

(X1 − 1.5X0.4231
2 Y 0.5769)− (X1 − 1.5X0.4231

2 Ŷ 0.5769) = 38.36

Since the impact from the y variable is far greater than the impact from the
x variable, we could, if selecting only one new appropriate direction, select it
as the y-direction.

In the expressions above it may be noted that, by definition

(x0.5 − 1.5x1.1y1.5) = (X1 − 1.5X0.4231
2 Y 0.5769)

although the LHS is nonconvex and the RHS is convex. This is because the
convexified expression is defined, exactly, by the transformationsx = X2

1 , x =

X
1/2.6
2 andy = Y 1/2.6. In the above expression, and the considered solution

point, the numerical value of both the LHS and the RHS is equal to -32.34.
The underestimation is, again, a result of that a transformation variable

is replaced by its corresponding estimated transformation variable obtained
from the piecewise linear approximation of the corresponding inverse trans-
formation.

Different other alternatives to select the appropriate directions may also
be used.

Selection of appropriate grid points

While the selection of appropriate directions is connected to the selection
of original variables for which new grid points are added, the selection of
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appropriate grid points is connected to the way the grid points, for a certain
variable, are selected. Also in the selection of the grid points there are several
alternative choices that can be made. The simplest choice is to select a new
grid point at the solution point of the variable itself. This alternative choice
was used in every iteration in the example problem illustrated previously.

However, since the solution point always corresponds to a certain interval
in the actual piecewise linear approximation, an alternative choice would be
to select the new grid point as the midpoint of the corresponding interval.

A further choice would be to select a grid point in the opposite way. The
value of the estimated transformation variable is also obtained at the solution
of a sub-problem. If the estimated value of the transformation variable is
inserted in the original transformation, then (if the solution point is not at
an old grid point) another estimate (other than the solution value) of the
corresponding original variable is obtained. This new estimate of the original
variable could also be used as an alternative grid point. Here one should,
however, observe that a certain original variable may be involved in several
transformations. Thus several new estimates of the same original variable may,
in this way, be obtained at the same iteration. However, the mean value of
all the estimates of the original variable could, for example, be selected as
an alternative new grid point. Different other alternative choices of new grid
points may also be used.

8.2 Utilizing information from the solution of previous
sub-problems

As mentioned in the beginning, different solution approaches may be used to
solve the intermediate convexified MINLP problems. If the Extended Cutting
Plane (ECP) method given in Westerlund and Pörn (2003) is used, then the
solution of a previous MINLP problem does not only give the solution to the
actual sub-problem, but it will also give a linear problem formulation overesti-
mating the feasible region of the convexified MINLP sub-problem. The linear
formulation contains the original linear constraints as well as cutting planes
generated from the non-linear, including the convexified, constraints. Since
the cutting planes underestimates the convexified constraints and the convex-
ified constraints underestimates the original generalized signomial constraints,
all cutting planes generated when solving previous MINLP sub-problems are
valid cutting planes in the subsequent iterations. Thus all previously generated
cutting planes can be utilized when solving a subsequent convexified MINLP
problem.

The numerical example – utilizing information from previous
cutting planes

If the convexified MINLP sub-problems are solved with the ECP method, then
a sequence of MILP problems is solved. Consider our numerical example and
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the solution of the first MINLP sub-problem, by the ECP method. The first
MILP problem, in the ECP method, is now given by the linear constraints in
the considered MINLP problem. When solving the MILP problem, in the first
ECP-iteration, it will result in the solution (x=7, y=1). At this solution point
the value of the convexified signomial constraint overestimating the original
generalized signomial constraint is 21.890. This solution point is, thus, not
the optimal solution to the first convexified MINLP sub-problem. A cutting
plane is generated, in the ECP method, at this solution point. The generated
cutting plane is given by,

14.002y + 8x + X̂1 − 0.034267X̂2 − 7.3574Ŷ ≤ 38.004

When adding this cutting plane to the second MILP problem, to be solved
in the ECP method, the optimal solution of the first convexified MINLP sub-
problem will, however, directly be obtained. The first convexified MINLP
problem is thus solved to optimality in only two MILP iterations by the ECP
method. As indicated in Figure 7, the solution to the first convexified MINLP
problem is obtained at (x=6.8, y=2). In Figure 8.2 the feasible region of
the first convexified MINLP sub-problem overestimated by the above cutting
plane, generated in the ECP method, is illustrated. Observe that the cut-
ting plane, indicated by a dark continuous line in figure 7, overestimates the
convexified feasible region and again, that the convexified feasible region over-
estimates the feasible region of the original non-convex problem, as illustrated
both in Figure 7 and Figure 8.2. From Figure 8.2, one finds that the solution
of the first convexified MINLP problem can be solved to optimality in only
two iterations with the ECP method.

Fig. 7. The overestimated feasible region (with the cutting plane from the ECP
method) when solving the first convexified MINLP sub-problem.
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Since the solution of the convexified MINLP problem does not satisfy Eq.
(27) (the value of the generalized signomial constraint is 14.233 at this point)
an additional cut, can be generated, from the convexified signomial constraint,
at the solution point of the first convexified MINLP sub-problem. This cut
can then be utilized when solving the following MINLP sub-problem. The cut
generated at the solution point (x=6.8, y=2) is given by

18.295y + 8x + X̂1 − 0.10123X̂2 − 3.3252Ŷ ≤ 44.419

Adding this cut, and all previous cutting planes (in this case only one) gen-
erated when solving the first convexified MINLP problem, to the following
convexified MINLP sub-problem result in that the problem can be solved
more efficiently.

Adding these two cuts and the updated piecewise linear approximations of
the inverse transformations, at iteration two, the second convexified problem
can be solved by the ECP-method in only one MILP iteration. The solution
of the second convexified MINLP sub-problem is obtained at (x=6.6, y=3).
In Figure 8.2 the feasible region overestimated by the two cutting planes is
illustrated. From the figure it is observed that the solution of the second con-
vexified MINLP sub-problem can be obtained in only one MILP-iteration by
the ECP method. Observe, further, that the projection of the cutting planes,
in the x− y space, changes when new grid points are added to the piecewise
linear approximations. Thus the cutting planes are differently projected into
the x− y space at iteration two, than at iteration one. In Figure 8.2 the first
cutting plane is projected as a dark continuous straight line, while the second
cutting plane is projected as a dark continuous broken line.

At the solution point (x=6.6, y=3), the value of the generalized signomial
constraint is 5.7792. This solution point does not satisfy the termination cri-
teria Eq. (27). In a similar way, as in the previous iteration, a cut can be
generated, from the convexified signomial constraint, at this point in order
to make the solution of the following convexified MINLP sub-problem more
efficient. The cut generated at the solution point (x=6.6, y=3) is given by

22.425y + 8x + X̂1 − 0.19448X̂2 − 2.0600Ŷ ≤ 54.739

When adding this cut, the two previous cuts and the updated piecewise lin-
ear approximations to the following MINLP sub-problem it can be solved to
optimality in only one ECP-iteration. The total number of MILP iterations
to solve all three convexified MINLP sub-problems with the integrated ECP
approach were, in this particular problem, thus only 2+1+1=4. Thus, the
global optimal solution of the nonconvex MINLP problem could be found by
solving only 4 MILP problems.

In Figure 8.2 the feasible region overestimated by the three cutting planes,
given above, is illustrated. From the figure it is observed that the solution
of the third convexified MINLP sub-problem can be obtained in one MILP-
iteration by the ECP method. Observe, again, that the projection of the cut-
ting planes, in the x − y space, changes when new grid points are added to
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Fig. 8. The final overestimated feasible region (with the cutting planes from the
ECP method) when solving the second convexified MINLP sub-problem.

the piecewise linear approximations. Thus the cutting planes above are again
differently projected into the x − y space at iteration three, than they were
at iterations one and two. In Figure 8.2 the first cutting plane is projected as
a dark continuous straight line, while the second and the third cutting planes
are projected as dark continuous broken lines.

Fig. 9. The final overestimated feasible region (with the cutting planes from the
ECP method) when solving the third convexified MINLP sub-problem.
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At the solution point (x=6.4, y=3), the termination criterion Eq. (27) is
satisfied. This solution is, thus, the global optimal solution to the considered
non-convex MINLP problem.

9 Conclusions

Transformation techniques, useful when solving nonconvex MINLP problems
including signomial functions to global optimality, were discussed in the ac-
tual chapter. The transformation techniques can handle both positive and
negative signomial functions and can simply be used to extend the applica-
bility of many MINLP solvers to new broader classes of nonconvex MINLP
problems. Some features of the transformation approaches were discussed and
some numerical examples were finally given. The optimization example illus-
trated, for example, how a disjunctive feasible region of the original problem
was divided into convex sub-regions in subsequent iterations, from where the
global optimal solution of the original problem finally was obtained.

Acknowledgments

Financial support from the Finnish Technology Agency, TEKES, is gratefully
acknowledged.

References

1. Björk, K.-M. (2002). A Global Optimization Method with some Heat Exchanger
Network Applications. PhD-thesis. Åbo Akademi University.
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Appendix

A piecewise linear function in K intervals can be represented in K binary
variables, bk, and equal many additional continuous variables, sk, by the linear
expressions (23-26) in section 3.5. In the expressions, (23-26), the sum of the
K binary variables should be exactly equal to one, reducing the total number
of combinations of the K variables to K. However, it is possible to reduce the
number of binary variables, in the model, substantially.

Below it is shown that it is possible to replace the K binary variables,
bk, with a corresponding number of continuous variables, bk, having the same
property that exactly one of the continuous variables, bk, takes the value one
whereas all the others take the value zero. In this case the piecewise linear
function can still be modeled by the constraints (23, 24 and 26), the constraint
(25) can, however, be omitted, but some additional constraints are required to
model the K zero one continuous variables, bk. In this formulation we needN
binary variables, βi, where2N−1 < K ≤ 2N to model these K zero-one
continuous variables, bk. Thus, for example, a piecewise linear function in 512
intervals can be modeled with 9 binary variablesβi. Expressions to model the
K, continuous variables, bk, with the mentioned properties, are given below.

First observe that an integer index k,wherek=1,2,. . . , K, can be expressed
by N , zero-one parameters, β̄i, as follows,

k = 1 +
N
∑

i=1

2i−1β̄i (A.1)

In the opposite way, since each index k corresponds to different parameters,
β̄i, the ith zero-one parameter corresponding to a given integer value k can
be expressed as β̄(i, k) = β̄i, where β̄i is defined by (A.1) for a certain k. For
example, if k=9, then β̄(1, 9) = 1, β̄(2, 9) = 0, β̄(3, 9) = 0, β̄(4, 9) = 1
and β̄(i, 9) = 0;i≥ 5.

By using such binary parameters, β̄(i, k) (uniquely given by the above re-
lation), together with N binary variables, βi, we will, in the following, define
some linear inequality constraints by which exactly one of K continuous vari-
ables bk; k=1,2,. . . , K will obtain the value one, whereas all other continuous
variables must obtain the value zero.
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First define N linear inequality constraints for each continuous variable k
such that the continuous variable, bk, is constrained to be less or equal to one
only for its unique set of binary parameters, β̄(i, k). Otherwise the continuous
variable, bk, is constrained to be less or equal to zero by the same set of
constraints. The constraints can be written as follows,

bk + (1− 2β̄(i, k))βi ≤ 1− β̄(i, k)
i = 1, 2, ..., N

}

k = 1, 2, ...,K (A.2)

Then define one additional linear inequality constraint for each continuous
variable, bk, such that the continuous variable, bk, is constrained to be greater
or equal to one, only for its unique set of binary parameters, β̄(i, k), otherwise
the continuous variable, bk, is constrained to be greater or equal to zero, or
the constraint is redundant. The constraints are given by,

bk +
N
∑

i=1

(1− 2β̄(i, k))βi ≥ 1−
N
∑

i=1

β̄(i, k)

bk ≥ 0







k = 1, 2, ...,K (A.3)

Since the continuous variable, bk, is defined to be nonnegative, each
variablebk, can now obtain only zero-one values. In the case when K <
2N the variablesbk are not uniquely defined. In this case the combinatorial
space for the binary variables, βi, should be reduced, since in this case, fewer
unique sets of binary parameters, β̄(i, k), are used, than the possible combi-
nations of the binary variables, βi. In this case, the requirement that exactly
one of the Kcontinuous variables should be equal to one is, thus, not gener-
ally satisfied by (A2-3). However, the following linear inequality constraint is
therefore used in order to eliminate all combinations of the binary variables,
βi, that do not correspond to any of the used unique sets of binary parameters,
β̄(i, k) (i.e. combinations corresponding to k values K < k ≤ 2N ).

K −
N
∑

i=1

2i−1βi ≤ 1 (A.4)

Now each combination of binary variables, βi corresponds to a unique set
of binary parameters, β̄(i, k). The sum of the continuous variables, bk, is thus
also constrained to be exactly equal to one.

Given N, binary variables, βi, and the (N + 1)K + 1 linear constraints
(A.2-4) we have now modeled K continuous variables, bk, k=1,2,. . . , K that
can only obtain zero-one values, and in addition the sum of the variables,
bk must be equal to one. The constraints, (A.2-4), can now be used together
with the K + 2 constraints (23, 24 and 26) when modeling a piecewise linear
function in K steps. K continuous variables sk, and equal many continuous
variables bkas well as N binary variables, βi, where2N−1 < K ≤ 2N , are
required in the model.

In the special case of only one interval, K = 1, the number, N , of binary
variables, βi, is zero (N = 0), since 2−1 < K ≤ 20. In this special case
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no constraints of the form (A.2-4) are, thus, required. Since the sum of the
continuous variables, bk, should be equal to one, the variable, b1in (23, 24 and
26) is, thus, defined to be equal to one (b1=1) and the expressions (23, 24, 26
and A.2-4) reduces to

Ẑ = Z1 + (Z2 − Z1)s1

x = x1 + (x2 − x1)s1

0 ≤ s1 ≤ 1

Remarks

Finally, it should be mentioned that although the number of binary variables
can substantially be reduced, the combinatorial space is the same in both
models. There are K possible combinations of binary variables, both in the
model (23-26) with bk as binary variables and in the model (23, 24, 26 and
A.2-4) with the fewer βi binary variables. This is because in the first model the
constraint (25) reduces the combinations of bk and in the second model the
feasible solutions of the binary variables, βi are reduced by the constraints
(A.2-4) to the same number of combinations. MILP solvers using optional
branching strategies can utilize the information in (25) by so-called special
ordered sets. The reduction of binary variables, from K to N does, thus, not
in general, need to improve the performance of the formulation, if the MILP
solver is able to use branching strategies for special ordered sets of zero-one
variables.
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Summary. In this paper, we present a novel approach for solving nonlinear mixed
integer stochastic programming problems. In particular, we consider two stage
stochastic problem with nonlinearities both in the objective function and constraints,
pure integer first stage and mixed-integer second stage variables. We formulate the
problem by a scenario based representation, adding linear nonanticipativity con-
straints coming from splitting the first stage decision variables. In the separation
phase we fully exploit the partial decomposable structure of SMINLPs. This allows to
deal with a separable nondifferentiable problem, which can be solved by Lagrangian
dual based procedure. In particular, we propose a specialization of the Randomized
Incremental Subgradient Method- proposed by Bertsekas(2001)- which takes dynam-
ically into account the information relative to the scenarios. The coordination phase
is aimed at enforcing coordination among the solutions of the scenario subproblems.
More specifically, we use a branch and bound in order to enforce the feasibility of
the relaxed nonanticipativity constraints. In order to make more efficient the over-
all method, we embed the Lagrangian iteration in a branch and bound scheme, by
avoiding the exact solution of the dual problem and we propose an early branching
rule and a worm start procedure to use within the Branch and Bound tree. Although
SMINLPs have many application contexts, this class of problem has not been ade-
quately treated in the literature. We propose a stochastic formulation of the Trim
Loss Problem, which is new in the literature. A formal mathematical formulation
is provided in the framework of two-stage stochastic programming which explicitly
takes into account the uncertainty in the demand. Preliminary computational re-
sults illustrate the ability of the proposed method to determine the global optimum
significantly decreasing the solution time. Furthermore, the proposed approach is
able to solve instances of the problem intractable with conventional approaches.

Key words: Stochastic Programming, MINLP, Trim Loss, Lagrangian de-
composition, Branch-and-Bound.
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1 Introduction

Stochastic programming deals with a class of optimization models and algo-
rithms in which some of the data may be subject to significant uncertainty.
Such models are appropriate when data evolve over time and decisions need
to be made prior to observing the entire data stream. Such inherent uncer-
tainty is amplified by technological innovation and market forces. Under these
circumstances it pays to develop models in which plans are evaluated against
a variety of future scenarios that represent alternative outcomes of data. Such
models yield plans that are better able to hedge against losses and catas-
trophic failures. Because of these properties, stochastic programming models
have been developed for a variety of applications, including electric power gen-
eration, financial planning, telecommunications network planning and supply
chain management, to mention but a few. The widespread applicability of
stochastic programming models has attracted considerable attention from the
OR/MS community, resulting in several recent books [7, 53, 39] and survey
articles [6, 57]. Nevertheless, stochastic programming models remain amongst
the more challenging optimization problems. While stochastic programming
grew out of the need to incorporate uncertainty in linear and other opti-
mization models [15, 12], it has close connections with other paradigms for
decision making under uncertainty. For instance, decision analysis, dynamic
programming and stochastic control all address similar problems, and each
is effective in certain domains. Stochastic programming (SP) provides a gen-
eral framework to model path dependence of the stochastic process within
an optimization model. For this rich class of models a variety of algorithms
can be developed. On the downside of the ledger, SP formulations can lead to
very large scale problems, and methods based on approximation and decom-
position become paramount. In this article, we will present a decomposition
based method for mixed integer nonlinear SP models. The paper is organized
as follows. In Section 2 we briefly explain the important role played by stochas-
tic mixed integer nonlinear programming in the development of optimization
based models. In Section 3 we will review the state of the art for this gen-
eral class of problems. In section 4 we present the formulation of stochastic
nonlinear mixed integer programs with discrete distribution. In Section 5 we
discuss specific issues related to the solution of stochastic programs. In Sec-
tion 6 we formulate a stochastic version of the well known deterministic Trim
Loss problem and we present some computational results. Finally, in Section
7 we give our conclusions.

2 Motivations

The decision making processes that take place during the selection of an op-
timal design in engineering problems can be made more rational and efficient
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thanks to the use of mathematical models within a global optimization frame-
work. The most significant contribution of mathematical approaches comes
from their ability to incorporate many alternative structures within a single
problem. This is achieved through the introduction of uncertainties, nonlin-
earities ad integrality restrictions. In particular, an explicit consideration of
these issues leads to more realistic and reliable formulations.

There have been considerable advances in the theory of deterministic
global optimization, resulting in the development of very efficient algorith-
mic procedures and mathematical programming techniques for identifying
the global minimum of nonconvex optimization problems. Furthermore, there
have been great advances in the capability of solving very large deterministic
problems.

On the contrary stochastic mixed integer nonlinear programming (SMINLP
for short) has received very little attention from the optimization community;
only few works, which we will discuss in detail further on, deal with this
class of problems. This despite the great importance of MINLP problems in
engineering processes. Starting from the progress in the deterministic case,
it should be clear that there are several challenges and opportunities in the
area of optimization under uncertainty. Mixed-Integer nonlinear stochastic
optimization problems are encountered in a variety of applications in vari-
ous branches of engineering and applied science, applied mathematics, and
operations research.

Most of the MINLP applications under uncertainty are the contributions
from the area of chemical engineering community. These represent very impor-
tant and active research areas that include process synthesis (heat exchanger
networks, distillation sequencing, batch plant design [34] etc..), planning un-
der uncertainty [35, 32], design of distillation sequences [51], optimization of
core reload patterns for nuclear reactors. Others applications are unit com-
mitment problem [4], nonlinear multiple objective asset-liability models airline
crew scheduling problem [64]. The process systems engineering community has
long been involved in the development of tools for the solution of design and
operational problems under uncertainty. These efforts have been motivated by
applications and, in many cases, yielded general-purpose algorithms. In the
next section we review some of these developments. It is worth noting that
almost all the works deal with continuous probability distribution functions
to describe uncertainty.

3 SMINLP: state of the art

In the design of chemical plants, there are usually a number of technical and
commercial parameters which are subject to significant uncertainty. These
uncertainties can correspond to variations either in internal process parame-
ters such as transfer coefficients, reaction constants, efficiencies and physical
properties, or external parameters such as quality of the feedstreams, product
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demands, environmental conditions and economic cost data. It is easy, thus, to
understand the significant developments that have been made in the design
and scheduling of batch plants and, more generally, in the optimal process
design under uncertainty. A general representation of the problem of design
under uncertainty has the following form:

maxy,d,z P (y, d, z, x, θ)

s.t. h(y, d, z, x, θ) = 0

g(y, d, z, x, θ) ≤ 0 (1)

d ∈ D, z ∈ Z, x ∈ X, y ∈ {0, 1}m, θ ∈ IRn

where the binary variables y are primarily associated with the existence or
nonexistence of a unit, or in general with a decision concerning the design
of the plant. Structurally, they are similar to the the design variables d; z
and x are vector of control and state variables (operating conditions) and θ
represents the vector of uncertain parameters which is assumed to follow a
continuous distribution function J(θ). The set of equalities h denote process
equations (equilibria relation, heat and mass balances), the set of inequalities
g correspond to design specifications and logical constraints, and P represents
a scalar objective function, typically an economic performance index which
must be maximized or minimized. Several approaches have been reported in
the literature addressing the problem of design under uncertainty in the form
of (1). Essentially three main directions can be broadly distinguished:

(i) stochastic framework;
(ii) parametric programming;
(iii) deterministic equivalent.

As far as the stochastic framework is concerned, we mention the work in
[33]. Design feasibility and economic optimality are simultaneously obtained
without requiring an a priori discretization of the uncertainty. A very attrac-
tive feature of this approach is that since most optimization tasks can be
performed independently the algorithm has a highly parallel structure that
can be further exploited. There are two major difficulties in directly address-
ing problem (1): the evaluation of the expected profit requires integration
over an (inner) optimization problem; this integration ought to be considered
within the feasible region of the plant, which is unknown at the first (design)
stage. Furthermore, the integrands for the integration are only implicitly de-
fined through the solution of the inner optimization problem with fixed design
variables. To overcome the above difficulties a solution strategy is proposed
based on the following ideas:

• The multiple integral for the expected profit evaluation over the feasible
region of the plant is approximated through a Gaussian quadrature formula
with unknown quadrature points;

• The unknown quadrature points are determined as part of the optimization
procedure through the solution of a sequence of feasibility subproblems;
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• A modified (generalized) Benders decomposition is employed where the
first-stage design variables are selected as complicating variables.

A combined multiperiod/stochastic modelling framework for process design
problems under uncertainty has been proposed in [29, 52, 3]. In these works
the vector of uncertain parameters is partitioned in two subsets according to
the mathematical model used to describe their behavior. The deterministic
uncertain parameters (θd) are modelled through a series of periods or sce-
narios in a multiperiod form forcing the structure/design to be feasible at
every period/scenario selected. The stochastic uncertainties (θs), on the other
hand, are described by probabilistic distribution functions (θs|θs ∈ J(θs))
and incorporated in a two-stage stochastic form. In this context, the soft
uncertainties can be considered part of the vector θs whereas the hard uncer-
tainties will be typically associated with θd. Following these considerations,
the process synthesis under uncertainty problem can be reformulated in a
multiperiod/stochastic optimization framework by considering as an objec-
tive function the maximization of a function given by the cost of the design
selected and the expected optimal profit as follows:

maxy,d,z Eθs
P̄ (y, d, z, x, θs, θ

i
d)

s.t. hi(y, d, zi, xi, θs, θ
i
d) = 0 i = 1, . . . , N

gi(y, d, zi, xi, θs, θ
i
d) ≤ 0 i = 1, . . . , N (2)

d ∈ D, zi ∈ Zi, x
i ∈ Xi, y ∈ {0, 1}m, θ ∈ IRn

where
P̄ (y, d, z, x, θs, θ

i
d) =

∑

i

wiP (y, d, zi, xi, θs, θ
i
d).

The iterative procedure for solving problem (2) is based on the following steps:

1. Define the deterministic and stochastic uncertain parameters according to
the desired design objectives and/or information available.

2. Select initial structural and design values.
3. Determine the feasible region in the span of the soft uncertain parameters

of the selected structure and design.
4. Place the integration points within the feasible region and calculate the

optimal profit of the plant at each of these points.
5. Obtain a new structure and design for the process by solving a master

problem given by the dual representation of the original problem.
6. If the convergence criterion is not meet, return to step 3 with the new

values for the design variables.

In this framework three alternative integration schemes are proposed in [3] for
the evaluation of the expectancy. In the first integration scheme, the integra-
tion points are chosen from the initial uncertain space without any knowledge
of the feasible region. There is no control over the number of integration
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Fig. 1. Quadrature points placed in the entire space

points per parameter that will result in feasible (or infeasible) problems. The
quadrature points are depicted in Figure 1.

In the second integration scheme the feasible range for each uncertain
parameter is first defined through a series of feasibility optimization subprob-
lems. Within this range the quadrature points are appropriately placed as
shown in Figure 2. By placing the integration points within the feasible re-
gion, this procedure should in principle give a more accurate approximation
of the expected profit with a smaller number of points.

A stochastic Monte Carlo integration for the expectancy can also be con-
sidered by randomly generating values of the uncertain parameters from uni-
form distribution functions as depicted in Figure 3. A practical advantage of
the Monte Carlo based integration schemes is that, typically, the number of
samples required for the approximation will not increase dramatically when
the number of uncertain parameters increases, compared to the number of
quadrature points of the numerical integration methods, thereby allowing the
solution of problems with large number of uncertainties.

Wei and Realff in [63] proposed two new algorithms (the optimality
gap and the confidence level method) to effectively solve convex stochastic
MINLPs with continuous probability distribution. The proposed approach is
a sampling-based method which approximate the problem (1) by sample aver-
age approximation. Hence, once the sample has been generated, the stochastic
problem becomes a deterministic one, which can be solved by existing deter-
ministic algorithms. In fact, the method proposed in [63] is wrapped around
a traditional method to solve deterministic MINLPs: the Outer Approxima-



DRAFT

Chapter 4: Nonlinear mixed integer stochastic problems 81

Fig. 2. Quadrature points placed in the feasible space

tion (OA) Method [21]. Both the algorithms (the optimality gap and the
confidence level method) involve solving at each iteration a stochastic NLP
subproblem (with fixed integer variables) to provide an upper bound, and a
stochastic MILP master problem to provide a lower bound and new values for
the integer variables. These problems are solved by applying the sample av-
erage approximation method. A stochastic version of the Branch and Bound
method is proposed in [55] for solving stochastic global optimization problem.
This work proposes an internal sampling algorithm opposed to the external
sampling algorithms mentioned above. Stochastic upper and lower bounds
are generated through the partitioning process ad subsets are not fathomed
at each iteration until a sufficiently large number of iterations are carries out.
Almost sure convergence of the method is proved.

The aim of the parametric programming approach is to obtain the optimal
solution as a function of the parameters. In other words, the theory of para-
metric programming specifically aims to provide basic tools for the analysis of
the effect of parameter changes to the optimal solution of problems, defining
a parametric profile of this optimal solution as a function of the uncertainty.
The key advantage of using parametric programming to address these appli-
cations is that the optimal solution is obtained as a function of the varying
parameters without exhaustively enumerating the entire space of the vary-
ing parameters. This feature has tremendous potential for on-line control and
optimization problems. While, for linear programs under uncertainty, para-
metric programming theory and tools are readily available, their extension
to mixed-integer and nonlinear programs, suitable for the solution of process
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Fig. 3. Random placements of samples

synthesis and design problems, is very limited. In his Ph.D. work on process
systems applications of parametric programming [50], Pertsinidis presented
two algorithms for the solution of right-hand side MINLPs. The first one is
based on Jenkins algorithm [36] for the solution of linear problems, while the
second one applies similar principles to the OA/ER algorithm.

In [2],in the context of process synthesis problems under uncertainty, an
implementable algorithm for the solution of scalar right hand side parametriza-
tions of the parametric mixed integer optimization problem (1), based on the
OA/ER algorithm is proposed, by extending and completing the original ideas
of Pertsinidis. The procedure, based on the outer approximation/equation re-
laxation (OA/ER) algorithm of Kocis and Grossmann [37], involves the iter-
ative solution of NLP subproblems and a parametric MILP master problem.
The basic idea of the proposed strategy is to successively alternate between a
set of nonlinear primal programs and a single parametric MILP master prob-
lem so as to establish appropriate upper and lower bounds of the optimal
solution. The primal subproblem is first constructed by fixing the design vari-
ables (supposed binary and involved only in linear constraints). The direct
parametric solution of the parametric nonlinear problem obtained can effec-
tively be avoided and an approximate solution can instead be obtained by
computing valid parametric upper and lower bounds.

The basic idea of the deterministic-based approaches is to transform the
original optimization problem into a deterministic approximation, by specify-
ing in advance a number of uncertain parameter realizations in a sequence of
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time periods or stages. The optimal design problem can then be approximated
by the following multi-period (multistage) program:

maxy,d,zi,xi

N
∑

i=1

P (y, d, zi, xi, θi)

s.t. hi(y, d, zi, xi, θi) = 0 i = 1, . . . , N

gi(y, d, zi, xi, θi) ≤ 0 i = 1, . . . , N (3)

d ∈ D, zi ∈ Zi, x
i ∈ Xi, y ∈ {0, 1}m, θ ∈ IRn

Problem (3) exhibits a block diagonal structure which can be exploited for
computational efficiency. In Paules and Floudas [51] a nested solution pro-
cedure that combines the Generalized Benders Decomposition [25] and the
Outer Approximation/Equality Relaxation is proposed. The decomposition
of the overall large scale stochastic problem with MINLP recourse is achieved
by first partitioning the variables into structural and periodic variables. Each
independent subproblem for the structural variables fixed is a MINLP prob-
lem. The solution of these subproblems will partition the variable set into
a discrete set and a continuous set and will require the iterative solution of
a purely nonlinear subproblem and a mixed-integer linear master problem.
These problems are referred in [51] as inner primal problem and inner master
problem to distinguish them form the outer master problem controlling the
stochastic decomposition and the full scenario subproblems. The inner primal
problems include only constraints of the scenario subproblems involving only
continuous variables. Also constraints of the scenario subproblems involving
only discrete variables are included in the inner master problem. The master
problem may be either a MINLP or a NLP. If the problem is a MINLP a
Generalized Benders Decomposition method has to be applied.

A branching algorithm has been proposed in [64]. It has been designed
to solve a specific application and exploits the particular structure of the
problem. In particular, the branching algorithm branches simultaneously on
multiple variables without invalidating the optimality condition. The paper
focuses on the key idea that scheduling decisions only create additional delays
when crews are assigned to switch planes. When crew assignments follow
plane assignments, no additional delays are created in the system due to crew
schedules. In order to create the branching constraints, a specific type of
delay, called the switch delay, is described. A switch delay is a delay due to
a plane change. A hierarchy for the flight pairs based on the delay costs, is
constructed. Along one branch, the algorithm forcibly includes the identified
flight pair in a pairing selected in the optimal solution at that node. On
the other branch, it excludes said flight pair from any pairing selected in
the solution for that node. Since the algorithm has been designed to solve a
specific problem, its applicability to other problems is doubtful. Furthermore
the nonlinear recourse function reduces to a linear one when the long-range
planning first stage variables are fixed.
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This last contribution focuses on nonconvex stochastic problems with dis-
crete probability distribution function, and thus seems to be the only existing
work dealing with SMINLPs. To the best of our knowledge, no other contri-
bution dealing with SMINLPs has been published.

4 Problem formulation

We consider the following two-stage stochastic (mixed) integer nonlinear prob-
lem (SMINLP):

minx f1(x) + Q(x)

g1(x) = 0,

h1(x) ≤ 0, (4)

g1 : RnZ1 → Rme , h1 : Rn1 → Rmi ,

x ∈ Zn1
+ ,

where

Q(x) = EξQ(x, ξ(ω))

Q(x, ξ(ω)) = min
y

f2(y(ω), ω)

g2(x, y(ω), ω) = 0, (5)

h2(x, y(ω), ω) ≤ 0,

g2 : Rn1+n2 ×Ω → Rte , h2 : Rn1+n2 ×Ω → Rti ,

y ∈ Y,

where Ω is a certain probability space equipped with a σ-algebra F and with
a probability measure, ξ is a random variable whose probability measure is
available, and f1, f2, g1, g2, h1, h2 are general nonlinear functions. x denotes
the first stage variables, whereas y(ω) represent the second stage variables.
The set Y is the union of two subsets YR and YZ with YR ∈ Rn2

+ and YZ ∈ Zn2
+ .

That is, in the above formulation, some of the second stage variables (those
indexed by the set YZ) are constrained to take discrete values. Formulation 5
encompasses nonlinear integer problems (if YR = ∅) as well as mixed integer
nonlinear problems. We can recognize the general form of problem (1) with in
addition the specification of a two-stage structure. In this framework we can
think of the first stage variables as design variables and the second-stage vari-
ables as operating variables. The model is a slight generalization of problem
(1) allowing first stage decisions to be integer. Second stage decisions can be
purely continuous or purely integer as well as mixed integer.

For the sake of clarity we briefly recall the meaning of a stochastic program
with recourse (or two-stage stochastic program). The key feature of the Two-
Stage stochastic models is the presence of some recourse actions. The set
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of decisions is divided into two groups. A number of decisions have to be
taken before the problem parameters are known: these decisions are first-stage
decisions and they are taken in the first stage. Other decisions can be taken
after the uncertainty is disclosed. These recourse decisions are functions of the
actual realization of the uncertain parameters and of the first stage decisions.
The sequence of the events characterizes the models as recourse models. We
maintain here the additive form of the recourse function.

There is a severe shortage of nice properties such as convexity and conti-
nuity in two-stage nonlinear integer stochastic problems. This is mainly due
to the integer restriction. If the only integer variables are the first stage ones,
the properties of the recourse function are the same as in the continuous case.
In the continuous nonlinear case if f, h are convex and g is affine for all ξ,
the problem is convex. When integrality restrictions are present in the second
stage, even for the linear case the recourse function is in general noncon-
vex. The nature of the SMINLP suggests to solve it as a global optimization
problem. It is worth noting that this class of problems is challenging for the
inherent difficulty and also for the dimension which strongly depends on the
number of scenarios.

The expectation in (5) involves multidimensional integration. To make
the problem tractable, uncertainty is usually expressed in terms of an ap-
proximate discrete distribution. However, the need for accuracy in modeling
inevitably leads to the explosion of dimension in the size of the corresponding
mathematical program. This imposes additional limits on the way of modeling
stochastic programming problems and further complicates the management
of such models. In consequence, there still does not exist a standard way of
modeling stochastic programming problems and solution methods are still in
infancy. In the next section we address the difficulties of modeling and solving
stochastic programs and discuss in detail a decomposition approach developed
in [10] to deal with this problem.

The assumption of a discrete probability space allows the objective to be
written as a finite sum and the constraints to be replicated for each element
in Ω. Assume that ξ has a discrete probability distribution over Ω = 1, .., S,
with P[ξ = ξi] = πi. We may consider the set of possible outcomes, which is
finite. Thus, the problem can be restated as follows:
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min f1(x) +

S
∑

s=1

πsf
2(x, ys, ξs)

g1(x) = 0

h1(x) ≤ 0

h2
s(x, ys, ξs) = 0 ∀ s = 1, . . . , S (6)

g2
s(x, ys, ξs) ≤ 0 ∀ s = 1, . . . , S

x ∈ Zn1
+ , ys ∈ Ys ∀ s = 1, . . . , S

g1 : Rn1 → Rme h1 : Rn1 → Rmi

g2
s : Rn1+n2 → Rte h2

s : Rn1+n2 → Rti s = 1, . . . S

where πs denotes the probability that scenario s occurs. The deterministic
equivalent formulation is a large scale nonlinear integer problem with n1+n2S
variables and me + mi + teS + tiS nonlinear constraints. Depending on the
number S of scenarios this problem becomes intractable. In fact, due to the
integer requirements the recourse function is in general nonconvex and dis-
continuous. This suggests that this class of problems represents a connection
between global optimization and optimization under uncertainty.

It is easy to recognize that problem (6) can be decomposed into two inter-
esting subproblems with common variables x. The first stage variables x act
here as complicating variables because they link the first stage with the second
stage and, more importantly for our purposes, they make the problem non-
separable with respect to the scenarios. This suggests that we apply efficient
relaxation schemes. In the following we propose a coordination-decomposition
approach to tackle this general class of problems.

5 The two-phase solution approach

Our method is based on two phases. The first phase consists in exploiting the
structure of the problem by decomposing it into smaller subproblems. The de-
composition approach breaks the very large problem into smaller manageable
optimization problems. This has several advantages. First, the peak memory
requirement (needed to generate and then to read the deterministic equivalent
problem) can be avoided. Additionally, the problem can be passed to the solver
in pieces that are suitable for the decomposition approach. The second phase
is based on a Branch and Bound scheme. This global phase works by parti-
tioning the solution space into smaller sets, one for each scenario. The global
solution of the problem restricted to each subset is carried out in the decom-
position phase. This two-phase structure reflects the usual form of a Global
Optimization algorithm in which the solution space is partitioned into smaller
sets and then the problem is solved in each subset. The global optimality of
the solution found through a Branch and Bound algorithm can be guaranteed
only if the bounding step generates valid upper and lower bounds on the mixed
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integer nonconvex problem. In order to obtain a valid lower bound, a relaxed
problem must be constructed from problem (6). This relaxed problem has to
be solved to global optimality. Thanks to the decomposition scheme we apply,
the solution of this problem can be split into easier and smaller subproblems
with a common structure in term of constraints and objective function. Thus,
in theory very efficient algorithmic procedures for solving particular classes of
nonconvex problems can be used (see for example [34, 19]).

In the following, we give a detailed description of the our decomposition-
based Branch and Bound method (DCB&B).

5.1 The Decomposition Phase

The inherent difficulty arising in stochastic programming is mainly due to
the high dimension of the equivalent deterministic formulation which can be-
come unmanageably large. If the problem was fully separable the mentioned
difficulties could be avoided thanks to the possibility of parallelization. Unfor-
tunately the presence of global variables x leads to a nonseparable problem.
The model (6) has a block diagonal structure, in which distinct blocks of vari-
ables and constraints are linked by means of global variables x that can be
viewed as complicating variables. For large-scale problems with a block sep-
arable structure and a reasonably small number of coupling constraints Dual
Decomposition methods are often successful. For a comprehensive review on
decomposition methods for stochastic programming we refer the reader to
[55]. A good review of decomposition methods for deterministic mathematical
programming can be found in [43].

Because separability is not perfect, to decouple the submodels we can
derive an equivalent deterministic problem by means of a variable splitting
representation. This splitting scheme [49] introduces copies x1, . . . , xS of the
first-stage variable x and adds simple linking constraints. This set of con-
straints have a specific meaning in the context of stochastic optimization.
In fact they represent the nonanticipativity principle, which states that the
first-stage decisions should not depend on the scenario which will occur in the
second stage. In other words the here and now decision should not depend on
the future information.

By applying this scheme, the problem can be reformulated as a scenario
block separable MINLP with linear coupling constraints:
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min

S
∑

s=1

ps((f
1(xs) + f2(xs, ys, ξs)) (7)

h1
s(xs) = 0 ∀s = 1, . . . , S (8)

g1
s(xs) ≤ 0 ∀s = 1, . . . , S (9)

h2
s(xs, ys, ξs) = 0 ∀s = 1, . . . , S (10)

g2
s(xs, ys, ξs) ≤ 0 ∀s = 1, . . . , S (11)

xs = xs+1 ∀s = 1, . . . , S − 1 (12)

xs ∈ Zn1
+ , ys ∈ Ys s = 1, . . . S (13)

The variable splitting method was originally applied in conjunction with La-
grangian relaxation [44] to optimization problems with “hard“ and “soft“ set
of constraints and it is equivalent to what is termed Lagrangian Decomposition
in [26]. Carøe and Schultz [11] and Hemmecke and Schultz [27] used a similar
decomposition approach for two stage linear integer problems. We also men-
tion Takriti and Birge [58]. For an impression on Lagrangian approaches for
multistage stochastic integer programming developments we refer to Römisch
and Schultz [54]. Different Lagrangian decomposition schemes and the re-
sulting decomposition approaches have been proposed in [17] for multistage
stochastic programming (the focus of the paper is on comparing the duality
gap for different decomposition technique). We observe here that even if we
are in presence of a duality gap coming from the nonconvexities in the con-
straints and the integrality restrictions on the second stage, this gap tends
to diminish when the number of scenario increases [5]. The nonanticipativity
constraints can be expressed in form of a linear constraint Ax = 0 with a
suitable matrix A. The coefficients of the constraints (12) define a giant ma-
trix A = [A1, . . . , AS ] again scenario separable. The relaxation of these linear
linking constraints splits the problem into |S| independent MINLPs.

D(λ) = min

S
∑

s=1

πs((f
1(xs) + f2(xs, ys, ξs)) +

S
∑

s=1

λ(Asxs) (14)

h1
s(xs) = 0 ∀ s = 1, . . . , S (15)

g1
s(xs) ≤ 0 ∀ s = 1, . . . , S (16)

h2
s(xs, ys, ξs) = 0 ∀ s = 1, . . . , S (17)

g2
s(xs, ys, ξs) ≤ 0 ∀ s = 1, . . . , S (18)

xs ∈ Zn1
+ , ys ∈ Ys s = 1, . . . S (19)

The above minimization is scenario separable and we have:

D(λ) =

S
∑

s=1

Ds(λ) (20)

where
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Ds(λ) = min{πs((f
1(xs) + f2(xs, ys, ξs)) + λ(Asxs) : (xs, ys) ∈ XS}

and Xs denotes the scenario s constraints. The Lagrangian dual is

max
λ

D(λ) (21)

¿From a formal view point the problem of finding the best lower bound (dual
problem) for (20) leads to a non smooth non differentiable concave problem
that can be tackled with subgradient methods and their variants. Model (20)
is now decomposable into |S| subproblems and, for any choice of λ also yields
a lower bound to the optimal solution of the original problem. Nevertheless
in presence of nonlinearities in the Lagrangian function for fixed λ may not
be convex. As the recent survey Neumaier [47] of complete solution tech-
niques in global optimization documents, there are now about a dozen solvers
for constrained global optimization that claim to solve global optimization
and/or constraint satisfaction problems to global optimality by performing a
complete search. Within the COCONUT project [56], many of the existing
software packages for global optimization and constraint satisfaction problems
[46, 48, 45, 40, 22] are evaluated and compared. The purpose of a global code
is to check whether there is indeed no better point; this may well be the most
time-consuming part of a complete search. Thus, it easy to understand the
crucial role that the problem dimension plays in the search for the global op-
timum. It has been shown that the success rate for models of small dimension
is greater than the same rate for larger models. In our opinion the good per-
formance of the method we propose reflects this feature of the global solvers.
In the following we give a description of the solution phase for the problem
(21).

5.2 The solution of the Lagrangian dual problem

Lagrangian relaxation of coupling constraints leads to a nondifferentiable op-
timization problem. This dual problem consists of the sum of a large number
of component functions each over one of the scenarios constraint sets. It is
worth observing that in this dual decomposition scheme the Lagrangian sub-
problems keep all the original constraints. This implies that each subproblem
has the same constraints structure of the original SMINLP problem. Thanks
to the separability, both, subgradients and dual functions, can be calculated
by solving a number of a relatively small subproblems Ds(λ), one for each sce-
nario. Furthermore our SMINLP belongs to the class of problems for which
the Incremental Subgradient Method has been studied. This method has been
proposed in [9] for minimizing a convex function, sum of a large number of
component functions. The incremental subgradient method is similar to the
standard subgradient method [5]. The main difference is that at each iteration,
the multiplier vector is changed incrementally, through a sequence of steps.
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Each step is a subgradient iteration for a single component function and there
is one step per component function. It has been experimentally observed that
incremental subgradient approaches have a good practical rate of convergence.

We consider the general framework of this method and propose some mod-
ifications which exploit the specificity of our problem.

The Incremental Subgradient Method performs the subgradient iteration
incrementally, by sequentially taking steps along the subgradients of the com-
ponent functions, with intermediate adjustment of the variables after process-
ing each component function. Following our notation, and recalling that we
are in presence of a concave nondifferantiable problem instead of a convex one,
the basic step of the method can be formulated. The subgradient of (14) at

λ is g(λ) =
∑S

s=1 Asxs(λ), where xs(λ) are optimal solutions of the scenario
subproblems. The subgradient is a vector of dimension n1(S − 1) and is the
sum of gi(λ), where gi(λ) is a subgradient of Di at λ.

We let the superscript k be the iteration count of the standard subgradient
method. Each step is a subgradient iteration for a single component function
(single scenario in our setting), and there is one step per component function.
Thus, an iteration can be viewed as a cycle of S subiterations.

At a generic iteration k of the subgradient method λk = φk
S , where φk

s is
obtained after the S steps

φk
s = [φk

s−1 − αkgk
s(λ)], s = 1, . . . , S (22)

and

φk
0 = λk , (23)

The updates described in (22) are referred to as the S subiteration of the kth
cycle. In all subiterations of a cycle we use the same stepsize αk.

The rows of our giant matrix A have only two nonzero components equal to
1 and -1. Giving the particular structure of the nonanticipativity constraints,
at each subiteration of the method sketched above, the subgradient vector
gi(λ) is worked up by taking into account the term relative to one scenario
Asxs(λ). For the first scenario the only nonzero in the subgradient vector are
those relative to the first n1 rows of the matrix A1 which has the form:
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and thus has a diagonal block of 1 and all other elements zero. This implies
that only the portion of multiplier λ associated with the first scenario will



DRAFT

Chapter 4: Nonlinear mixed integer stochastic problems 91

be changed during the first update. For the second scenario the matrix has
two diagonal blocks due to the fact that variables associated with the second
scenario are present in two constraints of type (12). A2 has the form:
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.

In this case only the components of the multiplier λ associated with the first
and the second scenario will be changed. Similar considerations can be drawn
for the remaining scenarios. For all the scenarios except that for the first one,
only two components of the multiplier vector are updated with the rule (22)
because only two blocks have nonzero elements. The idea is, once the sub-
problem for a scenario s is solved and the multiplier vector has been updated
according with (22),we keep this value fixed for the remaining S− 1 subitera-
tion. This case allows us to deal with a restricted dimension of the dual vector
λ in the subproblem, speeding the solution process.

It can be verified that the order used for processing the component func-
tions Ds(λ) can significantly affect the rate of convergence of the method. A
randomized version of the incremental subgradient method has been proposed
in [9], where the component function to be processed is chosen randomly. At
each step a component function is chosen randomly according to a uniform
distribution. In our case each component function Ds(λ) has an associated
probability, namely the probability of the scenario s. So we can reformulate

the dual problem as follows: maxλ Eω{D̂ω(λ)} where D̂ω(λ) = minx,y Dω(λ).
Recalling the assumptions made afterwards we can restated the problem as:

maxλ

∑S
s=1{πsD̂s(λ)}. In other words we select the scenario to be processed

according to the probability distribution of the different scenarios.

5.3 The Coordination Phase

Relaxing nonanticipativity constraints leads to a block separable problem
structure. Once the relaxed problem is solved, the resulting solution might
not coincide in their x components. In order to enforce the relaxed nonantic-
ipativity constraints a Branch & Bound procedure is used. This coordination
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approach, introduced by Carøe in [11] for linear mixed integer stochastic prob-
lems, uses Lagrangian relaxation of nonanticipativity constraints as bounding
procedure. To come up with a candidate for feasible first-stage solutions, the
average

x̄ =

S
∑

s=1

πsxs (24)

combined with some rounding heuristic in order to fulfill the integrality re-
striction is used. In the following, we shall denote by P the list of candidate
problems p together with an associated lower bound zLD. The outline of the
algorithm is as follows:

Step1 (Inizialization). Set z̄ = +∞ and let P be a list of problems which initially
only contains the original problem.

Step2 (Termination). If P=∅ then the solution (x, y) that yielded z̄ is optimal.
Step3 (Node Selection). Select and delete a problem p from P , solve the corre-

sponding Lagrangian dual whose optimal value yields the bound zLD(p).
If p is infeasible go to Step 2.

Step4 (Bounding). If zLD(p) ≥ z̄ go to Step 2. Otherwise, if the scenario solutions
xs are identical, update the best known solution and its function value
z̄. Delete from P all problems with zLD(p) ≥ z̄. Go to Step 2 . Else if
the scenario solutions differ, compute the average x̄ and round it by some
heuristic to obtain x̄R. If x̄R is feasible and zLD(p) ≤ z̄ , then update the
best known solution and its function value z̄. Delete from P all problems
with zLD(p) ≥ z̄. Go to Step 5.

Step5 (Branching). Select a component xi of x and add two new problems to P
obtained from P by adding the constraints x̄i ≤ bx̄ic and x̄i ≥ bx̄i + 1c
respectively. Go to Step 2.

Here nonanticipativity requirements are relaxed and feasibility is obtained
when the scenario solutions are identical. At each node of the Branch and
Bound tree the proximal bundle method defined in [38] is used in [11] for
solving the Lagrangian dual.

The efficiency of the basic approach introduced above depends on different
issues. First of all we observe that instead of solving the Lagrangian dual to
optimality, we may stop the iterations as soon as the Lagrangian value rises
above the best known upper bound z̄. Such a combined approach embeds
the solution of the Lagrangian dual within the Branch and Bound tree as
proposed in [8] and [41]. The basic idea underlying the approach in [41] is
to branch early, possibly after a single iteration of the Sequential Quadratic
Programming solver. The drawback of the early branching rule is that since
the nonlinear problems are not solved to optimality, there is no guarantee that
the value function at each step of the SQP solver provides a lower bound. As
a consequence, in [41] the author proposed a new fathoming rule in order to
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derive lower bounds needed in the Branch and Bound process. In a similar
way as in the integrated SQP- Branch & Bound, branch early, after a few
iterations of the subgradient-based procedure used for solving the dual. Even
if the dual is not solved to optimality, the evaluation of the dual function value
is a lower bound that can be used within the Branch and Bound framework.
Clearly, the tree-search and the iterative solution of the dual are interlaced.

A heuristic for deciding when to branch early is introduced. By exploiting
the solutions of the incremental subgradient subproblems, we may define an
early branching rule. It is performed only if the nonanticipativity gap τ ≥ ε,
where τ = max |x(i+1)−x(i)| and ε depends on the problem at hand. If such a
case, the solution process is stopped before the S subiterations are completely
performed.
The Lagrange multiplier vector is initialized at each node of the Branch and
Bound tree with the multiplier vector of the parent node. This warm start
procedure is motivated by the fact that subproblems generated at a given
node of the Branch and Bound tree differ only in a bound constraint from the
father.

Finiteness of the algorithm

Consider a node that is unfathomed. Suppose we solve the Lagrangian dual ob-
taining a solution infeasible with respect to the nonanticipativity constraints.
Thus, the branching step can further refine it, branching on a integer first
stage variable and creating two subproblems in both of which that variable is
fixed. Since our Branch and Bound is an enumeration procedure, the algorithm
terminates with an optimal solution.

5.4 Implementation

Most of the difficulties to model uncertainty through stochastic programming
originate from the lack of an agreed standard of its representation. Indeed,
stochastic programming problems usually involve dynamic aspects of decision
making which combined with uncertainty inevitably leads to a complicated
model. In consequence there still does not exist a standard way of modeling
stochastic programming problems in algebraic modeling languages (AML).
AML enables a modeler to express the problem in an index-based mathe-
matical form with abstract entities: sets, indices, parameters, variables and
constraints. The key notion in the AML is the ability to group conceptually
similar entities into a set. The presence of two different sets associated with
stages and uncertainty dimensions in stochastic programs creates a difficulty
to an algebraic modeling language. The lack of standardization of modeling
stochastic programs in AMLs has at least two reasons. Firstly, there is not yet
a widely accepted syntax for a description of stochastic programs. Secondly,
there is not yet a compact and flexible format in which AMLs could send
the stochastic program to the specialized solver. Although several attempts
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have been made to standardize this process of modeling linear stochastic pro-
grams directly in AMLs [42], for the nonlinear case the process is still in an
early phase (SMPS can handle nonlinearities only in the objective function).
We should emphasize that the possibility of modeling stochastic programming
problems directly in AMLs is not the only issue in this field. Indeed, the size of
these problems tend to explode since it grows exponentially with the number
of scenarios. Another important point is that these huge problems are struc-
tured and they can only be solved by specialized optimization techniques if
their structure is exploited. Several powerful codes have been developed for
linear stochastic programs such as DECIS, MSLiP, but they still need to be
linked with modeling languages. At the moment of writing this chapter, the
only option available in AMLs is to generate the full deterministic equivalent.
The only alternative left is thus to use the general purpose solvers that by de-
fault would use a direct solution method to tackle the problem. This approach
is quite efficient as long as the problem is small to medium size and can be gen-
erated within memory limits. Even if the user is satisfied with the accuracy of
the generated problem, and the general purpose solver can solve this problem
efficiently, there is a danger that the generation of the problem significantly
contributes to the overall solution process. An alternative would consist in
implementing simple decomposition technique directly within AMLs. The in-
terested reader can consult the library of examples of algorithms implemented
through AMPL [20]. We underline that there is a definite need to improve the
links between the AMLs and the solvers. Stochastic programming solution
techniques accessible from modeling systems certainly need further develop-
ment to reach industry standard. We expect that this progress will be made
in the next few years and the integrated modeling system for stochastic pro-
gramming will enable the modelers to popularize the stochastic programming
technology through relevant applications.

Given this lack of a standard for stochastic optimization problems, our
implementation does not have the restrictions arising for a specific input for-
mat. We have used object-oriented programming techniques to facilitate the
management of such models. In particular in order to embed optimization
functionality in applications, we have used the Lindo Api [31] callable library
and the C++ to write the implementation of the model. The Lindo Appli-
cation Programming Interfaces is a full-featured callable solver library for
software developers. It allows users to incorporate optimization solvers into
their own programs. It is able to solve a wide range of optimization prob-
lems. In particular the Global solver available in Lindo Api employs branch
and cut methods to break a problem into many subregions. Branching is used
together with bounding to get a valid lower bound on the optimal objective
value in each subregion. A promising subregion may be subdivided further
in order to get a more accurate bound. The global solver combines a se-
ries of range bounding (e.g., interval analysis and convex analysis) and range
reduction techniques (e.g., linear programming and constraint propagation)
within a branch-and-bound framework to find proven global solutions. The
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Lindo Api Global solver returns a provably global optimal solution and is one
of the the fastest and most robust one among the currently available global
solvers. The characterization of general nonlinear models is not easy as linear
or quadratic models. In fact the constraints and the objective function cannot
be represented with matrices and vectors alone. Lindo Api offers two basic
interface styles for this purpose: the “black-box” style and ”instruction list”
style. The drawback of using this global optimizer is that it works only with
the“instruction list“ input format. Under this style, the programmers have to
write a set of instruction lists, one instruction for each row of the model. An
instruction list is a vector of integers that encodes the original mathematical
model. It represents the model in a variant of Reverse Polish notation. For
Lindo Api a postfix expression is simply a list of integers. Each operator has
a unique integer associated with it. This flat form problem definition can be
very time consuming even for medium size problems. The separation of the
problem into many subproblems facilitates this task. At the present, the im-
plementation of the DCB&B method is not hooked with a modelling language.
A small parser has been developed which reads a problem in Lingo [30] for-
mat and transforms it into in the data structure required by the implemented
method. The information about the problem (variables, constraints, objective
function) is stored in the class Dataprob. This class in addition to the standard
constructor and destructor, has a function which allows the parser to build
the problem as an object of the Dataprob class. We recall that the main task
of our DCB&B method is to split the original problem into small problems.
That is, we need to create auxiliary problems from the original problem, each
of them corresponding to a single scenario. This reformulation is carried out
by means of a function which has access to the Dataprob class. Lindo Api of-
fers callable functions to add/delete constraints and variables, to modify the
constraint type, the variable type (continuous, integer or binary), the upper
and lower bounds and the right-hand side of a given model. Furthermore, we
may give a name to the variables and constraints. These functionalities are,
thus, simply imported in our class. All the characteristic of a given problem
can be easily accessed. Because we are interested in using the problem within
a Branch and Bound scheme, we equipped the class Dataprob with a func-
tion able to clone the problem. In the DCB&B method described in section
5 the solution of the dual function is embedded within a Branch and Bound
algorithm. The flowchart shown in figure 4 highlights the main features of the
algorithm. For the sake of clarity the Solve block will be further exploded in
figure 5.

The reformulator function reads an object of the Dataprob class and cre-
ates |S| subproblem, one for each scenario. Each of these subproblems is still
an object of the Dataprob class, but with small dimension. This decomposition
in small problems but with the same structure of the original problem, leads
to considerable reduction in the solution time. Even thought we have to re-
peat the solution for the subproblems many times, the algorithm shows good
performance. This is manly due to the highly nonconvex nature of the prob-
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Fig. 4. Flowchart for the DCB&B method.

lem. In fact, the problem of finding a globally optimal solution of a nonconvex
problem is a NP-hard task and the time to find a global optimum may in-
crease exponentially with problem size. Thus decomposition seems to be the
best way to tackle this kind of problem. The reformulator function utilizes
Lindo functions in order to detect a series of independent block structures. It
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Fig. 5. Flowchart for the Solve block.

is worth noting that the Lindo Api solver offers the possibility to set a user
adjustable parameter (LS_IPARAM_DECOMPOSITION_TYPE) to check whether a
model can be broken into smaller independent problems. If total decomposi-
tion is possible, the solver will solve the independent problems sequentially to
reach a solution for the original model. This decomposition strategy applied
to the problem (7)-(13) without the DCB&B decomposition, doesn’t produce
substantial improvements in the overall solution time.
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6 Illustrative Application: The Stochastic Trim Loss
Problem

In order to test the efficiency of the proposed approach, we have formulated a
stochastic version of the deterministic Trim Loss problem. In this section, we
develop a mathematical model for the Trim Loss Problem under uncertainty.
The cutting stock problem (CSP) or Trim Loss problem is one of the oldest
and most studied problems in the field of combinatorial optimization. Much
of the interest in this problem stems from the large number of manufacturing
problems to which the CSP applies. The goal is to determine the optimal plan
to cut an inventory of standard size materials ( rolls of paper, wire ) to satisfy
a set of customers’ demands. Cutting stock problems may involve cuts being
made in one or more dimensions and may be solved with a variety of objectives
(e.g., minimizing trim loss, maximizing profit and so on). The typical solution
approach involves attempting to determine a set of cutting patterns that will
produce the required collection of items with a minimal waste production or
trim loss.

A general description and classification of cutting stock problems is given
in [18]. The one-dimensional cutting stock problem is a NP-hard problem.
Because of its complexity, solutions to the Trim-Loss problem have often
been generated using techniques such Branch and Bound [16] and Branch and
Price [59, 60]. Heuristic approaches such evolutionary programming, genetic
algorithms and simulated annealing [13, 24] have also been shown to be quite
effective at generating solutions to the standard one dimensional Trim-Loss
problem. Various authors have considered the deterministic problem in the
context of integer nonconvex optimization [28], [62], or as global optimization
test problem [23]. A linear programming approach combined with heuristic
rules has been used in [61] in order to handle non-linearities and discrete
decisions. The solution of Trim-Loss problems with a mixed integer nonlinear
programming algorithm is considered in [1].

We address one of the most interesting generalizations of the CSP, the
stochastic Trim Loss problem. In particular we formulate a model that ex-
plicitly incorporates uncertainty in customers order via a set of scenarios.
The resulting formulation is a stochastic nonlinear integer program. The pre-
liminary computational experience presented in section 6.2 shows that the
proposed method allows us to achieve a considerable reduction of the overall
solution time, and that the algorithm is quite insensitive to scenario growth.

6.1 Problem formulation

In this section we formulate a mathematical model for the one dimensional
Trim Loss Problem under uncertainty. We first describe a deterministic formu-
lation, and later extend this formulation to a stochastic setting by introducing
a set of scenarios.
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Consider the problem of cutting different product paper rolls from raw
paper roll. There are different types of product rolls to be cut. Each type of
product roll corresponds to a certain width. The length of the product paper
rolls is assumed to be equal to the length of the raw paper rolls. The sum of
the widths of the product paper rolls at each type of cut must be between
a given width range. The product order specifies the total number of a spe-
cific product roll that have to be cut. In general it is not possible to cut out
an entire order without throwing away some of the raw paper. The optimum
cutting scheme aims at minimizing the waste paper or trim loss. In order to
identify the best cutting scheme, a maximum number of different cutting pat-
terns is postulated, where a pattern is defined by the position of the knives.
Each cutting pattern may have to be repeated several times. The Trim Loss
problem is characterized by the following notation.
Parameters:
I : the total number of different types of product rolls to be cut indexed by i;
J : the total number of different types of cutting patterns indexed by j;
bi: the width of product i for each i in I ;
Bmax: the maximum width allowed for a cutting pattern j for each j in J ;
∆ the width tolerance for cutting pattern j for each j in J ;
Nmax a physical restriction of the number of knives that can be used in the
cutting process;
cj the cost of the raw material for the cutting pattern j for each j in J ;
Cj the cost of the change of cutting pattern j for each j in J ;
Mj an upper bound on repeats of pattern j for each j in J .
Variables:
mj the multiple of cutting pattern j used for each j in J ;
yj a binary variable that indicates wether a pattern j is used or not for each
j in J ;
nij number of a product i in cutting pattern j for each i in I and j for each
j in J .

The following mathematical model formally describes the problem of de-
termining the optimal cutting scheme.
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min
mj ,nij ,yj

J
∑

j=1

cjmj + Cjyj (25)

subject to

J
∑

j=1

mjnij ≥ di i = 1, . . . , I (26)

(Bmax −∆)yj ≤
I
∑

i=

binij ≤ Bmaxyj j = , . . . J (27)

yj ≤
I
∑

i=1

nij ≤ Nmaxyj j = 1, . . . , J (28)

yj ≤ mj ≤Mjyj j = 1, . . . , J (29)

J
∑

j=1

mj ≥ max

(

⌈

∑I
i=1 di

Nmax

⌉

,
⌈

∑I
i=1 dibi

Bmax

⌉

)

(30)

yj+1 ≤ yj j = 1, . . . , J − 1 (31)

mj+1 ≤ mj j = 1, . . . , J − 1 (32)

yj ∈ {0, 1}, j = 1, . . . , J (33)

mj ∈ Z, j = 1, . . . , J (34)

nij ∈ Z, i = 1, . . . , I, j = 1, . . . , J (35)

The change of a cutting pattern involves a cost since the cutting machine
has to be stopped before repositioning the knives. The objective function
minimizes both the number of cutting patterns used and the number of pattern
changes.

Constraints (26) imposes the satisfaction of the customer demands, con-
straints (27) prevent the patterns to exceed the given width limits. Constraints
(28) limit the maximum number of products that can be cut from one pat-
tern (this is due to practical constraints in cutting and winding: exceeding
the limit would give rise to difficulties in separating the paper rolls after the
winding). In constraints (29) the binary variable yj is related to the cutting
pattern. Constraints (30) impose a lower bound on total number of patterns
made. Constraints (31) and (32) introduce an order on y and m variables to
reduce degeneracy. It is worth noting that this formulation is the standard
one used in [23] and [14]. Because of the bilinear inequality (26) the problem
is both nonlinear and nonconvex. In this setting, if the problem parameters,
such as demands, are known with complete certainty, the trimloss problem is
a deterministic mixed integer nonlinear program.

In practice, the problem parameters associated with the Trim Loss prob-
lem are rarely known with complete certainty. To incorporate uncertainty
in the decision making process, we adopt a two-stage stochastic program-
ming approach which leads to a stochastic mixed integer nonlinear problem
(SMINLP, for short). We assume that the cutting pattern on/off decisions
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have to be made here and now, with incomplete knowledge of future scenarios
of customer order. Once the demands become known, a certain scenario of
the problem parameters realizes, and then the optimal decision regarding the
number of products in the pattern and the number of repeats of the pattern
can be made. In other words, after taking the first stage decisions we can
correct our cutting plan by means of recourse decisions on the number of re-
peats of the pattern and the number of products. The overall objective is to
determine the optimal cutting scheme such that the sum of cutting change
cost and the expected raw material cost are minimized. To incorporate uncer-
tainty in the demands, we assume that these parameters can be realized as
one of the S scenarios. If we denote with ps the probability of scenario and
with ds

i the customers order for the product i under scenario s, we can extend
the deterministic Trim Loss problem to the following two-stage SMINLP.

min
yj

J
∑

j=1

Cjyj +

S
∑

s=1

psQs(y)

yj ∈ {0, 1}, j = 1, . . . , J

(36)

where for all s,

Qs(y) = min
J
∑

j=1

cjmj

J
∑

j=1

mjnij ≥ ds
i i = 1, . . . , I

(Bmax −∆)yj ≤
I
∑

i=

binij ≤ Bmaxyj j = , . . . J

yj ≤
I
∑

i=1

nij ≤ Nmaxyj j = 1, . . . , J

yj ≤ mj ≤Mjyj j = 1, . . . , J (37)

J
∑

j=1

mj ≥ max

(

⌈

∑I
i=1 ds

i

Nmax

⌉

,
⌈

∑I
i=1 ds

i bi

Bmax

⌉

)

yj+1 ≤ yj j = 1, . . . , J − 1

mj+1 ≤ mj j = 1, . . . , J − 1

yj ∈ {0, 1}, j = 1, . . . , J

mj ∈ Z, j = 1, . . . , J

nij ∈ Z, i = 1, . . . , I j = 1, . . . , J

Problem (36) represents the first-stage Trim Loss problem where the objective
is to minimize the sum of fixed costs and expected variable costs. The function
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Qs(y) represents the optimal variable cost under scenario s for a given pat-
tern configuration. The assumption of complete recourse [7] ensures that the
function Qs(y) is well-defined for any y. The two-stage structure of problem
(36)-(37) is justified, since the decision concerning the existence of a pattern
needs to be taken in advance in order to set the cutting knives, while the
number of repeats can be decided when additional information is available.
To our knowledge the stochastic Trim Loss problem has not been previously
addressed in the literature.

6.2 Computational Experience

By introducing the variables nij and mj for each scenario in problem (36)-
(37), we come up with the deterministic equivalent problem of the stochastic
Trim Loss problem.

minmj,s,nijs,yj

S
∑

s=1

J
∑

j=1

(Cjyj + pscjmjs)

J
∑

j=1

mjsnijs ≥ ds
i ∀ i, ∀s

(Bmax −∆)yj ≤
I
∑

i=

binijs ≤ Bmaxyj ∀j∀s

yj ≤
I
∑

i=1

nijs ≤ Nmaxyj ∀j, ∀s

yj ≤ mjs ≤Mjyj ∀j, ∀s (38)

J
∑

j=1

mjs ≥ max

(

⌈

∑I
i=1 ds

i

Nmax

⌉

,
⌈

∑I
i=1 ds

i bi

Bmax

⌉

)

∀s

y(j+1) ≤ yj j = 1, . . . , J − 1

m(j+1)s ≤ mjs j = 1, . . . , J − 1∀s
yj ∈ {0, 1} ∀j
mjs ∈ Z, ∀j, ∀s
nijs ∈ Z, ∀i, ∀j, ∀s

The above problem is a large-scale nonconvex integer nonlinear program.
We note that all the recourse constraints except the demand constraints link
the first stage with the second stage by means of the binary variables y.
Depending on the number S of scenarios this problem becomes intractable.

Furthermore the highly nonconvex nature of the Trim Loss problem makes
it intractable even for small instances. In order to compare our decomposition
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method with the commercial software, we have considered randomly gener-
ated instances of the stochastic Trim Loss problem. The test problems are
full deterministic equivalent problems in the form of (38). Each deterministic
equivalent problem contains (P +PS+PIS) variables all integer. The number
of constraints is [I(S) + 6(PS) + S].

Table 1 summarizes the deterministic parameters in the optimization
model. In particular, we have considered two deterministic instances (Trim-
loss2 and Trimloss4) as starting basis. Then, by varying the number of scenar-
ios of the customer demands, we have generated 9 stochastic instances. The
details are reported in Tables 2 and 3. Thus, the smallest instance solved has
32 variables and 85 constraints, whereas the largest has 2004 variables and
3500 constraints. This last test is a very large nonlinear integer problem that
can not be solved by a straightforward approach. It is worth noting that for
the deterministic case [1], the biggest instances of the trimloss problem has
48 variables and 27 constraints, 6 of which nonlinear.

In order to evaluate the performance of the implemented algorithm, we
have measured the solution times and the number of major iteration of the
solver (for the DCB&B algorithm we report the sum of iteration over the
tree). To evaluate our method and the commercial solver on the same basis,
an upper bound of 3600 seconds for the running time has been set.

Table 1. Problem parameters

I P C(j) c(j) Nmax Bmax B ∆ bi

Trimloss2 2 2 1 1
10

j 5 1900 3 200 {330, 360}
Trimloss4 4 4 1 1

10
j 5 1900 15 200 {360, 385, 415, 330}

Table 2. Problem dimension. Trimloss2

number scenarios Problems dimension
n. variables n. constraints(nonlinear)

5 32 85(10)
10 62 170(20)
15 90 255(30)
30 182 510(60)
50 302 850(100)
100 602 1700(200)
200 1202 3500(400)

As far as the numerical results are concerned, we report in Figure 1 the
CPU time in seconds for solving the Trimloss2, by varying the number of
scenarios. It is worth while to remark that the Trimloss2 instance with 5
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Table 3. Problem dimension. Trimloss 4

number scenarios Problems dimension
n. variables n. constraints(nonlinear)

50 1004 1650(200)
100 2004 3500(400)

Fig. 6. CPU time in seconds for the trimloss2 as function of the number of scenarios.
DC: proposed approach, CS: commercial solver.

scenarios was the only one (among the all 9 stochastic instances) solved by
the Lindo Api solver within the allotted time.

Figure 2 reports the same for the Trimloss4 problem. In this case, it is in-
teresting to observe that doubling the number of scenarios has not substantial
impact on the solution time.

In Figures 3 and 4, we show the total number of iterations, respectively
for the Trimloss2 and Trimloss4, performed by the DCB&B algorithm.

7 Concluding Remarks

In this paper we have proposed a solution method for the class of nonlin-
ear mixed integer stochastic problems. In order to test the efficiency of the
proposed method, we have formulated a stochastic version of the well known
Trim Loss problem. In particular we dealt with the inherent uncertainty of the
product demand by formulating the problem within the framework of stochas-
tic two-stage recourse model. This makes the resulting model more suitable
and versatile in terms of better handling the real cases.

The resulting stochastic mixed integer nonlinear problem has been effec-
tively and efficiently solved by the application of a novel algorithmic approach,
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Fig. 7. CPU time in seconds for the trimloss4 as function of the number of scenarios.

Fig. 8. Number of iterations for the trimloss2 as function of the number of scenarios.

which is able to fully exploit the peculiar structure of the problem. The de-
composition procedure made it possible to successfully tackle the increased
computational requirements in order to identify the global minimum of a
stochastic nonlinear mixed integer problem in computationally realistic times.
In fact, the preliminary numerical results demonstrated the efficiency of the
proposed approach.
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Fig. 9. Number of iterations for the trimloss4 as function of the number of scenarios.
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Summary. It has been recognized through theory and practice that uniformly dis-
tributed deterministic sequences provide more accurate results than purely random
sequences. A quasi Monte Carlo (QMC) variant of a multi level single linkage1

(MLSL) algorithm for global optimization is compared with an original stochastic
MLSL algorithm for a number of test problems of various complexities. An empha-
sis is made on high dimensional problems. Two different low-discrepancy sequences
(LDS) are used and their efficiency is analysed. It is shown that application of LDS
can significantly increase the efficiency of MLSL. The dependence of the sample size
required for locating global minima on the number of variables is examined. It is
found that higher confidence in the obtained solution and possibly a reduction in
the computational time can be achieved by the increase of the total sample size
N . N should also be increased as the dimensionality of problems grows. For high
dimensional problems clustering methods become inefficient. For such problems a
multistart method can be more computationally expedient.

Key words: stochastic methods, low-discrepancy sequences, multi level sin-
gle linkage method

1 Introduction

The motivation for this paper is to develop further efficient and robust opti-
mization methods. Let f(x ) : Rn → R be a continuous real valued objective
function. A nonlinear global optimization problem is defined as follows:

min f(x ), x ∈ Rn (1)

subject to

1 Also see Chapter 8, Sections 2.1, 7.1. In particular, the SobolOpt solver within the
ooOPS software framework shares the same code as the software implementation
proposed in this paper.
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g(x ) = 0, where g = {gi}, i = 1, . . . me, (2)

h(x ) ≥ 0, where h = {hi}, i = me + 1, . . . ,m, (3)

where x is a vector of bounded continuous variables. No restrictions are im-
posed on the functional form of the objective function, f(x ) or the constraints
g(x ) and h(x ).

There are two kinds of commonly used techniques for solving Eq. (1-3):
deterministic and stochastic. Deterministic methods guarantee convergence
to a global solution within a specified tolerance (a tolerance is defined as the
maximum difference between the objective function value of the numerical
solution and the true global optimal solution). For most deterministic meth-
ods the complexity of the problem grows exponentially as a function of the
number of variables. For high dimensional problems the computational time
is usually prohibitively large. Although some efficient methods have been de-
signed for various forms of an objective function and/or the constraints, these
methods are tailored to very specific problem structures and cannot be ap-
plied in the general high dimensional case. Good surveys of advances in global
optimization are given in papers [6, 7, 10].

The present study is confined to stochastic methods and their variants
based on deterministic sampling of points. A stochastic approach for global
optimization in its simplest form consists only of a random search and it is
called Pure Random Search (PRS). In PRS, an objective function f(x ) is
evaluated at N randomly chosen points and the smallest value of f(x ) is
taken as an approximation to the global minimum.

For stochastic methods the following result holds: if N points are drawn
from a uniform random distribution over the n-dimensional hypercube Hn =
{xi | 0 ≤ xi ≤ 1, i = 1, . . . , n} and if f(x ) is a continuous function defined
in the feasible domain B = Hn, then the sample point with lowest function
value converges to the global minimum. Stochastic search methods yield an
asymptotic (in a limit N → ∞) guarantee of convergence. This convergence
is with probability 1 (or almost surely).

The PRS approach is not very efficient because the expected number of
iterations for reaching a specified tolerance grows exponentially in the dimen-
sion n of the problem. Advanced stochastic techniques use stochastic methods
to search for the location of local minima and then utilize deterministic meth-
ods to solve a local minimization problem. Two phases are considered: global
and local. In the global phase, the function is evaluated in a number of ran-
domly sampled points from a uniform distribution over Hn. In the local phase
the sample points are used as starting points for a local minimization search.
Thus the information obtained on the global phase is refined. For continuous
differentiable objective functions classical gradient-based methods are used for
local minimization. For non-differentiable functions or functions whose deriva-
tives are difficult to evaluate the local search can be obtained through further
sampling in a small vicinity around a starting point. The efficiency of the
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multistage methods depends both on the performance of the global stochastic
and the local minimization phases.

In the simplest form of the multistage approach a local search is applied
to every sample point. Inevitably, some local minima would be found many
times. The local search is the most computationally intensive stage and ideally
it should start just once in every region of attraction. The region of attraction
of a local minimum x∗ is defined as the set of points starting from which a
given local search procedure converges to x∗. This is the motivation behind
various versions of clustering methods. An extensive review on this subject
can be found in papers [17, 18, 28].

The objective of the global stage is to obtain as much information as
possible about the underlying problem with a minimum number of sampled
points. To achieve this objective, sampled points should satisfy certain criteria.
First, they should be distributed as evenly as possible. Second, on successive
iterations new sampled points should fill the gaps left previously. If new points
are added randomly, they do not necessarily fill the gaps between the points
sampled on previous iterations. As a result, there are always empty areas and
regions where the sampled points are wasted due to clustering. No information
can be obtained on the behavior of the underlying problem in empty areas.

It has been recognized through theory and practice that a variety of uni-
formly distributed deterministic sequences provide more accurate results than
purely random samples of points. Low-discrepancy sequences (LDS) are de-
signed specifically to place sample points as uniformly as possible. Unlike ran-
dom numbers, successive low discrepancy points “know” about the position
of their predecessors and fill the gaps left previously.

LDS have been used instead of random numbers in evaluating multi-
dimensional integrals and simulation of stochastic processes - in the areas
where traditionally Monte Carlo (MC) methods were used [9, 25]. It has been
found that methods based on LDS, known as quasi Monte Carlo (QMC) meth-
ods, always have performance superior to that of MC methods. Improvement
in time-to-accuracy using QMC can be as large as several orders of magnitude.

LDS are a natural substitute for random numbers in stochastic optimiza-
tion methods. As in other areas of applied mathematics, QMC methods pro-
vide higher accuracy with fewer evaluations of the objective function. The im-
provement in accuracy depends on the number of dimensions, the discrepancy
of the sequence both of which are known, and the variation of the function,
which is generally not known.

Central to the QMC approach is the choice of LDS. Different principles
were used for constructing LDS by Holton, Faure, Sobol’, Niederreiter and
others (good surveys of LDS are given in [15, 4, 14]. Niederreiter’s LDS have
the best theoretical asymptotic properties. However, many practical studies
have proven that Sobol’ LDS in many aspects are superior to other LDS
[16, 21]. For this reason they were used in the present study. In a classification
developed by Niederreiter, the Sobol’ LDS are known as (t, s) sequences in
base 2 [15, 21]. The Holton LDS [9] were also used for comparison.
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There had been a lack of a representative set of test problems for comparing
global optimization methods. To remedy this a classification of essentially
unconstrained global optimization problems into unimodal, easy, moderately
difficult and difficult problems was proposed in [29]. The problem features
giving this classification are the chance to miss the region of attraction of the
global minimum, “embeddedness” of the global minimum, and the number of
minimizers.

The purpose of this paper is the further development of optimization meth-
ods with an emphasis on comprehensive testing and a comparison of various
techniques on a set of test problems of various complexity in accordance with
the classification developed in the paper [29]. In particular: a comparison was
made between:

• QMC and stochastic variants of a well known multi level single linkage
(MLSL) algorithm [17, 18];

• different implementations of MLSL;
• two different types of LDS;

A number of problems used for testing belong to the category of the difficult
multidimensional problems.

The remainder of this paper is organized as follows. A brief analysis of
a Quasirandom Search (QRS) method is given in Section 2. Descriptions of
MLSL and SL methods are presented in Section 3. Results of a comparison
between stochastic MLSL and LDS based MLSL methods are presented in
Section 4. Finally, the performance of different techniques is discussed in Sec-
tion 5.

2 Analysis of Quasirandom Search Method

A general scheme of a QRS method is similar to that of PRS: an objective
function f(x ) is evaluated at N LDS points and then the smallest value of
f(x ) is taken as the global minimum. Generally QRS lacks the efficiency
of more advanced methods. However, in some cases QRS has the following
advantages over other methods of global optimization:

1. In its most general form it does not use any assumptions about the
problem structure. In particular it can be used for any class of objective
function (i.e. non-differentiable functions).

2. It can explicitly account for inequality constraints. The feasible region
can be non-convex and even disconnected. However, it is not possible to ac-
count explicitly for equality constraints and such an optimization problem
should be transformed into an unconstrained one.

3. It belongs to the so-called nonadaptive algorithms [30], in which the
numerical process depends only on the current state and not on previously
calculated states. In contrast, in adaptive algorithms information is obtained
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sequentially. Nonadaptive algorithms are superior to adaptive ones in multi-
processor parallel computations.

These advantages become more apparent as the number of variables grows.
Analysis of QRS is important for understanding the advantages that the use
of LDS brings to the multistage approach.

In this section it is assumed for simplicity that the problem is uncon-
strained and the feasible region is a closed set K ⊂ Rn, where

K = {xi | xL
i ≤ xi ≤ xU

i , i = 1, . . . , n}.

By linear transformation of coordinates K can be mapped into the n-
dimensional hypercube Hn, so that the problem is formulated as:

min
x∈Hn

f(x ). (4)

Let f∗ be an optimal value. Consider a sequence of sets of vectors x (N) =
{x j | x j ∈ Hn, j = 1, . . . , N} and an approximation f∗

N to f∗:

f∗
N = min

xj∈x(N)

f(xj).

On a class of continuous functions f(x ) and dense sequences in Hn the fol-
lowing result holds [26]:

f∗ = lim
N→∞

min
M≤N

f∗
M .

For the purposes of error analysis the function f(x ) is assumed to have piece-
wise continuous partial derivatives satisfying the conditions:

|∂f/∂xi| ≤ Ci i = 1, ..., n. (5)

From (5) it follows that f(x ) satisfies a Lipschitz condition:

|f(x)− f(y)| ≤ Lρ(x, y), (6)

where L is a Lipschitz constant. The dispersion dN (n) of the sequence x (N)

is defined as [15]:
dN (n) = sup

x∈Hn

min
1≤j≤N

ρ(x ,x j), (7)

where ρ(x, y) is the Euclidean distance (metric) between points x and y. Using
(6) and (7) the approximation error can be written as

f∗
N − f∗ ≤ LdN (n). (8)

As can be seen from (8), dN (n) defines the “quality” of the sequence. Se-
quences with small dN (n) guarantee a small error in a function approximation.
For any sequence the following error bounds hold:
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[1/(Nωn)]1/n ≤ dN (n) ≤ 2
√

n(D(n,N)/N)1/n, (9)

where ω=
n πn/2/Γ (1 + n

2 ) is the volume of the n-dimensional unit ball and
D(n,N) is the discrepancy of a sequence [15]. Discrepancy is a measure of devi-
ation from uniformity. Apparently, smaller D(n,N) would provide smaller up-
per estimate of the dispersion dN (n). LDS are characterized by small D(n,N),
therefore every LDS is a low-dispersion sequence (but not conversely).

The best-constructed LDS have D(n,N) = O(lnn−1 N). For such LDS the

resulting rate of convergence of QRS as follows from (9) is O(N−1/n ln(n−1)/n N).
This rate is not sufficiently high when n is large. However, it is worth noting
that an error bound (8) with dN (n) given by (9) was obtained in the assump-
tion that function f(x ) depends equally on all variables: in other words, the
constants Ci, i=1,. . . ,n in (5) were assumed to be of the same order of mag-
nitude. This was shown to be “the worst-case scenario” [22, 23]. In practical
applications, the function f(x ) normally strongly depends on a subset of vari-
ables: xi1 , xi2 , ..., xis

, 1 ≤ i1 < i2 < ... < is, s < n and dependence on other
variables can be weak. In this case inequality (6) becomes

|f(x )− f(y)| ≤ Lρ(x ′,y ′),

where x ′,y ′ are projections of the points x, y on the s-dimensional face
Hi1,i2,...is

of Hn. One very useful property of LDS is that the projection
of n-dimensional LDS on s-dimensional subspace forms s-dimensional LDS.
Then (9) becomes

[1/(Nωs)]
1/s ≤ dN (s) ≤ 2

√
s(D(s,N)/N)1/s (10)

and for practical applications n should be substituted by “an effective di-
mension number” s, which can be much less than n [23]. It can result in a
much higher rate of convergence than that predicted by (9). This correction
is very important for understanding the advantages of using LDS in QRS.
For comparison, a cubic grid provides a better discrepancy measure than (9).
At first glance such a grid search may be seen as more efficient than QRS.
However, a projection of an n-dimensional cubic grid LDS on s-dimensional
subspace does not form an s-dimensional cubic grid because of “the shadow
effect” (projections of some points on the coordinate axis would coincide).
This means that the correction similar to (10) is not applicable for the cubic
grid and its discrepancy measure does not improve as s gets smaller.

Many well-known LDS were constructed mainly upon asymptotic consid-
erations, as a result they do not perform well in real practical tests. The Sobol’
LDS were constructed by following three main requirements [24]:

1. Best uniformity of distribution as N goes to infinity.
2. Good distribution for fairly small initial sets.
3. A very fast computational algorithm.
Points generated by the Sobol’ LDS produce a very uniform filling of the

space even for a rather small number of points N , which is a very important
case in practice.
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In some cases, it is convenient to employ the dispersion in the maximum
(or infinite) metric ρ′(x ,y) defined by

ρ′(x ,y) = max
1≤i≤n

|xi − yi | ,

where x = (x1, x2, ..., xn)and y = (y1, y2, ...yn). The dispersion d′
N (n) of the

sequence x (N) in the maximum metric

d′N (n) = sup
x∈Hn

min
1≤j≤N

ρ′(x ,x j)

has the following error bounds:

1

2N1/n
≤ d′

N (n) ≤ α(n,N)

N1/n
, (11)

where the parameter α(n,N) generally is a weak function of N . For (t, s)
sequences this parameter does not depend on N and an improved error bounds
has the form

1

2N1/n
≤ d′

N (n) ≤ b(n+t)/n

N1/n
. (12)

In particular for the Sobol’ LDS (12) becomes

1

2N1/n
≤ d′

N (n) ≤ 21+T2(n)/n

N1/n
, (13)

where T2(n) is a function with an upper bound

T2(n) < n(log2 n + log2 log2 n + 1). (14)

These results were used in the frameworks of quasi random linkage methods
presented in papers [12, 19].

QRS was applied to solve global optimization problems in papers [2, 27]
as early as 1970 (see also [25, 26]). However, as was stated above, with the
development of more advanced multistage methods the application of pure
QRS is limited mainly to cases of non-differentiable objective functions and
to problems in which high accuracy in finding a global solution is not required.
In the framework of MLSL, QRS can be seen as a global phase of MLSL. A
description of MLSL is given in the next section.

3 Single linkage and multilevel single linkage methods

In the simplest variant of a multistage method, a small number of random
points are sampled and then a deterministic local search procedure (LS) is
applied to all of these points. All located stationary points are sorted and
the one with the lowest value of the objective function is taken as a global
minimum. The general scheme of a Multistart (MS) algorithm is as follows:
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1. Sample a point from a uniform distribution over Hn.
2. Apply LS to the new sample point.
3. If a termination criterion is not met, then return to Step 1.

One problem with the Multistart technique is that the same local minimum
may be located several times. Ideally, LS should be started only once in every
region of attraction. A few algorithms had been developed with such a prop-
erty. Only those sample points whose function values are small enough are
chosen as starting points. Points are grouped into clusters, which are initiated
by a seed point. The seed point is normally a previously found local minimum
x ∗ ∈ X ∗, where X ∗ is a set of all local minima. All sample points within a
critical distance are assigned to the same cluster.

Efficiency can be improved by reducing the number of local searches,
namely by discarding some of the sampled points. If {fi} is an ordered set
such that {f(x i) | f(x i) < f(x i+1), i = 1, . . . , N} and X is a corresponding
ordered set of all sampled points, then the reduced sample set is taken as:

X r = {x i ∈ X | i = 1, . . . , Nr, Nr = αN}, (15)

where 0 < α < 1. In this case, some local minima can be discarded without
affecting the global minimum search.

An important question in applying any numerical method is when to stop
searching for the global minimum. Among various proposed termination crite-
ria of the global stage, one of the most reliable was developed in [3]. It is based
on Bayesian estimates for the number of real minima not yet identified and
the probability that the next local search will locate a new local minimum. An
optimal Bayesian stopping rule is defined as follows: if W different local min-
ima have been found after N local searches started in uniformly distributed
points, then the expectation of the number of local minima is

Wexp = W (N − l)/(N −W − 2), (16)

provided that N > W + 2. The searching procedure is terminated if

Wexp < W + 0.5. (17)

The MLSL method developed by Rinnooy Kan and Timmer [17, 18] is one
of the best algorithms among various clustering methods. The general scheme
of the MLSL algorithm is outlined below:

1. Set W :=0, k:=0.
2. Set k:=k+1, i:=0.
3. Sample a set x of N points from a uniform distribution over Hn.
4. Evaluate an objective function on set X , sort {fi} in order of increasing

function values and select a reduced set x r according to (15).
5. Set i:= i+1 and take x i ∈x r.



DRAFT

Chapter 5: Quasi Monte Carlo Methods in GO 119

6. Assign the sample point x i to some cluster C l if ∃x j ∈ C l such that
ρ(x i,x j) ≤ rk and f(x j) ≤ f(x i), where rk is a critical distance given
by (18). If x i is not assigned to any cluster yet then start a local search
at x i to yield a local minimum x ∗. If x ∗ /∈ X ∗, then add x ∗ to X ∗, set
W := W + l and initiate the W -th cluster by x ∗. Assign x i to the cluster
that is initiated by x ∗.

7. If i = Nr go to step 8. Else go to Step 5.
8. If k = Itermax, where Itermax is the maximum allowed number of iter-

ations, or the stopping rule (15), (16) is satisfied, then stop. Else go to
Step 2.

The critical distance rk is found using cluster analysis on a uniformly
distributed sample:

rk =

(

m(B)

ωn

σ log(kNr)

kNr

)1/n

. (18)

Here m(B) is the Lebesgue measure (if B = Hn then m(B) = 1), k is an
iteration index, σ is a known parameter. In our calculations the parameter σ
was taken to be 2.0.

Sporadic clustering which is characteristic of relatively small sets of ran-
dom points would result in inhibiting many LS because such clustered points
could be assigned to the same clusters initiated by local minima. A compar-
ison between (10) and (18) shows that the dispersion of LDS and critical
distance rk have a similar asymptotic behavior. It suggests that LDS are bet-
ter suited for optimization problems than random sets of points. As in other
cases of transition from MC to QMC algorithms, a significant improvement
in efficiency can be achieved simply by substituting random points with LDS.

Schoen argued that the regularity of LDS can be further exploited [19].
He suggested using instead of (18) a critical distance

rN,β = βN−1/n, (19)

where β is a known parameter. It was proved that within the framework
of a Simple Linkage (SL) method that if the sampled points are generated
according to LDS whose dispersion is limited by (11) then the total number
of LS started even if the algorithm is never stopped will remain finite, provided
that β > α(n,N). A SL method was developed in [12] in order to circumvent
some deficiencies of MLSL. A LDS based SL method was presented in the
paper [19]. The scheme of the SL method adopted for LDS sampling is the
following:

1. Set N := 0; choose ε > 0;
2. Let N := N + 1;
3. Generate a point x from LDS in Hn;
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4. Apply a local search algorithm from x except if ∃x j in the sample such
that:

ρ′(x ,x j) ≤ rN,β ∧ f(x j) ≤ f(x) + ε

5. If stopping criteria is satisfied, then stop. If not, add x to the sample and
go to Step 2.

It is important to note that the SL method makes use of the maximum (or
infinite) metric ρ′(x ,y) instead of the Euclidean one which is used in MLSL.

4 Computational experiments

As stated in the paper [29] the choice of test problems should be systematic,
so that they represent different types of problems ranging from easy to diffi-
cult to solve. Following this strategy, a C++ program called SobolOpt which
employs all discussed algorithms, namely stochastic MLSL and its QMC vari-
ants with Sobol’ and Holton LDS points was applied to a number of test
problems of different complexity. All problems presented below are uncon-
strained, although the techniques used are readily applicable to constrained
problems.

A local search was performed using standard nonlinear programming rou-
tines from the NAG library [13]. All computational experiments were carried
out on an Athlon-800Mhz PC.

In most cases the objective was to find all the local minima that were
potentially global. Four criteria for comparing the algorithms were used: (i)
success in locating a global minimum; (ii) number of located local minima;
(iii) number of calls of a local minimizer; (iv) average CPU time (in seconds).

The results are displayed in the tables. The following notation is used:

• “N” – total number of sampled points in each iteration. For the Sobol’
LDS the equidistribution property and improved discrepancy estimates
hold for N equal to a power of 2. In all experiments N was taken to be
equal to 2m, where m is an integer number;

• “Nr” – reduced number of sampled points on each iteration;
• “Nmin” – total number of located minima;
• “Iter” – total number of iterations on the global stage;
• “Itermax” – maximum number of iterations on the global stage;
• “LM” – number of calls of the local minimizer;
• “GM” – “y” (“n”) – global minimum (GM) was found (not found) in a

particular run, “Y” – global minimum was found in all four runs, “N” –
was not found in any of four runs;

• “LDS Sobol”’ – the MLSL method based upon Sobol’ LDS sampling;
• “LDS Holton” – the MLSL method based upon Holton LDS sampling;
• “Random” – the MLSL method based upon random sampling;
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• “Zakovic” - based upon random sampling implementation of the MLSL
algorithm developed in paper 27,28.

• “LDS Sobol’ (NS)”, “LDS Holton (NS)”, “Random (NS)” – versions of
the above mentioned algorithm in which the Bayesian stopping rule is
not used, however the maximum number of iterations is limited above by
Itermax.

• “ . . . . (NC)” – a version of “ . . . . (NS)” algorithm in which clustering is
not used (MS method).

Four independent runs for each test problem were performed. For the Random
MLSL method all runs were statistically independent. For the LDS Sobol’
(Holton) method for each run a different part of the Sobol’ (Holton) LDS was
used.

4.1 Problem 1: Six-hump camel back function

f(x, y) = 4 x2 – 2.1 x4 + 1/3 x6+ xy - 4 y2+ 4 y4,
-3.0 ≤ x ≤ 3.0, -2.0 ≤ y ≤ 2.0.
Global Solution:
f(x, y) = -1.03163,
(x, y) = (0.08984, - 0.712266),
(x, y) = (-0.08984, 0.712266).
This is a well known test for global optimization29. There are 6 known

solutions, two of which are global. Results for this test are presented in Table
4.1. According to the classification of problems into the degrees of difficulty
suggested in 14 this problem belongs to a class of “easy” (E1) problems.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 256/128 1 6 6 Y 0.1

LDS Holton 256/128 1 6 6 Y 0.12

Random 256/128 1 6 5 Y 0.1

Zakovic 256/128 21 96 6 Y not available

Table 1. Comparison of various realizations of MLSL for Problem 1.

In all four runs of the LDS Sobol’ and Holton algorithms all six local min-
ima were located with just six LM. For the Random MLSL method in one of
the four runs only four local minima were found, five - in two runs and six - in
one run. For this method, in almost all runs LM was larger than a number of
located minima. To compare our results with those of other authors we used
a program developed by S. Zakovic [31, 32]. This program was an implemen-
tation of the MLSL algorithm, similar to that of Dixon and Jha [5]. In all
four runs Zakovic’s program located all six minima but at the expense of 21
iterations and 96 calls of the local minimizer. Similar results with LM equal



DRAFT

122 Sergei Kucherenko

92 were reported in the paper [5]. It shows that the above mentioned imple-
mentations of the MLSL algorithm by other authors are not very efficient.
The differences were mainly due to the ways in which clustering and sorting
algorithms were implemented. It was not possible to make a straightforward
CPU time comparison as Zakovic’s program is written in Fortran and makes
use of a different local minimizer routine. However, other factors being equal
one can expect the CPU time to be proportional to LM.

Other experiments were performed with smaller samples of points (N/Nr

= 64/32, N/Nr = 128/64). In these not all local minima were located and
in some cases only one global minimum was found. We can conclude that the
set of parameters N/Nr = 256/128 were the most efficient settings.

It can be concluded that (i) LDS Sobol’ and Holton algorithms are more
efficient than other considered methods (ii) our implementation of stochastic
MLSL is more efficient than that used in paper [31, 32, 8].

4.2 Problems 2A,B: Griewank function

f(x)=1 +
∑n

i=1
x2

i /d2 −
n
∏

i=1

(cos xi/
√

i)

Configurations:
Problem 2A.n=2 , d = 200,
-100 ≤ xi ≤ 100, i= 1,2.
Problem 2B. n = 10, d = 4000,
-600.0 ≤ xi ≤ 600.0, i= 1,..,10.
Global Solution:
f(x )= 0.0,
x = {0.0}.
Problem 2A. Both problems belong to the class of “moderate” (M2) [29].

The objective of the test was to evaluate the performance of each method on
a problem with a large number of minima. Apart from the global minimum
at the origin, this function has some 500 local minima corresponding to the
points where the i-th coordinate equals a multiple of π

√
i. Because of the very

large number of local minima the region of attraction of the global minimum is
very small, therefore a very large number of points must be sampled to locate
it. In tests with N/Nr = 32768/128 in all four runs all tested algorithms
successfully located some 20 minima including the global one (Table 4.2). LM
was equal to the number of located minima. The slightly higher value of the
CPU time for LDS Holton is explained by the slower process of generating
Holton points compared with that for Sobol’ or random points.

The performance of MLSL methods largely depends on the sample size.
Other tests were performed with smaller samples, with N ranging from 128
to 16384. None of the methods were able to locate the global minimum in all
four runs. This may explain results of similar tests reported in the paper [18]:
“for the two-dimensional problem the method never really got started. After
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Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 32768/128 2 23 23 Y 5.0

LDS Holton 32768/128 2 23 23 Y 7.0

Random 32768/128 2 22 22 Y 5.0

Table 2. Comparison of various realizations of MLSL for Problem 2A.

the first sample of 100 points, only one minimum was found in all cases, after
which the method terminated. Global minimum was located once, two runs
ended with one of the second best minima while seven runs terminated with
a minima with a function value close to one”. There is a strong dependence of
the algorithm efficiency on the size of samples: for this test problem samples
of 100 points were not sufficient to locate the global minimum.

It is known that for problems with a very large number of local minima the
Bayesian termination criteria do not produce reliable results [18]. Because of
this reason a standard MS method which does not use clustering and Bayesian
stopping techniques was tested. Table 4.2 presents results of experiments with
N/Nr = 128/128.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’(NC) 128/128 1 128 107 Y 3.0

LDS Holton (NC) 128/128 1 128 106 Y 3.5

Random (NC) 128/128 1 128 107 n/n/n/y 3.0

Table 3. Comparison of various realizations of MS for Problem 2A.

The solution was limited by a single iteration. Results clearly show the
advantages of using LDS points: in all four runs of LDS Sobol’ (NC) and LDS
Holton (NC) algorithms the global minimum was found in contrast with only
one successful run of the Random (NC) algorithm. LM was nearly equal to the
number of located minima. It confirms the high efficiency of the MS approach
in test problems with a very large number of local minima. It is worth noting
that the CPU time was nearly half of that for the MLSL method (with N/Nr

= 32768/128, Table 4.2), while the number of located minima was almost five
times higher. The results for the Random (NC) algorithm agree well with the
observations made for the same algorithms in the paper [18].

It can be concluded that a reliable detection of the global minimum can
be achieved with the MLSL method using large samples or alternatively, with
the MS method using small samples of points.

Problem 2B. Problem 2B has an extremely high number of local minima.
However, in comparison with the two-dimensional problem 2A it turned out
to be much easier to locate the global minimum. This is in line with the
results of Törn, Ali and Vjitanen [29]. In tests with the same sample sizes as
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in various realizations of MLSL for Problem 2A (Table 4.2) in all four runs
all tested algorithms successfully located some 15 minima including the global
one (Table 4.2). Average LM and Nmin were similar for all methods. The LDS
Holton algorithm was the slowest one.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 32768/128 2 18 14 Y 1.2

LDS Holton 32768/128 2 20 16 Y 5.1

Random 32768/128 2 19 14 Y 1.2

Table 4. Comparison of various realizations of MLSL for Problem 2B.

Table 4.2 illustrates the dependence of the number of LM from the ra-
tio γ = N/Nr for the Sobol’ algorithm. Reduction in sample size results in
increasing LM and the corresponding CPU time. In all four runs the global
minimum was found. As sample size decreases CPU time increases super lin-
early with the number of LM. It is interesting to note that although the
number of located Nmin increased in comparison to previous tests with N/Nr

= 32768/128, very few second best minima were found. Thus, it can be con-
cluded that the strategy with large samples is more efficient if the objective
is to locate only the global minimum.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 4096/128 18 43 33 Y 3.1

LDS Sobol’ 2048/128 46 79 59 Y 12.3

LDS Sobol’ 1024/128 78 107 81 Y 25.2

LDS Sobol’ 512/128 98 150 102 Y 26.4

Table 5. Comparison of various realizations of LDS Sobol’ for Problem 2B.

As in the above case of lower dimension (n=2) the MS method performs
much better in terms of locating high a number of local minima then the
MLSL method. The results of testing with N/Nr = 512/128 are presented in
Table 2.3B. Calculations were limited to 10 iterations. In addition to locating
the global minimum and a large number of local minima all second best min-
ima were located as well. A comparison between MLSL LDS Sobol’ N/Nr =
32768/128 (Table 4.2) and MS LDS Sobol’ methods (Table 4.2) shows that
the number of located minima increased almost 60 times while the CPU time
increased only 30 times. Since in most cases the objective is to locate only the
global minimum, in the case of the MS the sample size and maximum number
of iterations Itermax can be reduced even further. Other tests showed that a
reliable detection of the global minimum can be achieved with N/Nr as small
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as 32/16 and Itermax =1. The corresponding CPU time for such a case can
be reduced to 0.4 s.

Algorithm N/Nr Itermax LM Nmin GM CPU

LDS Sobol’ (NC) 512/128 10 1280 796 Y 36.0

LDS Holton (NC) 512/128 10 1280 782 Y 61.0

Random (NC) 512/128 10 1280 776 Y 36.0

Table 6. Comparison of various realizations of MS for Problem 2B.

It can be concluded that the reliable detection of the global minimum can
be achieved with the MLSL method and rather large samples. The value of the
γ = N/Nr has a significant impact on the efficiency of the method: increasing
γ can result in a dramatic decrease of the CPU time (Table 4.2).

For problems with a high number of local minima the MS method can be
a good alternative to the MLSL method. Even runs with small sample size
can produce a large value of Nmin (Table 4.2). A quasi Monte Carlo variant
of the MS method is much more efficient than the stochastic one.

4.3 Problems 3A,B: Shubert function

Problem 3A. n=3

f(x)=π
n

{

k1 sin2(πy1) +
n−1
∑

i=1

(yi − k2)
2[1 + k1 sin2(πyi+1)] + (yn − k2)

2

}

+
n
∑

i=1

u(xi, 10, 100, 4),

yi = 1 + 0.25(xi + 1), k1 = 10and k2 = 1,

−10 ≤ xi ≤ 10, i = 1, 2, 3.

u(xi, a, k,m) is a penalty function defined by

u(xi, a, k,m) =







k(xi − a)m, xi > a
0, −a ≤ xi ≤ a
k(−xi − a)m, xi < −a.

Global Solution f(x ) = 0.0, x = (-1.0, -1.0, -1.0).
Problems 3A and 3B belong to the class of “easy” (E2) problems [29].

Problem 3A has approximately 53 local minima. The objective of this test
was to test the performance of the LDS Sobol’, LDS Holton and Random
methods on problems with a large number of minima. In tests with N/Nr =
32/16 and Itermax = 10 in all four runs all algorithms successfully located
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Algorithm N/Nr Itermax LM Nmin GM CPU

LDS Sobol’(NS) 32/16 10 13 12 Y 2.6 10−2

LDS Holton(NS) 32/16 10 13 11 Y 4.6 10−2

Random(NS) 32/16 10 12 10 Y 2.6 10−2

Table 7. Comparison of various realizations of MLSL for Problem 3A.

approximately the same number of local minima including the global one
(Table 4.3). LDS Sobol’(NS) showed slightly better performance.

Problem 3B. n=5.

f(x ) = k3(sin
2(πk4x1) +

n−1
∑

i=1

(xi − k5)
2[1 + k6 sin2(πk4xi+1)] +

(xn − k5)
2[1 + k6 sin2(πk7xn)]) +

n
∑

i=1

u(xi, 5, 100, 4)

k3 = 0.1, k4 = 3, k5 = 3, k6 = 1, k7 = 2.

−5 ≤ xi ≤ 5, i = 1, ..., 5.

Global Solution f(x ) = 0.0, x = (1.0, 1.0, 1.0, 1.0, 1.0).
This problem has approximately 155 local minima. The objective of this

test was to test the performance of the LDS Sobol’, LDS Holton and Random
methods on problems with a very large number of minima. In tests with N/Nr

= 1024/512 and Itermax = 3 in all four runs LDS Sobol’(NS) and Random(NS)
algorithms successfully located some 60 local minima including the global one
(Table 4.3). There were only three successful runs of the LDS Holton (NS)
algorithm. The number of minima located by the LDS Holton (NS) algorithm
was also lower than that for other algorithms. This can be explained by the
inferior uniformity properties of the Holton LDS even at moderate dimensions.

Algorithm N/Nr Itermax LM Nmin GM CPU

LDS Sobol’(NS) 1024/512 3 68 63 Y 2.1

LDS Holton(NS) 1024/512 3 53 51 y/n/y/y 2.4

Random(NS) 1024/512 3 61 58 Y 1.9

Table 8. Comparison of various realizations of MLSL for Problem 3B.

4.4 Problems 4A,B,C: Schaffler function

f(x)=1 + 590
∑n

i=2
(xi − xi−1)

2 + 6x2
1 − cos(12x1),

-1.05 ≤ xi ≤ 2.95, i =1,. . . ,n.
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Configurations:
Problem 4A. n=30.
Problem 4B. n=40.
Problem 4C. n=50.
Global Solution
f(x ) = 0.0,
x = {0.0}.
All three problems belong to the class of “moderate” (M2) [29]. The objec-

tive of this test with 5 known solutions was to test the performance of the LDS
Sobol’, LDS Holton and Random methods on high-dimensional problems. LDS
have better uniformity properties than pseudorandom grids. However, this ad-
vantage diminishes as the dimensionality n increases. As explained in Section
2, for high-dimensional problems the usage of LDS still can be more efficient
than pseudorandom sampling if an objective function f(x ) strongly depends
only on a subset of variables. For such problems an effective dimension num-
ber s can be much smaller than n. However, this is not the case for the test
problem 4. Apart from variable x1, all other variables are equally important.
This explains why LDS Sobol’ and Random methods showed almost the same
efficiency (Tables 4.4, 4.4, 4.4). Uniformity properties of Holton LDS rapidly
degrade as n grows. Thus for high-dimensional problems the MLSL method
based upon Holton LDS sampling becomes less efficient than a stochastic
variant of MLSL. Values N and Nr given in Tables 4.1A, 4.1B, 4.1C are the
smallest sample sizes for which a global minimum was found in all four runs
for LDS Sobol’ and Random methods.

Problem 4A. n=30

Algorithm N/Nr Iter LM Nmin GM CPU (s)

LDS Sobol’ 8192/256 1 220 3 Y 30.5

LDS Holton 8192/256 1 98 2 y/n/y/n 18.5

Random 8192/256 1 228 3 Y 31.2

Table 9. Comparison of various realizations of MLSL for Problem 4A.

For LDS Holton the global minimum was found in two out of four runs for
Problem 4A and Problem 4B, while for Problem 4C this algorithm failed to
locate it. A comparison between Problem 4A and Problem 4B for LDS Sobol’
and Random shows that for successful location of the global minimum in all
four runs it was necessary to increase N in two times and Nr - in 16 times. It
resulted in a 30 fold increase of the CPU time.

Problem 4B. n=40
Increasing the dimensionality from n=40 to n=50 resulted in N increasing

64 fold. At the same time Nr increased only 4 fold and the CPU time increased
approximately 8 fold.

Problem 4C. n=50
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Algorithm N/Nr Iter LM Nmin GM CPU (s)

LDS Sobol’ 16384/4096 1 4028 4 Y 1.1·103

LDS Holton 16384/4096 1 1142 2 n/n/y/y 348.1

Random 16384/4096 1 4031 3 Y 1.1·103

Table 10. Comparison of various realizations of MLSL for Problem 4B.

Algorithm N/Nr Iter LM Nmin GM CPU (s)

LDS Sobol’ 1048576/16384 1 16206 3 Y 7.5·103

LDS Holton 1048576/16384 1 5665 2 N 3.3·103

Random 1048576/16384 1 16253 3 Y 7.6·103

Table 11. Comparison of various realizations of MLSL for Problem 4C.

For Problem 4C Nr was nearly equal to LM. This is because clustering
becomes less efficient as dimensionality grows. Choosing larger σ in (18) may
increase the cluster size and thus decrease LM. However, for consistency with
other tests experiments σ was kept equal to 2.0.

4.5 Multi-quality Blending Problems

These two blending problems from the petrolchemical industry [1], where they
were named example 1 and example 2 respectively. Various types of crude oils
of different qualities and coming from different sources are mixed together
to produce several end-products subject to certain quality requirements and
demands. These are bilinear problems with many local optima. The solution of
this type of blending problem is important because of the direct application
to the industrial world as well as for the mathematical challenges it poses.
Here, we use the general blending problem formulation [1]:

miny,q,x

p
∑

j=1

nj
∑

i=1

cijyij−
r
∑

k=1

dk

p
∑

j=1

xjk,

nj
∑

i=1

yij−
r
∑

k=1

xjk = 0 ∀j ≤ p

qjw

r
∑

k=1

xjk −
nj
∑

i=1

λijwyij = 0 ∀j ≤ p,∀w ≤ l

p
∑

j=1

xjk ≤ Sk ∀k ≤ r

p
∑

j=1

qjwxjk − zkw

p
∑

j=1

xjk = 0 ∀k ≤ r∀w ≤ l

yL ≤ y ≤ yU , qL ≤ q ≤ qU , qL ≤ q ≤ qU

Here yij is the flow of input stream i into pool j, xjk is the total flow from
pool j to product k and qjw is the w-th quality of pool j; p is the number of
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pools, r the number of products, l the number of qualities, nj the number of
streams; cij , dk, Sk, Zkw, λijw are parameters [1].

The objective function value at the global optimum is -549.8031 in both
cases. The values of the variables y, x are also the same in both cases:

y= (7.5443, 19.752, 0, 4.9224, 2.7812)
x= (0, 19.2097, 0, 8.0866, 0, 5.7903, 0, 1.9133)
whereas the values of the quality variables q change:
q′ = (3.1708, 2.382, 3.2764, 1.5854, 2.278, 2.8917, 3.361, 1.2166)
q′′ = (3.1708, 2.382, 3.2764, 1.5854, 4.2763, 5.382, 2.278, 2.8917, 3.361,

1.2166, 3, 5.083)
where q′ are the values of q at the global optimum of example 1, and q′′

are the corresponding values for example 2.
Results for this problem and problems 4.6–4.7 are summarized in one table

(Table 4.7).

4.6 A Simple MINLP Example

The developed technique was generalized to account for mixed continuous and
discrete variables (MINLP). The solution technique makes use of a continuous
reformulation of the problem. Tests presented below have shown a good per-
formance of the multistage methods based on LDS sampling for constrained
MINLP problems

The following example was taken from paper [11]. It is an example of a
nonlinear mixed-integer problem having one binary variable x5.

min x2
1 + x1x2 − x1x3 − 2x1x4 + x2

2 + 3x2x4 − x2x5 + x3x4+
+3x4 + 2x4x5 − x1 − x4 − x6 + e−x2x3

x1 + x2 − x3 + x4 + x5 = 1,
x2 − x4 − x5 = −1,
x1 + 2x2 − 2x3 ≥ 0,
2x1 + 7x2 − x3 ≤ 0,
e−x2x3 − ln(x6)− x2x6 ≤ 1,
xi ∈ [0, 10] ∀i ≤ 4,
x5 ∈ {0, 1},
1 ≤ x6 ≤ 2

The global solution is at x = (0, 0, 0, 0, 1, 2), with an objective function value
-1.

4.7 Yuan’s MINLPs

The following examples come from paper [8]. They are nonlinear mixed-integer
problems.

Problem 4.7A
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minx,y 2x1 + 3x2 + 3
2y1 + 2y2 − 1

2y3

y1 + x2
1 = 5

4 ,
3
2y2 + x

3/2
2 = 3,

y1 + x1 ≤ 8
5 ,

y2 + 4
5x5 ≤ 3

−y1 − y2 + y3 ≤ 0,
xi ∈ [0, 10]∀i,
yi ∈ {0, 1}∀i

(20)

The global solution of problem (20) is at x = (1.12, 1.31), y = (0, 1, 1) with
an objective function value 7.6672.

Problem 4.7B

min
x,y

(y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2 + log(y4 + 1) + (x1 − 1)2+

+(x2 − 2) + (x3 − 3)2

y1 + y2 + y3 + x1 + x2 + x3 ≤ 5,
y2
3 + x2

1 + x2
2 + x2

3 ≤ 11
2 ,

y1 + x1 ≤ 6
5 ,

y2 + x2 ≤ 9
5 ,

y3 + x3 ≤ 5
2 ,

y4 + x1 ≤ 6
5 ,

y2
2 + x2

2 ≤ 41
25 ,

y2
3 + x2

3 ≤ 17
4 ,

y2
2 + x2

3 ≤ 116
25 ,

xi ∈ [0, 10] ∀i,
yi ∈ {0, 1} ∀i

(21)

The global solution of problem (21) is at x = (0.2, 0.8, 1.908), y = (1, 1, 0,
1) with an objective function value 4.5796.

Algorithm N/Nr Iter LM Nmin GM CPU(s)

Problem 4.5A 64/32 1 32 28 Y 0.01

Problem 4.5B 128/16 1 16 15 Y 0.01

Problem 4.6 8/4 1 4 2 Y 0.001

Problem 4.7A 16/8 1 5 4 Y 0.001

Problem 4.7B 4096/32 1 15 10 Y 0.001

Table 12. Comparison of various realizations of MLSL for Problems 4.5-4.7.

Problems 4.5-4.7 including relatively high dimensional blending problems
and all mixed-integer were easy to solve. Problem 4.7B was the most difficult
in terms of the required N/Nr, although the presented CPU time does not
show the complexity of the problem because of its low dimensionality.
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5 Conclusion

In this study QMC and stochastic variants of MLSL were compared. The Pro-
gram SobolOpt employing the discussed techniques was applied to a number
of test problems. When compared with other implementations of MLSL re-
ported in the literature, it showed a superior performance. It was proved that
application of LDS results in a significant reduction in computational time
for low and moderately dimensional problems. Two different LDS were tested
and their efficiency was analyzed. Uniformity properties of Holton LDS de-
grade as dimensionality grows and for high dimensional problems the MLSL
method based on Holton LDS becomes less efficient than the stochastic MLSL
method. Sobol’ LDS can still be superior to pseudorandom sampling especially
for problems in which an objective function strongly depends only on a subset
of variables.

To increase the probability of finding the global minimum, the full sample
size should be increased with the increase of the dimensionality of a problem.
However, it may not be very practical if the objective function is difficult to
evaluate. The ratio of the full/reduced sample size γ should be kept high to
reduce the computational time. It was shown that the use of a large total
number of sampled points is more efficient than that of a small one if the
objective is to locate only a global minimum as opposed to locate as many
local minima as possible.
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Summary. We describe an application of Variable Neighbourhood Search (VNS)
methodology to continuous global optimization problems with box constraints. A
general VNS algorithm is implemented within the software package GLOB. The
tests are performed on some standard test functions and on a class of NP–hard
global optimization problems arising in practice. The computational results show
the potential of the new software.

Key words: Metaheuristics, variable neighborhood search.

1 Introduction

Global optimization problems have the form

globalmin
x∈X

f(x)

where f : Rn → R is a continuous function on an open set containing X and X
is a compact set. In most cases of practical interest global optimization is very
difficult because of the presence of many local minima, the number of which
tends to grow exponentially with the dimension of the problem. Besides, in
general it is only possible to design methods that offer an ε-guarantee to find
the global minimum. Nevertheless, a number of methods for global optimiza-
tion problems have been proposed, both deterministic and nondeterministic
(for a comprehensive bibliography see [15, 16, 18]).

There are two common approaches to finding the global minimum. The
first, so called Multistart5 Local Search (MS) consists of generating a set of

5 Also see Chapters 5, 8 (Sections 2.1, 7.1).
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random points and using them as starting points of some conventional min-
imization technique converging to a local minimum. In order to achieve a
sufficiently large probability of finding the global minimum, a large number of
starting points must be tried. This strategy is time consuming and soon be-
comes intractable as the dimensionality of the problem increases. The second
approach is to design methods which avoid entrapments in local minima and
continue search to give near-optimal solutions. The methods of this type are
Simulated Annealing (SA) and Genetic Algorithms (GA). The concept of SA
is inspired by statistical physics and is in essence a numerical simulation of
solids, where by slowly decreasing the temperature the system is being trans-
formed to a state of minimum energy. The idea of GA relies on the Darwinian
principle of evolution. GA algorithms crossbreed different trial solutions and
allow only the best to survive after several iterations. SA has been applied to
a wide range of chemical problems ([4, 8, 20, 21, 22]). GA has been used for
finding low–energy conformations of small molecules, predicting the structure
of clusters, modeling polymers and proteins [9, 19] and for molecular me-
chanics calculations [12]. Both Tabu Search (TS) and Variable Neighborhood
Search6 (VNS) belong to intelligent problem–solving algorithms. TS for con-
tinuous global optimization has been proposed by Glover in 1994 [5] and has
been successfully applied to various real–world problems giving often better
results than SA and GA [1, 2, 10]. The VNS approach to continuous global
optimization is the most recent [13, 14]. Our work has been motivated by the
fact that VNS, [6, 7] for discrete optimization, is conceptually very simple and
depends basically on one parameter which determines the number of different
neighborhoods in the VNS strategy. The simplicity allows very efficient and
flexible implementation.

It is the purpose of this contribution to present the software package GLOB
which is based on VNS methodology for global optimization. GLOB is de-
signed primarily as a test platform for comparing VNS strategies with dif-
ferent neighborhood structures and local optimizers. The current version of
GLOB handles only problems with box constraints. Future work7 will focus
on extensions to general global optimization problems.

2 VNS methodology

The basic idea of VNS metaheuristic is to use more than one neighborhood
structure and to proceed to a systematic change of them within a local search.
The algorithm remains in the same solution until another solution better than
the incumbent is found and then jumps there. Neighborhoods are usually
ranked in such a way that intensification of the search around the current

6 Also see Chapters 11, 8 (Sections 2.2, 7.2).
7 Part of this undertaking has already been carried out in the VNS solver imple-

mentation of the ooOPS software framework, see Chapter 8, Section 7.2.
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solution is followed naturally by diversification. The level of intensification or
diversification can be controlled by a few easy to set parameters. We may
view the VNS as a “shaking” process, where a movement to a neighborhood
further from the current solution corresponds to a harder shake. Unlike ran-
dom restart, the VNS allows a controlled increase in the level of the shake.
Let us denote by Nk, k = 1, ..., kmax a finite sequence of pre-selected neigh-
borhood structures, and by Nk(x ) the set of feasible solutions corresponding
to neighborhood structure Nk at the point x, where x is an initial solution.
Let us note that most local search metaheuristics use one neighborhood struc-
ture, i.e. kmax = 1 . The following algorithm presents steps of the basic VNS
heuristic.

Repeat until the stopping criterion is met:

(1) Set k ← 1
(2) Until k > kmax repeat the following steps:

(a) Shaking: Generate a point x′ at random from Nk(x)
(b)Local search: Apply some local search method with x′ as the initial

solution; denote by x′′ the so obtained local minimum.
(c) Move or not: If x′′ is better than the incumbent move there (x← x′′)

and set k ← 1 ; otherwise set k ← k + 1

The stopping criterion may be e.g. the predetermined maximal allowed
CPU time, the maximal number of iterations, or the maximal number of iter-
ations between two improvements. Let us note that the point x′ is generated
in Step 2(a) at random in order to avoid cycling which might occur if any
deterministic rule was used.

3 Software package GLOB

The software package GLOB is a stand–alone solver for minimization of a con-
tinuous function subject to box constraints. The code is written in ANSI C
programming language and consists of approximately 7000 lines. The current
version of the package implements Variable Neighborhood Search, Multistart
Local Search and Random Search (Monte Carlo Method) with possibility to
add other global optimization heuristics. The package offers various statisti-
cal reporting facilities convenient for research purpose. Thus, GLOB is not
primarily designed to be a commercial software with speed as the main ob-
jective, but rather as a tool for better understanding of heuristics in global
optimization problems.

3.1 Overview of GLOB

GLOB is designed to seek for the global minimum of a continuous (or smooth)
function in a finite dimensional box-constrained region:
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min f(x1, x2, ..., xn), ai ≤ xi ≤ bi, i = 1, ..., n

Number of space variables is set to maximum of 200 in the current version,
but it can be easily increased.

User defines the function f by a C function

double user_function ( double *xcoordinates )

and, optionally, its gradient by

void user_gradient ( double *xcoordinates,

double *gradient )

If the function to be minimized depends on some parameters with fixed
values in minimization process, as in some test functions (e.g. Baluja), their
values can be passed to functions via fun_params option in job parameter file
which defines the values in a global array Fun_Params[] that can be used in
the user function.

There is a number of well known test functions already built in the package
and recognized by their name. In the present time they are: Rosenbrock,
Shekel, Hartman, Rastrigin, Griewank, Shubert, Branin, Goldstein and Price,
B2, Martin and Gaddy, Baluja f1, f2 and f3. More test functions can be added
easily.

The package is designed to be run in a batch mode, so all parameters are
defined in a couple of parameter files: main parameter file and job parameter
file. Example of those files are given in Appendix 1.

In main parameter file (default name glob.cfg) user specifies which job
parameter file will be used, the name of the output file and the working
directory. The job parameter file contains test function details, various options,
limits, parameters as well as reporting options for that job. This approach
makes it possible to submit several optimization jobs in batch mode.

3.2 Built–in heuristics and local optimizers

There are three heuristics built in the current version of the package: Random
Search (Monte-Carlo), Multistart Local Search (MS), and VNS. In the last
two new random points are initial points for a chosen local minimizer. In MS
a new random point is generated by the uniform distribution in the whole box
region. In VNS new random point is chosen from a series of neighborhoods of
the best found optimal point. There are several parameters which define the
type of neighborhoods and random distributions (metrics) used for getting the
next random point. Local minimizers used in VNS and MS are well known
methods Nelder-Mead (NM), Hooke-Jeeves (HJ), Rosenbrock (RO), Steepest
Descent (SD), Fletcher-Powell (FP) and Fletcher-Reeves (FR). The first three
do not require gradients and can be used for nonsmooth objective functions.
The other three methods use information on the gradient, which either can be
user supplied or approximately calculated by finite difference method. Many
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local minimizers use one dimensional optimizer which can be set to Golden
Section Search (GS) or Quadratic Approximation method (QA).

3.3 Summary of GLOB options

A typical job parameter file is presented in Appendix 1.
The first group of parameters describe the optimization problem. Setting

function_name user can choose one of the built–in test functions or define
a name for a user supplied function. If a function depends on on some fixed
parameters (Baluja for example), the number of parameters can be set by
no_fun_params and their values in fun_params. These values are stored in
a global array Fun_Params[] and can be used in the user or test function.
Box boundary values are set by left_boundaries and right_boundaries

following by an array of values. Initial point is set by initial_point. If all
the boundary or initial point values are the same, that value is simple entered
in left_boundaries_all, right_boundaries_all or initial_point_all.
This is very useful for test problems with large space dimension.

If the user knows the exact (or putative) global minimum, he can set it
by glob_known_minimum and percentage of the difference between current
and the optimal function values will be reported. Parameter boundary_tol is
used for identification of hitting the boundary in a local optimization method.
Gradient methods switch to projected gradient method when the point reaches
the boundary. The value significant_fun_difference is used to distinguish
minor function value improvements (mostly around the same local minimum)
from more significant ones and is used only in statistical reporting.

The program will in one optimization job try to find a better minimum un-
til glob_time_limit seconds are elapsed or glob_max_iteration of metait-
erations are done. For finding average and best results in number of repeated
job runs, user can set glob_job_repetitions job runs to be executed auto-
matically with related statistics reported. For portability reasons, the program
uses its own uniform random number generator. The seed for this generator
can be set in random_seed. If set to 0, the seed will be initiated by the system
clock. Seed choices not equal to 0 enable the same random point trajectory to
be repeated in numerical experiments. For VNS metaheuristics the package
can use three different types of neighborhood structures. The first type is L∞

ball with the uniform distribution in it. The second and the third are L1 balls
with the uniform and a specially designed distribution, respectively. Setting
random_distributions = 1 1 1 means that the three types are changing
cyclically, while e.g. 1 0 0 means that only the first neighborhood structure
type is used.

The next group of parameters defines the VNS neighborhood structures:
vns_kmax is the number of balls of different sizes centered at the current
point. The sizes of balls can be defined by the user or automatically gener-
ated by the software. Two parameters random_from_disk, reject_on_return
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and reject_on_return_k_diff control random point placement and pre-
vention of returning to the current local minimum. E.g. if the user sets
reject_on_return to 1, any local optimization started from Nk neighbor-
hood will be terminated if the point returns to Nk−m neighborhood, where m
is set by reject on return k diff. If random from disk = 1, then random
point is chosen from disk Nk \Nk−1.

Eight parameters prefixed with rep_ control the reporting which is de-
scribed in more details in the next section.

The rest of parameters control the local minimizer used in each metaitera-
tion. The local minimizer terminates if one of the following occurs: number of
iterations exceeds some maximal value ls nelder mead maxiter in this exam-
ple), two consecutive iteration points are closer than ls_eps, two consecutive
function values are closer than ls_fun_eps or the norm of the gradient (if
used) is less than ls_grad_eps.

3.4 Statistical reporting facilities

In one program execution, one or more jobs can be run. If more jobs are
run, the best and average optimal results are reported. The user can choose
the level of reporting by enabling or disabling certain information to be pre-
sented in output file and console screen. The user can get information on every
metaiteration or only on successful ones. For each metaiteration, the user can
get random point coordinates, coordinates of the best point in local optimiza-
tion, values of VNS auto recalculated radius values, and some other statistics.
At the end of a job (terminated by reaching maximum metaiterations or time
limit), statistics on: number of metaiterations, elapsed time, computing effort
(number of function and gradient calls) is presented for: overall metaiterations,
until the last successful metaiteration and until the last significant metaiter-
ation. The last significant metaiteration is the one after which no significant
(defined by an input parameter) function improvement is obtained. This con-
cept recognizes small improvements in the same best found local minimum
after the moment when that local minimum is practically found. For the VNS
metaheuristic, the number of successful steps is presented for every neighbor-
hood from where that better function value was reached. Also, statistics on
number of successful steps for various random distributions (metrics) used for
obtaining new starting point is reported.

As has been mentioned already, if the user knows the exact value of global
minimum (or putative global minimum) he can set it in a parameter file and
% deviation of the current best and the best known objective function value
will be calculated as (f − fbest)/fbest × 100 for each reported iteration.

3.5 GLOB Output

For the job parameter file listed in Appendix 1, the output file is presented in
Appendix 2.
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From this output it could be seen that the better optimum (0.12% better)
was found than it was known up to that moment. Also, the best local minimum
was found in iteration 1523 (of total 2747 in this 30s time limited job run) but
it is not significantly better than the minimum obtained already in iteration
381 for less than 5s. Also one can find that random distribution options 1 and
3 performed better than 2 in this example.

VNS statistics at the end of the report shows that there were 12 successful
metaiterations from the first neighborhood (close to current local minimum,
mostly slight improvements), and another 12 were successful from more dis-
tant starting points mostly leading to other local minima.

4 Numerical experiments

The power of the package GLOB described in Section 2 was tested on three
classes of global optimization problems. Experiments were performed on In-
tel Pentium III processor, 930MHz, 1.00 GB of RAM. Only the first type of
neighborhood structures (L∞ with uniform distribution) was used, i.e. neigh-
borhoods were hypercubes of different sizes centered at the current point,
where the sizes were automatically generated. The number of cubes vns_kmax
was varied in order to investigate its influence on the efficiency of VNS. Note
that for vns_kmax = 1 VNS can be viewed as Multistart Local Search.

4.1 Standard test functions

The VNS heuristic was primarily designed for global optimization problems
with large number of local minima, where Multistart Local Search suffers
of central limit catastrophy. Nevertheless GLOB was also applied to some
standard test functions, which is the usual procedure for newly proposed op-
timization methods.

These functions are [2, 18], :

BR – Branin (n = 2):

f(x) =

(

x2 −
5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(

1− 1

8π

)

cos x1 + 10,

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

The global minimum is approximately 0.3979.

GP – Goldstein–Price (n = 2):

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]×
× [30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

−2 ≤ xi ≤ 2, i = 1, 2.
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The global minimum is equal to 3.

HTn – Hartman (n = 3, 6):

f(x) = −
4
∑

i=1

ci exp



−
n
∑

j=1

aij(xj − pij)
2



,

0 ≤ xi ≤ 1, i = 1, n.

The values of parameters ci, aij , pij can be found in [16]. For n = 3 the
global minimum is equal to -3.8628, while for n = 6 the minimum is -3.3224.

RS – Rastrigin (n = 2):

f(x) = x2
1 + x2

2 − cos 18x1 − cos 18x2,

−1 ≤ xi ≤ 1, i = 1, 2.

The global minimum is equal to -2.

SB – Shubert (n = 2):

f(x) =

[

5
∑

i=1

i cos((i + 1)x1 + i)

][

5
∑

i=1

i cos((i + 1)x2 + i)

]

,

−10 ≤ xi ≤ 10, i = 1, 2.

The global minimum is -186.7309.

ROn – Rosenbrock (n = 2, 10):

f(x) =
n−1
∑

i=1

(

100(xi+1 − x2
i )

2 + (1− xi)
2
)

−10 ≤ xi ≤ 10.

The global minimum is 0.

GRn – Griewank (n = 2, 10):

f(x) =
n
∑

i=1

x2
i /d−

n
∏

i=1

cos(xi/
√

i) + 1.

For n = 2, d = 200 and −100 ≤ xi ≤ 100, i = 1, n, the global minimum is 0.
For n = 10, d = 4000, −600 ≤ xi ≤ 600, i = 1, n, the global minimum is also
0.

SHm – Shekel (n = 4;m = 5, 10):
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f(x) = −
m
∑

i=1

1

(x− ai)T (x− ai) + ci

x = (x1, x2, x3, x4)
T , ai = (a1

i , a
2
i , a

3
i , a

4
i )

T , 1 ≤ m ≤ 10.

i aT
i ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

The global minimum is -10.1532 for m = 5 and -10.53641 for m = 10.

MG – Martin and Gaddy (n = 2):

f(x) = (x1 − x2)
2 +

(

x1 + x2 − 10

3

)2

−20 ≤ xi ≤ 20, i = 1, 2.

The global minimum is 0.

B2 (n = 2):

f(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

−100 ≤ xi ≤ 100, i = 1, 2.

The global minimum is 0.

Bf1 – Baluja Bf1
(n = 100, ε = 10−5):

f(x) = −
(

ε +

∣

∣

∣

∣

∣

|y1|+
n
∑

i=1

|yi|
∣

∣

∣

∣

∣

)−1

, y1 = x1, yi = xi + yi−1,

−2.56 ≤ xi ≤ 2.56, i = 1, 2, ..., n.

The global minimum is −1/ε = −100000.

The results of GLOB are summarized in Table 1. The first and the second
column contain the test function code and the local minimizer code, respec-
tively. For each of the values vns_kmax = 1, 2, 3 the average and the best
objective function value in 100 runs are given. The computational effort is
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vns kmax = 1 vns kmax = 2 vns kmax = 3

function local average best comp. average best comp. average best comp.

minimizer value value effort value value effort value value effort

BR FR+QA 0.3979 0.3979 411 0.3979 0.3979 287 0.3979 0.3979 164

GP NM 3.0000 3.0000 195 3.0000 3.0000 266 3.0000 3.0000 297

HT3 RO -3.8627 -3.8628 1305 -3.8627 -3.8628 823 -3.8628 -3.8628 648

HT6 RO -3.3224 -3.3224 1138 -3.3224 -3.3224 619 -3.3224 -3.3224 586

RS NM -1.9963 -2.0000 2364 -2.0000 -2.0000 1411 -2.0000 -2.0000 1194

SB FP+QA -186.7309 -186.7309 1112 -186.7309 -186.7309 1181 -186.7309 -186.7309 1047

RO2 RO 0.0000 0.0000 711 0.0000 0.0000 599 0.0000 0.0000 552

RO10 RO 0.0328 0.0000 172905 0.0120 0.0000 135216 0.0055 0.0000 113677

GR2 SD+QA 0.0000 0.0000 787 0.0000 0.0000 757 0.0000 0.0000 990

GR10 SD+QA 0.0000 0.0000 1734 0.0000 0.0000 1430 0.0000 0.0000 1338

SH5 RO -10.1532 -10.1532 3060 -10.1532 -10.1532 1073 -10.1532 -10.1532 955

SH10 RO -10.5364 -10.5364 3341 -10.5364 -10.5364 1235 -10.5364 -10.5364 1207

MG NM 0.0000 0.0000 218 0.0000 0.0000 102 0.0000 0.0000 90

B2 RO 0.0000 0.0000 705 0.0000 0.0000 611 0.0000 0.0000 536

Bf1 HJ -0.0070 -0.0063 20160399 -3311.77 -3076.17 32121892 -26541.98 -21903.75 35030774
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The figures in Table 1 show that GLOB gives satisfactory results for all of
the functions except for Bf1 where obtained function values are far from the
global minimum although the reached solutions are very close to the optimal
one. This is due to the shape of the function with very narrow and very
deep minimum. The results for Bf1 were obtained using manually defined
sizes of neighborhoods (as application of automatically generated sizes gave
substantially worse results). In order to reach better solutions, experiments
with other types of neighborhood structure should be performed.

4.2 Some large real-life problems

Problems of optimal design are natural field of application for global optimiza-
tion algorithms. Such an engineering problem arises in the spread spectrum
radar polyphase code design [3]. This problem is modelled as a min–max non-
linear nonconvex optimization problem with box constraints and exponentially
growing number of local minima. It can be expressed as follows:

globalmin
x∈X

f(x) ≡ max{ϕ1(x), ..., ϕ2m(x)}

X = {(x1, ..., xn) ∈ Rn | 0 ≤ xj ≤ 2π, j = 1, ..., n}
where m = 2n− 1 and

ϕ2i−1 =

n
∑

j=i

cos





j
∑

k= |2i−j−1|+1

xk



, i = 1, ..., n

ϕ2i(x) = 0.5 +
n
∑

j=i+1

cos





j
∑

k= |2i−j|+1

xk



, i = 1, ..., n− 1

ϕm+i(x) = −ϕi(x), i = 1, ...,m.

It is proved in [9] that this problem is NP-hard.
In our tests Nelder–Mead method is used as a local minimizer. The dimen-

sion n varies from 7 to 20, while kmax takes values 1, 5, 10 and 15. Stopping
criterion is CPU time tmax, which varies with n from 180 sec for n = 7 to 960
sec for n = 20.

The results of experiments are summarized in Table 2. For each dimension
% deviation of the average and the best objective function value from fbest

in 10 runs are calculated, where % deviation of objective function value f
from fbest is defined as (f − fbest)/fbest× 100. Here fbest is the best objective
function value obtained in [14] by variants of VNS and TS based heuristics.

The results in Table 2 show that the perfomance of VNS depends on the
number of neighborhood structures. For all dimensions both the average and
the best solutions are improved when vns_kmax is increased. This experi-
mentally verifies the conjecture that adding more neighborhood structures
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xvs kmax = 1 vns kmax = 5 vns kmax = 10 vns kmax = 15

n tmax average best average best average best average best fbest

(sec) % % % % % % % %

7 180 -0.07 -0.18 0.35 -0.17 -0.13 -0.17 0.84 -0.15 0.4972

8 240 17.29 7.82 9.25 -0.09 6.31 0.04 5.04 -0.02 0.3871

9 300 55.35 16.41 24.40 2.65 23.41 0.18 30.76 -1.71 0.3290

10 360 56.28 26.94 23.95 9.80 22.51 4.85 15.80 1.77 0.4105

11 420 77.87 54.27 30.33 0.47 19.38 -5.53 16.85 -7.86 0.4024

12 480 63.62 36.43 37.30 20.53 33.36 9.80 23.95 3.11 0.4907

13 540 78.42 54.85 61.68 29.09 46.79 0.64 28.45 -2.22 0.4899

14 600 111.35 84.17 83.16 58.75 70.57 29.35 68.86 29.09 0.4746

15 660 132.38 114.69 95.48 66.94 89.66 59.51 82.43 42.27 0.4857

16 720 189.38 147.92 149.76 117.51 125.54 72.23 131.81 67.89 0.4126

17 780 100.72 68.62 80.89 55.64 48.43 31.19 49.47 13.58 0.6334

18 840 118.61 109.28 85.84 59.12 72.84 26.70 60.37 30.46 0.6404

19 900 164.15 134.61 146.66 91.65 91.49 48.94 81.28 24.44 0.5617

20 960 162.69 148.08 115.48 80.40 72.63 40.51 74.10 34.68 0.6909

Table 2. Radar polyphase code design.

improves perfomance of the search. It should be noted that GLOB has found
better solutions than fbest in 5 cases (n = 7, 8, 9, 11, 13). In all other cases
the VNS and TS implementations described in [14] have given better results.
This can be explained by the fact that these implementations explicitly use
min–max structure of the radar polyphase code design problem, while GLOB
is a general purpose software. Namely, results in [14] were obtained with a
specially designed local search minimizer which uses information on gradi-
ents of functions ϕi active at the current point, while results in Table 2 were
obtained with the classical Nelder–Mead method.

The results in Table 2 give an impression that dependence of both the
average and the best solutions on vns_kmax is monotone and that further
increase of this parameter should provide further improvements. Table 3 gives
deeper insight in that matter. It contains the average and the best solutions for
the radar polyphase code design problem of dimension n = 20 and vns_kmax

= 1, 25. It can be seen that dependence of the average solution on vns_kmax

is strictly monotone for vns_kmax =1 (162.69%) to vns_kmax = 9 (65.54%)
and after that it is oscillating between 43.46% (vns_kmax = 22) and 87.01%
(vns_kmax = 13).

The next class of functions is proposed in [10] for testing global minimiza-
tion of molecular potential energy. It has the form:

f(x) =
n
∑

i=1

(

1 + cos 3xi +
(−1)i

√
10.60099896− 4.141720682 cos xi

)

,

0 ≤ xi ≤ 5, i = 1, n.

The results of the experiments for n = 50, 100, 150, 200 in 10 runs are
summarized in Table 4. In all cases the local minimizer was Steepest Descent
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Table 3. Dependence on vns kmax.

method with Quadratic Approximation method for one–dimensional optimiza-
tion. Column fbest contains exact values of global minima. It can be seen that
parameter vns_kmax has again a strong influence on the quality of GLOB
results which further confirms the given conjecture.

5 Conclusion

We describe a new VNS–based software package GLOB for minimization of
a continuous function subject to box constraints. The power of GLOB was
tested of three classes of problems with encouraging results. The first class
consists of some standard test functions used in the literature, while the other
two are global optimization problems arising in practice. In all cases numerical
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xvs kmax = 1 vns kmax = 5 vns kmax = 10 vns kmax = 15

n tmax average best average best average best average best fbest

(sec) % % % % % % % %

50 20 84.17 70.64 41.82 27.89 7.15 3.97 0.00 0.00 -2.0559

100 30 116.97 104.85 74.46 65.65 45.80 41.79 1.99 0.00 -4.1118

150 40 130.30 114.93 80.68 75.65 56.41 45.16 3.45 0.00 -6.1677

200 50 137.67 126.94 81.38 69.62 66.79 59.72 7.56 3.99 -8.2237

Table 4. Molecular potential energy function.

experiments verify the conjecture that adding more neighborhood structures
of type l∞ improves performance of the search. Future work will focus on
experiments with other types of neighborhood structures. Extensions of GLOB
to global optimization problems subject to general nonlinear constraints are
also planned.
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Tabu search methodology in global optimization, Computers and Mathematics
with Applications, 37 (1999) 125–133.

11. Lavor, C., and Maculan, N., A function to test methods applied to global min-
imization of potential energy of molecules, to appear in Numerical Algorithms.

12. Linert, W., Margl, P., and Lukovits, I., Numerical minimization procedures in
molecular mechanics: structural modeling of the solvation of β–cyclo–dextrin,
Computers & Chemistry, 16 (1992) 61–69.



DRAFT

Chapter 6: GLOB – A new VNS-based software for GO 149
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Appendix 1 GLOB parameter files

There are two parameter files: main parameter file and job parameter file. The
contents of a typical main parameter file (glob.cfg) looks as:

# Main configuration file for GLOB

# Job directory defines where to save (some) files.

# Directory must have ’\’ at the end.

job_name = glob;

job_directory = \projects\glob\data\;

# Output file contains copy of the screen output.

# Parameter file defines file with job parameters.

#

output_file = \projects\glob\data\out.txt;

parameter_file = \projects\glob\data\RadarOdd.cfg;

#parameter_file = \projects\glob\data\Shubert.cfg;

#parameter_file = \projects\glob\data\Branin.cfg;

#parameter_file = \projects\glob\data\Goldstei.cfg;

#parameter_file = \projects\glob\data\Shekel4.cfg;
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#parameter_file = \projects\glob\data\BalujaF1.cfg;

#parameter_file = \projects\glob\data\Rosenbro.cfg;

A typical job parameter file (RadarOdd.cfg) looks as:

# Parameter definition file for GLOB.

function_name = Radar_Odd;

space_dimension = 5;

left_boundaries = 0 0 0 0 0;

right_boundaries = 6.3 6.3 6.3 6.3 6.3;

initial_point = 1 1 1 1 1;

glob_known_minimum = 0.337490;

boundary_tol = 1.0e-10;

significant_fun_diff = 1.0e-4;

glob_job_repetitions = 1;

glob_max_iterations = 100000;

glob_time_limit = 30;

random_seed = 1;

# in array: set to use, 0 not to use certain distribution

# 1. uniform in Linf ball

# 2. uniform in L1 ball

# 3. special in L1 ball

random_distributions = 1 1 1;

# metaheuristic method:

# = 1 random point

# = 2 multistart

# = 3 VNS

metaheuristic_method = 3;

vns_kmax = 15;

vns_radius = .1 .3 .8 3 10 11 12 13 14 15 16 17 18 19 20 21;

# VNS radius generation method

# = 0 user defined

# = 1 automatic, best point centered

vns_radius_gen_method = 1;

random_from_disk = 1;

reject_on_return = 0;

reject_on_return_k_diff = 1;

rep_job_details = 1;

rep_job_stats = 1;

rep_point_coordinates = 0;

rep_init_point = 0;
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rep_each_meta_iter = 0;

rep_random_point = 0;

rep_new_best_point = 1;

rep_new_vns_radius_gen = 0;

ls_eps = 1.0e-6;

ls_fun_eps = 1.0e-7;

ls_grad_eps = 1.0e-10;

# local optimizer selection:

# = 11 steepest descent

# = 12 Fletcher-Powell

# = 13 Fletcher-Reeves

# = 21 Nelder-Mead

# = 22 Hook-Jeeves

# = 23 Rosenbrock

local_search_method = 21;

# gradient calculation method:

# = 0 user supplied function

# = 1 finite difference method

grad_calc_method = 1;

grad_calc_step = 1.0e-6;

# linear (1D) optimizer selection:

# = 1 golden section method

# = 2 quadratic method

linear_search_method = 1;

# for 1D golden section method

ls_1d_gold_eps = 1.0e-6;

ls_1d_gold_maxiter = 500;

# for Nelder-Mead method:

ls_nelder_mead_init_edge = 0.1;

ls_nelder_mead_maxiter = 500;

Appendix 2 GLOB output

For job parameter file listed in Appendix 1, output file would (with unessential
reduction) look as

GLOBAL OPTIMIZATION

Parameters:

Function name: Radar_Odd
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Problem dimension: 5

Left, right boundary and initial point:

all coordinates: 0.000000 6.300000 1.000000

Known fun minimum: 0.33749

Boundary tolerance: 1e-010

VNS metaheuristic method selected.

VNS parameters:

Kmax: 15

Automatic neighbourhood radius generation selected.

Random point only from disk ( K-th but not

(K-1)-th neighbourhood )

Maximum iterations: 100000

Time limit in sec: 30

Random seed: 1

Distributions used: 1 2 3

Function improvement significance tol: 0.0001

eps point tolerance for local search: 1e-006

eps function tolerance for local search: 1e-007

eps gradient tolerance for local search: 1e-010

Nelder-Mead local optimizer selected.

Maximum iterations in Nelder-Mead method: 500

Init edge length in Nelder-Mead method: 0.1

LS ret codes:

0 - reject on return back to smaller neighbourhood

1 - maximum iterations reached

2 - two points closer than LS_eps

3 - two function values cloaser than LS_fun_eps

4 - gradient norm smaller than LS_grad_eps

5 - null direction vector

6 - null direction vector after rotation

7 - maximum step reductions reached

** clock: 0.010s 0.010s New best point found

iteration: 1 VNS_k: 1 d1 ( 1 -> 5 ) LS ret: 2 fun: 625

point dist: 2.27833, fun diff: 1.29501

Fun = 1.40650133983789 ( 316.75 %) New best point

** clock: 0.020s 0.010s New best point found

iteration: 2 VNS_k: 1 d1 ( 1 -> 3 ) LS ret: 2 fun: 1020

point dist: 1.24833, fun diff: 0.164813

Fun = 1.24168798465437 ( 267.92 %) New best point

** clock: 0.040s 0.020s New best point found

iteration: 3 VNS_k: 1 d1 ( 1 -> 4 ) LS ret: 1 fun: 1704
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point dist: 1.82473, fun diff: 0.274424

Fun = 0.967263995859989 ( 186.61 %) New best point

( --> 15 new best points omitted from this listing <-- )

** clock: 2.033s 0.010s New best point found

iteration: 171 VNS_k: 1 d3 ( 1 -> 1 ) LS ret: 2 fun: 103507

point dist: 0.00266369, fun diff: 4.46617e-005

Fun = 0.358356981348043 ( 6.18 %) New best point

** clock: 3.815s 1.782s New best point found

iteration: 332 VNS_k: 11 d1 ( 11 -> 13 ) LS ret: 3 fun: 201826

point dist: 6.47077, fun diff: 0.00976652

Fun = 0.348590461358697 ( 3.29 %) New best point

** clock: 4.006s 0.191s New best point found

iteration: 349 VNS_k: 2 d2 ( 2 -> 1 ) LS ret: 3 fun: 211927

point dist: 0.125512, fun diff: 0.00932393

Fun = 0.339266532745671 ( 0.53 %) New best point

** clock: 4.366s 0.360s New best point found

iteration: 381 VNS_k: 2 d1 ( 2 -> 1 ) LS ret: 3 fun: 231608

point dist: 0.0090049, fun diff: 0.00212567

Fun = 0.337140866498095 ( -0.10 %) New best point

** clock: 6.499s 2.133s New best point found

iteration: 577 VNS_k: 1 d2 ( 1 -> 1 ) LS ret: 3 fun: 347902

point dist: 0.000200047, fun diff: 4.24404e-005

Fun = 0.337098426114104 ( -0.12 %) New best point

** clock: 16.734s 10.235s New best point found

iteration: 1523 VNS_k: 1 d2 ( 1 -> 1 ) LS ret: 3 fun: 912072

point dist: 6.72353e-005, fun diff: 1.03975e-005

Fun = 0.337088028580521 ( -0.12 %) New best point

Timeout of 30 seconds reached.

** clock: 30.003s 13.269s finish

Best point found:

Fun = 0.337088028580521 ( -0.12 %) Best point:

X = 3.45738323045107 1.04894197827272 1.42788440554346

6.10300822468557 1.91461843833361

Job statistics:

Random points generated: 2747

Random points rejected: 510

Number of improvements for used distributions:

1: 10

2: 3

3: 11

overall last succ. last signif.

Meta iteration(s): 2747 1523 381

Time in seconds: 30.003 16.734 4.366

Comp. effort (fun+N*grad): 1634872 912072 231608

Function calls: 1634872 912072 231608

Gradient calls: 0 0 0



DRAFT
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VNS\index{VNS} statistics:

Level, steps, succ steps, rejected steps

1: 203 12 0

2: 191 6 0

3: 185 1 0

4: 184 0 0

5: 184 1 0

6: 183 0 0

7: 183 1 0

8: 182 1 0

9: 181 0 0

10: 180 1 0

11: 179 1 0

12: 178 0 0

13: 178 0 0

14: 178 0 0

15: 178 0 0

SUM: 2747 24 0
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1 Introduction

Convex programming is a subclass of nonlinear programming (NLP) that uni-
fies and generalizes least squares (LS), linear programming (LP), and convex
quadratic programming (QP). This generalization is achieved while maintain-
ing many of the important, attractive theoretical properties of these predeces-
sors. Numerical algorithms for solving convex programs are maturing rapidly,
providing reliability, accuracy, and efficiency. A large number of applications
have been discovered for convex programming in a wide variety of scientific
and non-scientific fields, and it seems clear that even more remain to be dis-
covered. For these reasons, convex programming arguably has the potential
to become a ubiquitous modeling technology alongside LS, LP, and QP. In-
deed, efforts are underway to develop and teach it as a distinct discipline
[29, 21, 115].

Nevertheless, there remains a significant impediment to the more wide-
spread adoption of convex programming: the high level of expertise required
to use it. With mature technologies such as LS, LP, and QP, problems can
be specified and solved with relatively little effort, and with at most a very
basic understanding of the computations involved. This is not the case with
general convex programming. That a user must understand the basics of con-
vex analysis is both reasonable and unavoidable; but in fact, a much deeper
understanding is required. Furthermore, a user must find a way to transform
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his problem into one of the many limited standard forms; or, failing that, de-
velop a custom solver. For potential users whose focus is the application, these
requirements can form a formidable “expertise barrier”—especially if it is not
yet certain that the outcome will be any better than with other methods. The
purpose of the work presented here is to lower this barrier.

In this article, we introduce a new modeling methodology called disciplined
convex programming. As the term “disciplined” suggests, the methodology im-
poses a set of conventions that one must follow when constructing convex pro-
grams. The conventions are simple and teachable, taken from basic principles
of convex analysis, and inspired by the practices of those who regularly study
and apply convex optimization today. Conforming problems are called, appro-
priately, disciplined convex programs. The conventions do not limit generality;
but they do allow much of the manipulation and transformation required to
analyze and solve convex programs to be automated. For example, the task
of determining if an arbitrary NLP is convex is both theoretically and practi-
cally intractable; the task of determining if it is a disciplined convex program
is straightforward. In addition, the transformations necessary to convert dis-
ciplined convex programs into solvable form can be fully automated.

A novel aspect of this work is a new way to define a function in a modeling
framework: as the solution of a disciplined convex program. We call such a
definition a graph implementation, so named because it exploits the properties
of epigraphs and hypographs of convex and concave functions, respectively.
The benefits of graph implementations to are significant, because they provide
a means to support nondifferentiable functions without the loss of reliability
or performance typically associated with them.

We have created a modeling framework called cvx that implements the
principles of the disciplined convex programming methodology. The system is
built around a specification language that allows disciplined convex programs
to be specified in a natural mathematical form, and addresses key tasks such
as verification, conversion to solvable form, and numerical solution. The de-
velopment of cvx is ongoing, and an initial version is near release. We will
be disseminating cvx freely to encourage its use in coursework, research, and
applications.

The remainder of this article begins with some motivation for this work, by
examining how current numerical methods can be used to solve a simple norm
minimization problem. In §3, we provide a brief overview of convex program-
ming technology; and in §4, we discuss the benefits of modeling frameworks
in general, and cvx in particular. Finally, we introduce disciplined convex
programming in detail in §5-§10.

2 Motivation

To illustrate the complexities of practical convex optimization, let us consider
how one might solve a basic and yet common problem: the unconstrained
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norm minimization

minimize f(x) , ‖Ax− b‖ A ∈ Rm×n b ∈ Rm (1)

The norm ‖ ·‖ has not yet been specified; we will be examining several choices
of that norm. For simplicity, we will assume that n ≤ m and that A has full
rank; and for convenience, we shall partition A and b into rows,

AT ,
[

a1 a2 . . . am

]

bT ,
[

b1 b2 . . . bm

]

(2)

2.1 The norms

The Euclidean norm

The most common choice of the norm in (1) is certainly the `2 or Euclidean
norm,

f(x) , ‖Ax− b‖2 =
√

∑n
i=1(a

T
i x− bi)

2 (3)

In this case, (1) is easily recognized as a least squares problem, which as its
name implies is often presented in an equivalent quadratic form,

minimize f(x)2 = ‖Ax− b‖22 =
∑m

i=1(a
T
i x− bi)

2 (4)

This problem has an analytical solution x = (AT A)−1AT b, which can be
computed using a Cholesky factorization of AT A, or more accurately using a
QR or SVD factorization of A [76]. A number of software packages to solve
least squares problems are readily available; e.g., [1, 106].

The Chebyshev norm

For the `∞ or Chebyshev norm,

f(x) , ‖Ax− b‖∞ = max
i=1,2,...,m

|aT
i x− bi|, (5)

there is no analytical solution. But a solution can be obtained by solving the
linear program

minimize q
subject to −q ≤ aT

i x− bi ≤ q, i = 1, 2, . . . ,m
(6)

Despite the absence of an analytical solution, numerical solutions for this
problem are not difficult to obtain. A number of efficient and reliable LP
solvers are readily available; in fact, a basic LP solver is included with virtually
every piece of spreadsheet software sold [63].
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The Manhattan norm

Similarly, for the `1 or Manhattan norm

f(x) , ‖Ax− b‖1 =

m
∑

i=1

|aT
i x− bi|, (7)

a solution can also be determined by solving an appropriate LP:

minimize
∑m

i=1 vi

subject to −vi ≤ aT
i x− bi ≤ vi, i = 1, 2, . . . ,m

(8)

So again, this problem can be easily solved with readily available software,
even though an analytical solution does not exist.

The Hölder norm, part 1

Now consider the Hölder or `p norm

f(x) , ‖Ax− b‖p =
(
∑m

i=1 |aT
i x− bi|p

)1/p
(9)

for p ≥ 2. We may consider solving (1) for this norm using Newton’s method.
For simplicity we will in fact apply the method to the related function

g(x) , f(x)p =
∑m

i=1 |aT
i x− bi|p (10)

which yields the same solution x but is twice differentiable everywhere. The
iterates produced by Newton’s method are

xk+1 = xk − αk

(

∇2g(xk)
)−1∇g(xk)

= xk −
αk

p− 1
(AT WkA)−1AT Wk(Axk − b)

=
p− 1− αk

p− 1
xk +

αk

p− 1
arg min

w̄

∥

∥

∥W
1/2
k (Aw̄ − b)

∥

∥

∥

2

(11)

where x0 = 0, k = 1, 2, 3, . . . , and we have defined

Wk , diag(|aT
1 xk − b1|p−2, |aT

2 xk − b2|p−2, . . . , |aT
mxk − bm|p−2). (12)

and αk ∈ [0, 1) is either fixed or determined at each iteration using a line
search technique. Notice how the Newton computation involves a (weighted)
least squares problem; In fact, if p = 2, then Wk ≡ I, and a single Newton
iteration produces the correct least squares solution. So the more “complex”
`p case simply involves solving a series of similar least squares problems. This
resemblance to least squares turns up quite often in numerical methods for
convex programming.
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An important technical detail must be mentioned here. When the residual
vector Axk − b has any zero entries, the matrix Wk (12) will be singular. If
m � n, this will not necessarily render the Hessian ∇2g(x) itself singular,
but care must be taken nonetheless to guard for this possibility. A variety of
methods can be considered, including the introduction of a slight dampening
factor to Wk; i.e., Wk + εI.

Newton’s method is itself a relatively straightforward algorithm, and a
number of implementations have been developed; e.g., [113]. These methods
do require that code be created to compute the computation of the gradient
and Hessian of the function involved. This task is eased somewhat by using an
automatic differentiation package such ADIC [81] or ADIFOR [10], which can
generate derivative code from code that simply computes a function’s value.

The Hölder norm, part 2

For 1 < p < 2, Newton’s method cannot reliably be employed, because neither
f(x) nor g(x) , f(x)p is twice differentiable whenever the residual vector
Ax − b has any zero entries. An alternative that works for all p ∈ [1,+∞)
is to apply a barrier method to the problem. A full introduction to barrier
methods is beyond the scope of this text, so we will highlight only key details.
The reader is invited to consult [118] for a truly exhaustive development of
barrier methods, or [29] for a gentler introduction.

To begin, we note that the solution to (1) can be obtained by solving

minimize 1T v
subject to |aT

i x− bi|p ≤ vi i = 1, 2, . . . ,m
(13)

To solve (13), we construct a barrier function φ : (Rn ×Rm)→ (R ∪+∞) to
represent the inequality constraints [118]:

φ(x, v) ,
{

∑m
i=1− log(v

2/p
i − (aT

i x− bi)
2)− 2 log vi (x, v) ∈ S

+∞ (x, v) 6∈ S

S ,
{

(x, v) ∈ Rn × R | |aT
i x− bi|p < vi, i = 1, 2, . . . ,m

}

(14)

The barrier function is finite and twice differentiable whenever the inequality
constraints in (13) are strictly satisfied, and +∞ otherwise. This barrier is
used to create a family of functions gt parameterized over a quantity t > 0:

gt : Rn × Rm → R ∪+∞, gt(x, v) , 1T v + tφ(x, v) (15)

It can be shown that, as t→ 0, the minimizing values for gt(x, v) converge to
the solution to the original problem. A practical barrier method takes Newton
steps to minimize gt(x, v), decreasing the value of t between iterations in a
manner chosen to insure convergence and acceptable performance.

This approach is obviously significantly more challenging than the previous
efforts. As with the Newton method for the p ≥ 2 case, code must be written
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(or automatic differentiation employed) to compute the gradient and Hessian
of gt(x, v). Furthermore, the authors are unaware of any readily available
software implementing a general purpose barrier methods such as this, so one
would be forced to write their own.

An uncommon choice

Given a vector w ∈ Rm, let w[|k|] be the k-th element of the vector after it
has been sorted from largest to smallest in absolute value:

|w[|1|]| ≥ |w[|2|]| ≥ · · · ≥ |w[|m|]| (16)

Then let us define the largest-L norm as follows:

‖w‖[|L|] ,
L
∑

k=1

|w[|k|]| (L ∈ {1, 2, . . . ,m}). (17)

Solving (1) using this norm produces a vector x that minimizes the sum of the
L largest residuals of Ax− b. This is equivalent to the `∞ case for L = 1 and
the `1 case for L = m, but for 1 < L < m this norm produces novel results.

While it may not be obvious that (17) is a norm or even a convex function,
it is indeed both. Even less obvious is how to solve this problem—but in fact,
it turns out that it can be solved as an LP!

minimize
∑m

i=1 vi + Lq
subject to −vi − q ≤ aT

i x− bi ≤ vi + q, i = 1, 2, . . . ,m
vi ≥ 0, i = 1, 2, . . . ,m

(18)

This LP is only slightly larger than the one used for the `1 case. The result
is known—see, for example [124]—but not widely so, even among those who
actively study optimization. Thus it is likely that someone wishing to solve
this problem would consider a far more difficult approach such as a barrier
method or a subgradient method (or not even try).

2.2 The expertise barrier

The conceptual similarity of these problems is obvious, but the methods em-
ployed to solve them differ significantly. A variety of numerical algorithms
are represented: least squares, linear programming, Newton’s method, and a
barrier method. In most cases, transformations are required to produce an
equivalent problem suitable for numerical solution. These transformations are
not likely to be obvious to an applications-oriented user whose primary ex-
pertise is not optimization.

As a result of this complexity, those wishing to solve a norm minimization
problem may, out of ignorance or practicality, restrict their view to norms for
which solution methods are widely known, such as `2 or `∞— even if doing
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so compromises the accuracy of their models. This might be understandable
for cases like, say, `1.5, where the computational method employed is quite
complex. But the true computational complexity may be far less severe than
it seems on the surface, as is the case with the largest-L norm.

Even this simple example illustrates the high level of expertise needed
to solve even basic convex optimization problems. Of course, the situation
worsens if more complex problems are considered. For example, adding simple
bounds on x (e.g., l ≤ x ≤ u) eliminates analytical solutions for the `2 case,
and prevents the use of a simple Newton’s method for the `p case.

2.3 Lowering the barrier

In Figure 1, cvx specifications for three of the norm minimization problems
presented here are given. In each case, the problem is given in its original
form; no transformations described above have been applied in advance to
convert them into “solvable” form. Instead, the models utilize the functions
norm_inf, norm_p, and norm_largest for the `∞, `p, and largest-L norms,
respectively. The definitions of these functions have been stored in a separate
file norms.cvx, and referred to by an include command.

minimize norm_inf( A x - b );

parameters A[m,n], b[n];

variable x[n];

include "norms.cvx";

minimize norm_p( A x - b, p );

parameters A[m,n], b[n], p >= 1;

variable x[n];

include "norms.cvx";

minimize norm_largest( A x - b, L );

parameters A[m,n], b[n], L in #{1,2,...,n};

variable x[n];

include "norms.cvx";

Fig. 1. cvx specifications for the Chebyshev, Hölder, and largest-L cases, respec-
tively.

In most modeling frameworks, function definitions consist of computer
code to compute their values and derivatives. This method is not useful for
these functions, because they are not differentiable. Graph implementations,
which we describe in detail in §10, solve this problem. For now, it is enough
to know that they effectively describe the very transformations illustrated in
§2.1 above. For example, the definitions for the norm_inf and norm_largest

provide the information necessary to convert their respective problems into
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LPs. The definition for norm_p includes a barrier function for its epigraph,
which can be used to apply a barrier method to the third problem.

So neither disciplined convex programming nor the cvx framework elim-
inates the transformations needed to solve any of these convex programs.
Rather, they allow the transformations to be encapsulated : that is, hidden
from the user, and performed without that user’s intervention. A function
definition can be used in multiple models and shared with many users. A
natural, collaborative environment is suggested, where the work of those with
advanced expertise in convex programming can share their knowledge with
less experienced modelers in a practical way, by creating libraries of function
definitions. The task of solving convex programs is appropriately returned to
experts, freeing applications-oriented users to confidently focus on modeling.

3 Convex programming

A mathematical program is an optimization problem of the form

minimize f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . , ng

hj(x) = 0 j = 1, 2, . . . , nh

(19)

or one that can be readily converted into this form. The vector x is the problem
variable; the quantity the quantity f(x) is the objective function, and the
relations gi(x) ≤ 0 and hj(x) = 0 are the inequality and equality constraints,
respectively. The study of mathematical programs focuses almost exclusively
on special cases of (19). The most popular is certainly the LP, for which the
functions f , gi, hj are all affine. Least squares problems, QPs, and NLPs can
all be represented by this form (19) as well.

A convex program (CP) is yet another special case of (19), one in which
the objective function f and inequality constraint functions gi are convex, and
the equality constraint functions hj are affine. The set of CPs is a strict subset
of the set of NLPs, and includes all least squares problems, LPs, and convex
QPs. Several other classes of CPs have been identified recently as standard
forms. These include semidefinite programs (SDPs) [155], second-order cone
programs (SOCPs) [104], and geometric programs (GPs) [48, 3, 138, 52, 92].
The work we present her applies to all of these special cases as well as to the
general class of CPs.

The practice of modeling, analyzing, and solving CPs is known as convex
programming. In this section we provide a survey of convex programming,
including its theoretical properties, numerical algorithms, and applications.

3.1 Theoretical properties

A number of powerful and practical theoretical conclusions can be drawn once
it can be established that a mathematical program is convex. A comprehensive
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theory of convex analysis was developed by the 1970s [137, 142], and advances
have continued since [83, 84, 21, 29].

The most fundamental distinction between CPs and general NLPs is that,
for the former, local optima are guaranteed to be global. Put another way, if
local optimality can somehow be demonstrated (say, using KKT conditions),
then global optimality is assured. Except in certain special cases, no similar
guarantees can be made for nonconvex NLPs. Such problems might exhibit
multiple local optima, so an exhaustive search would be required to prove
global optimality—an intractable task.

Convex programming also has a rich duality theory that is very similar to
the duality theory that accompanies linear programming, though it is a bit
more complex. The dual of a CP is itself a CP, and its solution often provides
interesting and useful information about the original problem. For example,
if the dual problem is unbounded, then the original must be infeasible. Un-
der certain conditions, the reverse implication is also true: if a problem is
infeasible, then its dual must be unbounded. These and other consequences of
duality facilitate the construction of numerical algorithms with definitive stop-
ping criteria for detecting infeasibility, unboundedness, and near-optimality.
For a more complete development of convex duality, see [137, 102].

Another important property of CPs is the provable existence of efficient
algorithms for solving them. Nesterov and Nemirovsky proved that a polyno-
mial-time barrier method can be constructed for any CP that meets certain
technical conditions [117]. Other authors have shown that problems which do
not meet those conditions can be embedded into larger problems that do—
effectively making barrier methods universal [169, 102, 171].

Finally, we note that the theoretical properties discussed here, including
the existence of efficient solution methods, hold even if a CP is nondifferentiable—
that is, if one or more of the constraint or objective functions is nondifferen-
tiable. The practical ramifications of this fact are discussed in §3.4.

3.2 Numerical algorithms

The existence of efficient algorithms for solving CPs has been known since
the 1970s, but it is only through advances in the last two decades that this
promise has been realized in practice. Much of the modern work in numerical
algorithms has focused on interior-point methods [166, 37, 163]. Initially such
work was limited to LPs [88, 133, 73, 89, 109, 105, 62], but was soon extended
to encompass other CPs as well [117, 118, 7, 87, 119, 162, 15, 120]. Now a
number of excellent solvers are readily available, both commercial and freely
distributed.

Below we provide a brief survey of solvers for convex optimization. For
the purposes of our discussion, we have separated them into two classes: those
that rely on standard forms, and those that rely on custom code.
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Standard forms

Most solvers for convex programming are designed to handle certain proto-
typical CPs known as standard forms. In other words, such solvers handle a
limited family of problems with a very specific structure, or obeying certain
conventions. The least squares problem and the LP are two common examples
of standard forms; we list several others below. These solvers trade generality
for ease of use and performance.

It is instructive to think of the collection of standard form solvers as a
“toolchest” of sorts. This toolchest is reasonably complete, in that most CPs
that one might encounter can be transformed into one (or more) of these
standard forms. However, the required transformations are often far from
obvious, particularly for an applications-oriented user.

Smooth convex programs

A number of solvers have been designed to solve CPs in standard NLP form
(19), under the added condition that the objective function f and inequality
constraint functions gi are smooth—that is, twice continuously differentiable—
at least over the region that the algorithm wishes to search. We will call
such problems smooth CPs; conversely, we will label CPs that do not fit this
categorization as nonsmooth CPs.

Software packages that solve smooth CPs include LOQO [154], which
employs a primal/dual method, and the commercial package MOSEK [110],
which implements the homogeneous algorithm. These solvers generally per-
form quite well in practice. Many systems designed for smooth nonconvex
NLPs will often solve smooth CPs efficiently as well [32, 69, 112, 70, 41, 31,
156, 122, 14, 33, 13, 71, 61, 153]. This is not surprising when one considers
that these algorithms typically exploit local convexity when computing search
directions.

One practical difficulty in the use of smooth CP or NLP solvers is that
the solver must be able to calculate the gradient and Hessian of the objective
and inequality constraint functions at points of its choosing. In some cases,
this may require the writing of custom code to perform these computations.
Many modeling frameworks simplify this process greatly in most cases by
allowing functions to be expressed in natural mathematical form and compute
derivatives automatically (e.g., [56, 18]).

Conic programs

An entire family of standard forms that have become quite common are the
primal and dual conic forms

minimize cT x
subject to Ax = b

x ∈ K
or

minimize bT y
subject to AT y + z = c

z ∈ K∗
(20)
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in which the sets K and K∗ are closed, convex cones (i.e., they satisfy αK ≡ K
and αK∗ ≡ K∗ for all α > 0). The most common conic form is the LP, for
which K = K∗ is the nonnegative orthant

K = K∗ = Rn
+ , {x ∈ Rn | xi ≥ 0, i = 1, . . . , n } (21)

It can be shown that virtually any CP can be represented in conic form, with
appropriate choice of K or K∗ [118]. In practice, two conic forms (besides
LP) dominate all recent study and implementation. One is the semidefinite
program (SDP), for which K = K∗ is an isomorphism of the cone of positive
semidefinite matrices

Sn
+ ,

{

X = XT ∈ Rn×n | λmin(X) ≥ 0
}

. (22)

The second is the second-order cone program (SOCP), for which K = K∗ is
the Cartesian product of one or more second-order or Lorentz cones,

K = Qn1 × · · · × QnK , Qn , { (x, y) ∈ Rn × R | ‖x‖2 ≤ y } . (23)

SDP and SOCP receive this focused attention because many applications have
been discovered for them, and because their geometry admits certain useful
algorithmic optimizations [121, 66, 149, 53, 68, 102, 126]. Publicly available
solvers for SDP and SOCP include SeDuMi [140], CDSP [22], SDPA [58],
SDPT3 [152], and DSDP [12]. These solvers are generally quite efficient, re-
liable, and are entirely data-driven: that is, they require no external code to
perform function calculations.

Geometric programs

Another standard form that has been studied for some time, but which has
generated renewed interest recently, is the geometric program (GP). The GP
is actually a bit of an unique case, in that it is in fact not convex—but a simple
transformation produces an equivalent problem that is convex. In convex form,
the objective and inequality constraint functions obtain a so-called “log-sum-
exp” structure; for example,

f(x) , log

M
∑

k=1

eaT
k x+bk ak ∈ Rn, bk ∈ R, k = 1, 2, . . . ,M (24)

GPs have been used in various fields since the late 1960s [48]. In convex form
they are smooth CPs, but recent advances in specialized algorithms have
greatly improved the efficiency of their solution [92].

Custom code

There are instances where a CP cannot be transformed into one of the stan-
dard forms above—or perhaps the transformations cannot be determined. An
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alternative is to use one of the methods that we list here, which are universal
in the sense that they can, in theory, be applied to any CP. The cost of this
universality is that the user must determine certain mathematical construc-
tions, and write custom code to implement them.

Barrier methods

A barrier method replaces the inequality constraint set

S , {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , ng } (25)

with a twice differentiable convex barrier function φ : Rn → R satisfying
domφ = IntS, producing a modified problem

minimize f(x) + tφ(x)
subject to hj(x) = 0 j = 1, 2, . . . , nh

(26)

Under mild conditions, the solution to this modified problem converges to that
of the original problem as t→ 0. Each iteration of a barrier method effectively
performs Newton minimization steps on (26) for steadily decreasing values of
t. A complete development of barrier methods, including proofs of universality,
convergence, and performance, as well as a number of complete algorithms, is
given in [118].

There are several practical roadblocks to the use of a barrier method.
First of all, this author knows of no publicly-available, general purpose barrier
solver; someone wishing to use this technique would have to write their own.
Even if a barrier solver is found, the user must supply code to compute the
value and derivatives of the barrier function. Furthermore, determining a valid
barrier function is not always trivial, particularly if the inequality constraints
are nondifferentiable.

Cutting plane methods

Localization or cutting-plane methods such as ACCPM [131] require no
derivative information for the functions f and gi, instead relying solely on
cutting planes to restrict the search set. The user is expected to supply code
to compute subgradients or cutting planes. The performance of these meth-
ods is usually inferior to the others mentioned here, but they are ideal for use
when second derivative information is not available or difficult to compute. In
addition, they often lend themselves to distributed methods for solution.

3.3 Applications

A wide variety of practical applications for convex programming have already
been discovered, and the list is steadily growing. Perhaps the field in which
the application of convex programming is the most mature and pervasive is
control theory; see [44, 8, 11, 40, 114] for a sample of these applications. Other
fields where applications for convex optimization are known include, but are
not limited to,
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• robotics [132, 35, 82];
• pattern analysis and data mining, including support vector machines [141,

172, 134, 164, 91];
• combinatorial optimization and graph theory [101, 5, 28, 77, 57, 55, 90,

170, 174, 111, 42, 60, 59, 85];
• structural optimization [2, 23, 9, 25, 26, 173, 86, 27, 24, 94];
• algebraic geometry [125, 95, 97],[96];
• signal processing [79, 161, 65, 139, 150, 165, 49, 151, 6, 47, 103, 143, 54,

144, 64, 146, 108, 107, 128, 50, 129, 45, 17, 72, 168, 160, 145, 175];
• communications and information theory [19, 98, 43, 135, 75, 148, 4];
• networking [20, 30];
• circuit design [157, 158, 80, 39, 78, 16];
• quantum computation [46];
• neural networks [127];
• chemical engineering [136];
• economics and finance [67, 167].

This list, while large, is certainly incomplete, and excludes applications where
only LP or QP is employed. Such a list would be significantly larger; and yet
convex programming is of course a generalization of these technologies.

One promising source of new applications for convex programming is the
extension and enhancement of existing applications for linear programming.
An example of this is robust linear programming, which allows uncertainties
in the coefficients of an LP model to be accounted for in the solution of
the problem, by transforming it into a nonlinear CP [104]. This approach
produces robust solutions more quickly, and arguably more reliably, than using
Monte Carlo methods. Presumably, robust linear programming would find
application anywhere linear programming is currently employed, and where
uncertainty in the model poses a significant concern.

Some may argue that our prognosis of the usefulness of convex program-
ming is optimistic, but there is good reason to believe the number of applica-
tions is in fact being underestimated. We can appeal to the history of linear
programming as precedent. George Dantzig first published his invention of
the simplex method for linear programming in the 1947; and while a number
of military applications were soon found, it was not until 1955-1960 that the
field enjoyed robust growth [38]. Certainly, this delay was in large part due
to the dearth of adequate computational resources; but that is the point: the
discovery of new applications accelerated only once hardware and software
advances made it truly practical to solve LPs.

Similarly, then, there is good reason to believe that the number of known
applications for convex programming will rise dramatically if it can be made
easier for people to create, analyze, and solve CPs.
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3.4 Convexity and differentiability

As mentioned in §3.2, many solvers for smooth (nonconvex) NLPs can be used
to effectively solve many smooth CPs. An arguable case can be made that
the advance knowledge of convexity is not critical in such cases. Dedicated
solvers for smooth CPs do provide some advantages, such as the ability to
reliably detect infeasibility and degeneracy; see, for example, [171]. But such
advantages may not immediately seem compelling to those accustomed to
traditional nonlinear programming.

In the nonsmooth case, the situation is markedly different. Nondifferentia-
bility poses a significant problem for traditional nonlinear programming. The
best methods available to solve nondifferentiable NLPs are far less accurate,
reliable, or efficient than their smooth counterparts. The documentation for
the GAMS modeling framework “strongly discourages” the specification of
nonsmooth problems, instead recommending that points of nondifferentiabil-
ity be eliminated by replacing them with Boolean variables and expressions
[18]. But doing so is not always straightforward, and introduces significant
practical complexities of a different sort.

In contrast, there is nothing in theory that prevents a nonsmooth CP
from being solved as efficiently as a smooth CP. For example, as mentioned
in §3.1, the proof provided by Nesterov and Nemirovsky of the existence of
barrier functions for CPs does not depend on smoothness considerations. And
nonsmooth CPs can often be converted to an equivalent smooth problem with
a carefully chosen transformation—consider the `∞, `1, and largest-L norm
minimization problems presented in §2. Of course, neither the construction of
a valid barrier function nor the smoothing transformation is always (or even
often) obvious.

One might ask: just how often are the CPs encountered in practice nons-
mooth? We claim that it is quite often. Most non-trivial SDPs and SOCPs,
for example, are nonsmooth. Common convex functions such as the absolute
value and most norms are nonsmooth. Examining the current inventory of
applications for convex programming, and excluding those that immediately
present themselves as LPs and QPs, smoothness is the exception, not the rule.

Thus a convex programming methodology that provides truly practical
support for nonsmooth problems is of genuine practical benefit. If such a
solution can be achieved, then the a priori distinction between convexity
and nonconvexity becomes far more important, because the need to avoid
nondifferentiability remains only in the nonconvex case.

3.5 Convexity verification

Given the benefits of advance knowledge of convexity, it would be gen-
uinely useful to perform automatic convexity verification: that is, to determine
whether or not a given mathematical program is convex. Unfortunately, the
task of determining whether or not a general mathematical program is convex
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is at least as difficult as solving nonconvex problems: that is, it is theoretically
intractable. Practical attempts have achieved various degrees of success, as we
survey here.

Perhaps the most computationally ambitious approach to convexity ver-
ification has been independently developed by Crusius [36] and Orban and
Fourer [123]. The first of these has been refined and integrated into a com-
mercial offering [116, 63]. These systems combine interval methods, symbolic
or automatic differentiation, and other methods to determine if the Hessians
of key subexpressions in the objective and constraints are positive semidef-
inite over an estimate of the feasible region. The efforts are impressive, but
these systems do fail to make conclusive determinations in many cases—that
is, some problems can neither be proven convex nor nonconvex. Furthermore,
these systems are limited to smooth NLPs, due to their reliance on derivative
information.

Limiting the scope to one or more standard forms produces more reliable
results. For example, many modeling frameworks automatically determine if
a model is an LP, enabling specialized algorithms to be selected for them
[56, 18]. Similar approaches are employed by modeling tools such as SDPSOL
and LMITOOL to automatically verify SDPs [159, 51]. These approaches are
effective because these particular standard forms can be recognized entirely
through an analysis of their textual structure. They are perfectly reliable,
making conclusive determinations in every case: e.g., a model is proven to
be an LP, or proven otherwise. But of course, generality is significantly com-
promised. And these systems do not attempt to recognize problems that are
transformable into the supported standard form. For example, the `1 norm
minimization in §2.1 would have to be manually converted to an LP before it
would be recognized as such by these systems.

Yet another alternative is provided by the MPROBE [34] system, which
employs numerical sampling to empirically determine the shapes of constraint
and objective functions. It will often conclusively disprove linearity or convex-
ity in many cases, but it can never conclusively prove convexity, because doing
so would require an exhaustive search. To be fair, its author makes no claims
to that effect, instead promoting MPROBE as a useful tool for interactively
assisting the user to make his own decisions.

These practical approaches to automatic convexity verification compro-
mises generality, whether due to limitations of the algorithms or by deliberate
restrictions in scope. As we will see below, disciplined convex programming
makes a compromise of a different sort, recovering generality by incorporating
knowledge provided by its users.

4 Modeling frameworks

The purpose of a modeling framework is to enable someone to become a profi-
cient user of a particular mathematical technology (e.g., convex programming)
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without requiring that they may become an expert in it (e.g., interior-point
methods). It accomplishes this by providing a convenient interface for specify-
ing problems, and then by automating many of the underlying mathematical
and computational steps for analyzing and solving them.

A number of excellent modeling frameworks for LP, QP, and NLP are
in widespread use and have had a broad and positive impact on the use of
optimization in many application areas, including AMPL [56], GAMS [18],
LINGO [99], and Frontline [63]. These frameworks are well-suited for solv-
ing smooth CPs as well. More recently, a number of modeling frameworks
for semidefinite programming have been developed, including SDPSOL [159],
LMITool [51], MATLAB’s LMI Control Toolbox [147], YALMIP [100], and
SOSTOOLS [130]. These tools are used by thousands in control design, anal-
ysis, and research, and in other fields as well.

We are developing a modeling framework called cvx to support the disci-
plined convex programming methodology. The framework addresses a number
of the challenges already addressed in this article, including support for non-
differentiable problems, convexity verification, and automatic conversion to
solvable form. We have implemented a simple barrier solver for the frame-
work; but in fact, any numerical method currently used to solve CPs can be
used to solve DCPs. So we intend to work to create interfaces between cvx

and other well-known solvers.

maximize entropy( x1, x2, x3, x4 );

subject to a11 x1 + a12 x2 + a13 x3 + a14 x4 = b1;

a21 x1 + a22 x2 + a23 x3 + a24 x4 = b2;

x1 + x2 + x3 + x4 = 1;

parameters a11, a12, a13, a14, b1,

a21, a22, a23, a24, b2;

variables x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0;

function entropy( ... ) concave;

Fig. 2. An example CP in the cvx modeling language.

The cvx framework is built around a modeling language that allows op-
timization problems to be expressed using a relatively obvious mathematical
syntax. The language shares a number of basic features with other modeling
languages such as AMPL or GAMS, such as parameter and variable dec-
larations, common mathematical operations, and so forth. See Figure 2 for
an example of a simple entropy maximization problem expressed in the cvx

syntax.
Throughout this article, we will illustrate various concepts using examples

rendered in the cvx modeling language, using a fixed-width font (example) to
distinguish them. However, because cvx is still in development, it is possible
that future versions of the language will use a slightly different syntax; and a
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few examples use features of the language that have not yet been implemented.
So the examples should not be treated as definitive references. The reader is
invited to visit the Web site http://www.stanford.edu/~boyd/cvx to find
the most recent information about cvx.

5 Disciplined convex programming

Disciplined convex programming is inspired by the practices of those who reg-
ularly study and use convex optimization in research and applications. They
do not simply construct constraints and objective functions without advance
regard for convexity; rather, they draw from a mental library of functions and
sets whose convexity properties are already known, and combine and manip-
ulate them in ways which convex analysis insures will produce convex results.
When it proves necessary to determine the convexity properties of a new func-
tion or set from basic principles, that function or set is added to the mental
library to be reused in other models.

Disciplined convex programming formalizes this strategy, and includes two
key components:

• An atom library: an extensible collection of functions and sets, or atoms,
whose properties of curvature/shape (convex/concave/affine), monotonic-
ity, and range are explicitly declared.

• A convexity ruleset, drawn from basic principles of convex analysis, that
governs how atoms, variables, parameters, and numeric values can be com-
bined to produce convex results.

A valid disciplined convex program, or DCP, is simply a mathematical pro-
gram built in accordance with the convexity ruleset using elements from the
atom library. This methodology provides a teachable conceptual framework
for people to use when studying and using convex programming, as well as an
effective platform for building software to analyze and solve CPs.

The convexity ruleset, introduced in §6 below, has been designed to be easy
to learn and understand. The rules constitute a set of sufficient conditions to
guarantee convexity. In other words, any mathematical program constructed
in accordance with the convexity ruleset is guaranteed to be convex. The
converse, however, is not true: it is possible to construct problems which do
not obey the rules, but which are convex nonetheless. Such problems are not
valid DCPs, and the methodology does not attempt to accommodate them.
This does not mean that they cannot be solved, but it does mean that they
will have to be rewritten to comply with the convexity ruleset.

Because the convexity ruleset limits the variety of CPs that can be con-
structed from a fixed atom library, it follows that the generality of disciplined
convex programming depends upon that library being extensible. Each atom
must be given a declaration of information about its curvature or shape, mono-
tonicity, and range, information which is referred to when verifying that the
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atom is used in accordance with the convexity ruleset. We introduce the atom
library in detail in §7.

In §9, we examine the consequences of a restricted approach such as this.
In particular, we provide some examples of some common and useful CPs
that, in their native form, are not disciplined convex programs. We show
that the these limitations are readily remedied using the extensibility of the
atom library. We argue that the remedies are, in fact, consistent with the
very thought process that disciplined convex programming is attempting to
formalize.

Finally, in §10, we discuss how the elements in the atom library can be
implemented—that is, how they can be represented in a form usable by nu-
merical algorithms. In addition to some very traditional forms, such as barrier
functions, cutting planes, derivatives for Newton’s method, and so forth. we
introduce the concept of graph implementations. Graph implementations al-
low functions and sets to be defined in terms of other DCPs, and provide such
benefits as support for nondifferentiable functions.

Before we proceed, let us address a notational issue. We have chosen to
follow the lead of [137] and adopt the extended-valued approach to defining
convex and concave functions with limited domains; e.g.,

f : R→ (R ∪+∞), f(x) =

{

+∞ x < 0

x1.5 x ≥ 0
(27)

g : R→ (R ∪ −∞), g(x) =

{

−∞ x ≤ 0

log x x > 0
(28)

Using extended-valued functions simplifies many of the derivations and proofs.
Still, we will on occasion use the dom operator to refer to the set of domain
values that yield finite results:

dom f = {x | f(x) < +∞} = [0,+∞), (29)

dom g = {x | g(x) > −∞} = (0,+∞) (30)

6 The convexity ruleset

The convexity ruleset governs how variables, parameters, and atoms (functions
and sets) may be combined to form DCPs. DCPs are a strict subset of general
CPs, so another way to say this is that the ruleset imposes a set of conventions
or restrictions on CPs. The ruleset can be separated into four categories: top-
level rules, product-free rules, sign rules, and composition rules.

6.1 Top-level rules

As the name implies, top-level rules govern the top-level structure of DCPs.
These rules are more descriptive than they are restrictive, in the sense that
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nearly all general CPs follow these conventions anyway. But for completeness
they must be explicitly stated.

Problem types. A valid DCP can either be:
T1 a minimization: a convex objective and zero or more convex con-

straints;
T2 a maximization: a concave objective and zero or more convex con-

straints; or
T3 a feasibility problem: no objective, and one or more convex con-

straints.
A valid DCP may also include any number of assertions; see rule T9.

At the moment, support for multiobjective problems and games has not been
developed, but both are certainly reasonable choices for future work.

affine = affine (T4)
convex <= concave or convex < concave (T5)
concave >= convex or concave > convex (T6)
(affine,affine,. . . ,affine) in convex set (T7)

Fig. 3. Valid constraints.

Constraints. See Figure 3. Valid constraints include:
T4 an equality constraint with affine left- and right-hand expressions.
T5 a less than (<,≤) inequality, with a convex left-hand expression

and a concave right-hand expression;
T6 a greater than (>,≥) inequality, with a concave left-hand expres-

sion and a convex right-hand expression; or
T7 a set membership constraint (lexp1, . . . , lexpm) ∈ cset, where m ≥

1, lexp1, . . . , lexpm are affine expressions, and cset is a convex set.

Non-equality (6=) constraints and set non-membership (6∈) constraints are not
permitted, because they are convex only in exceptional cases—and support
for exceptional cases is anathema to the philosophy behind disciplined convex
programming.

Constant expressions and assertions.
T8 Any well-posed numeric expression consisting only of numeric val-

ues and parameters is a valid constant expression.
T9 Any Boolean expression performing tests or comparisons on valid

constant expressions is a valid assertion.
T10 If a function or set is parameterized, then those parameters must

be valid constant expressions.

A constant expression a numeric expression involving only numeric values
and/or parameters; a non-constant expression depends on the value of at
least one problem variable. Obviously a constant expression is trivially affine,
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convex, and concave. Constant expressions must be well-posed: which, for
our purposes, means that they produce well-defined results for any set of
parameter values that satisfy a problem’s assertions.

An assertion resembles a constraint, but involves only constant expres-
sions. As such, they are not true constraints per se, because their truth or
falsity is determined entirely by the numerical values supplied for a model’s
parameters, before the commencement of any numerical optimization algo-
rithm. Assertions are not restricted in the manner that true constraints are;
for example, non-equality (6=) and set non-membership (6∈) operations may be
freely employed. Assertions serve as preconditions, guaranteeing that a prob-
lem is numerically valid or physically meaningful. There are several reasons
why an assertion may be wanted or needed; for example:

• to represent physical limits dictated by the model. For example, if a pa-
rameter w represents the physical weight of an object, an assertion w > 0
enforces the fact that the weight must be positive.

• to insure numeric well-posedness. For example, if x, y, and z are variables
and a, b, and c are parameters, then the inequality constraint ax + by +
z/c ≤ 1 is well-posed only if c is nonzero; this can be insured by an assertion
such as c 6= 0 or c > 0.

• to guarantee compliance with the preconditions attached to a function or
set in the atom library. For example, a function fp(x) = ‖x‖p is parame-
terized by a value p ≥ 1. If p is supplied as a parameter, then an assertion
such as p ≥ 1 would be required to guarantee that the function is be-
ing properly used. See §7.1 for information on how such preconditions are
supplied in the atom library.

• to insure compliance with the sign rules §6.3 or composition rules §6.4
below; see those sections and §8 for more details.

The final rule T10 refers to functions or sets that are parameterized; e.g.,

fp : Rn → R, fp(x) = ‖x‖p =

(

n
∑

i=1

|xi|p
)1/p

(31)

Bp = {x ∈ Rn | ‖x‖p ≤ 1 } (32)

and simply states that parameters such as p above must be constant. Of course
this is generally assumed, but we must make it explicit for the purposes of
computer implementation.

6.2 The product-free rules

Some of the most basic principles of convex analysis govern the sums and
scaling of convex, concave, and affine expressions; for example:

• The sum of two or more convex (concave, affine) expressions is convex
(concave, affine).
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• The product of a convex (concave) expression and a nonnegative constant
expression is convex (concave).

• The product of a convex (concave) expression and a nonpositive constant
expression, or the simple negation of the former, is concave (convex).

• The product of an affine expression and any constant is affine.

Conspicuously absent from these principles is any mention of the product of
convex or concave expressions. The reason for this is simple: there is no simple,
general principle that can identify the curvature in such cases. For instance,
suppose that x is a scalar variable; then:

• The expression x · x, a product of two affine expressions, is convex.
• The expression x · log x, a product between and affine and a concave ex-

pression, is convex.
• The expression x ·ex, a product between an affine and a convex expression,

is neither convex nor concave.

For this reason, the most prominent structural convention enforced by disci-
plined convex programming is the prohibition of products (and related oper-
ations, like exponentiation) between non-constant expressions. The result is a
set of rules appropriately called the product-free rules:

Product-free rule for numeric expressions: All valid numeric expres-
sions must be product-free; such expressions include:
PN1 A simple variable reference.
PN2 A constant expression.
PN3 A call to a function in the atom library. Each argument of the

function must be a product-free expression.
PN4 The sum of two or more product-free expressions.
PN5 The difference of product-free expressions.
PN6 The negation of a product-free expression.
PN7 The product of a product-free expression and a constant expres-

sion.
PN8 The division of a product-free expression by a constant expres-

sion.
We assume in each of these rules that the results are well-posed; for
example, that dimensions are compatible.

In the scalar case, a compact way of restating these rules is to say that a valid
numeric expression can be reduced to the form

a +
n
∑

i=1

bixi +
L
∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
) (33)

where a, bi, cj are constants; xi are the problem variables; and fj : Rmj → R
are functions from the atom library, and their arguments argj,k are product-
free expressions themselves. Certain special cases of (33) are notable: if L = 0,
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then (33) is a simple affine expression; if, in addition, b1 = b2 = · · · = bn = 0,
then (33) is a constant expression.

For an illustration of the use of these product-free rules, suppose that a,
b, and c are parameters; x, y, and z are variables; and f(·), g(·, ·), and h(·, ·, ·)
are functions from the atom library. Then the expression

af(x) + y + (h(x, bg(y, z), c)− z + b)/a (34)

satisfies the product-free rule, which can be seen by rewriting it as follows:

(b/a) + y + (−1/a)z + af(x) + (1/a)h(x, bg(y, z)c) (35)

On the other hand, the following expression does not obey the product-free
rule:

axy/2− f(x)g(y, z) + h(x, yb, z, c) (36)

Now certainly, because these rules prohibit all products between non-constant
expressions, some genuinely useful expressions such as quadratic forms like x·x
are prohibited; see §9 for further discussion on this point.

For set expressions, a similar set of product-free rules apply:

Product-free rules for set expressions: All valid set expressions used
in constraints must be product-free; such expressions include:
PS1 A call to a convex set in the atom library.
PS2 A call to a function in the atom library. Each argument of the

function must be a product-free set expression or a constant (nu-
meric) expression.

PS3 The sum of product-free expressions, or of a product-free expres-
sion and a constant expression, or vice versa.

PS4 The difference of two product-free set expressions, or of of a prod-
uct-free set expression and a constant expression, or vice versa.

PS5 The negation of a product-free set expression.
PS6 The product of a product-free set expression and a constant ex-

pression.
PS7 The division of a product-free set expression by a constant ex-

pression.
PS8 The intersection of two or more product-free set expressions.
PS9 The Cartesian product of two or more product-free set expres-

sions.
We also assume in each of these rules that the results are well-posed;
for example, that dimensions are compatible.

In other words, valid set expressions are reducible to the form

a +

n
∑

i=1

biSi +

L
∑

j=1

cjfj(argj,1, argj,2, . . . , argj,mj
) (37)
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where a, bi, cj are constants, and the quantities Sk are either sets from the
atom library, or intersections and/or Cartesian products of valid set expres-
sions. The functions fj : Rmj → R are functions in the atom library, and their
arguments argj,k are product-free set expressions themselves. As we will see in
§6.3 below, set expressions are more constrained than numerical expressions,
in that the functions fj must be affine.

It is well understood that the intersection of convex sets is convex, as is the
direct product of convex sets; and that unions and set differences generally are
not convex. What may not be clear is why PS8-PS9 are considered “product-
free” rules. By examining these rules in terms of indicator functions, the link
becomes clear. Consider, for example, the problem

minimize ax + by
subject to (x, y) ∈ (S1 × S1) ∪ S2

(38)

If φ1 : R → R and φ2 : (R × R) → R are convex indicator functions for the
sets S1 and S2, respectively, then the problem can be reduced to

minimize ax + by + (φ1(x) + φ2(y))φ2(x, y) (39)

and the objective function now violates the product-free rule. What has oc-
curred, of course, is that the union operation became a forbidden product.

6.3 The sign rules

Once the product-free conventions are established, the sum and scaling prin-
ciples of convex analysis can be used to construct a simple set of sufficient
conditions to establish whether or not expressions are convex, concave, or
affine. These conditions form what we call the sign rules, so named because
their consequence is to govern the signs of the quantities c1, . . . , cL in (33).
We can concisely state the sign rules for numeric expressions in the following
manner.

Sign rules for numeric expressions. Given a product-free expression,
the following must be true of its reduced form (33):
SN1 If the expression is expected to be convex, then each term

cjfj(. . . ) must be convex; hence of the following must be true:
• fj(argj,1, argj,2, . . . , argj,mj

) is affine;
• fj(argj,1, argj,2, . . . , argj,mj

) is convex and cj ≥ 0;
• fj(argj,1, argj,2, . . . , argj,mj

) is concave and cj ≤ 0.
SN2 If the expression is expected to be concave, then each term

cjfj(. . . ) must be concave; hence one of the following must be
true:
• fj(argj,1, argj,2, . . . , argj,mj

) is affine;
• fj(argj,1, argj,2, . . . , argj,mj

) is concave and cj ≥ 0;
• fj(argj,1, argj,2, . . . , argj,mj

) is convex and cj ≤ 0.
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SN3 If the expression is expected to be affine, then each function fj

must be affine, as must each of its arguments argj,1, argj,2, . . . , argj,mj
.

SN4 If the expression is expected to be constant, then it must be true
that L = 0 and b1 = b2 = · · · = bn = 0.

All function arguments must obey these rules as well, with their ex-
pected curvature dictated by the composition rules (§6.4).

For example, suppose that that the expression (34) is expected to be convex,
and that the atom library indicates that the function f(·) is convex, g(·, ·) is
concave, and h(·, ·, ·) is convex. Then the sign rule dictates that

af(x) convex =⇒ a ≥ 0 (40)

(1/a)h(x, bg(y, z), c) convex =⇒ 1/a ≥ 0 (41)

Function arguments must obey the sign rule as well, and their curvature is dic-
tated by the composition rules discussed in the next section. So, for example,
if the second argument of h is required to be convex, then

bg(y, z) convex =⇒ b ≤ 0 (42)

It is the responsibility of the modeler to insure that the values of the co-
efficients c1, . . . , cL obey the sign rule; that is, that conditions such as those
generated in (40)-(42) are satisfied. This can be accomplished by adding ap-
propriate assertions to the model; see §8 for an example of this.

There is only one “sign rule” for set expressions:

The sign rule for set expressions. Given a product-free set expression,
the following must be true of its reduced form (37):
SS1 Each function fj , and any functions used in their arguments,

must be affine.

Unlike the product-free rule for numerical expressions, functions involved in
set expressions are required to be affine. To understand why this must be the
case, one must understand how an expression of the form (37) is interpreted.
A simple example should suffice; for the L = 0 case,

x ∈ a +

n
∑

i=1

biSi ⇐⇒

∃ (t1, t2, . . . , tn) ∈ S1 × S2 × · · · × Sn x = a +

n
∑

i=1

biti

(43)

When L > 0, similar substitutions are made recursively in the function argu-
ments as well, producing a similar result: a series of simple set membership
constraints of the form tk ∈ Sk, and a single equality constraint. Thus in or-
der to insure that this implied equality constraint is convex, set expressions
(specifically, those used in constraints) must reduce to affine combinations of
sets. (Of course, set expressions used in assertions are not constrained in this
manner.)
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6.4 The composition rules

A basic principle of convex analysis is that the composition of a convex func-
tion with an affine mapping remains convex. In fact, under certain conditions,
similar guarantees can be made for compositions with nonlinear mappings
as well. The ruleset incorporates a number of these conditions, and we have
called them the composition rules.

Designing the composition rules required a balance between simplicity
and expressiveness. In [29], a relatively simple composition rule for convex
functions is presented:

Lemma 1. If f : R → (R ∪ +∞) is convex and nondecreasing and g : Rn →
(R ∪+∞) is convex, then h = f ◦ g is convex.

So, for example, if f(y) = ey and g(x) = x2, then the conditions of the lemma

are satisfied, and h(x) = f(g(x)) = ex2

is convex. Similar composition rules
are given for concave and/or nonincreasing functions as well:

• If f : R→ (R∪+∞) is convex and nonincreasing and g : Rn → (R∪−∞)
is concave, then f ◦ g is convex.

• If f : R→ (R∪−∞) is concave and nondecreasing and g : Rn → (R∪−∞)
is concave, then f ◦ g is concave.

• If f : R→ (R∪−∞) is concave and nonincreasing and g : Rn → (R∪+∞)
is convex, then f ◦ g is concave.

In addition, similar rules are described for functions with multiple arguments.
One way to interpret these composition rules is that they only allow those

nonlinear compositions that can be to be separated or decomposed. To ex-
plain, consider a nonlinear inequality f(g(x)) ≤ y, where f is convex and
nondecreasing and g is convex, thus satisfying the conditions of Lemma 1.
Then it can be shown that

f(g(x)) ≤ y ⇐⇒ ∃z f(z) ≤ y, g(x) ≤ z (44)

Similar decompositions can be constructed for the other composition rules as
well. Decompositions serve as an important component in the conversion of
DCPs into solvable form. Thus the composition rules guarantee that equiva-
lence is reserved when these decompositions are performed.

Now the composition rules suggested by Lemma 1 and its related corol-
laries are a good start. But despite their apparent simplicity, they require a
surprising amount of care to apply. In particular, the use of extended-valued
functions is a necessary part of the lemma and has subtle impact. For example,
consider the functions

f(y) = y2, g(x) = ‖x‖2 (45)

Certainly, h(x) = f(g(x)) = ‖x‖22 is convex; but Lemma 1 would not predict
this, because f(y) is not monotonic. A sensible attempt to rectify the problem
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would be to restrict the domain of the function (in the real-valued sense) to
the nonnegative orthant, where it is nondecreasing:

f̄(y) =

{

y2 y ≥ 0

+∞ y < 0
(46)

But while f̃ is nondecreasing over its domain, it is nonmonotonic in the
extended-valued sense, so the lemma does not apply. The only way to rec-
oncile Lemma 1 with this example is to introduce a far less intuitive version
of f which extends it in a nondecreasing fashion:

¯̄f(y) =

{

y2 y ≥ 0

0 y < 0
(47)

Figure 4 provides a graph of each function. Forcing users of disciplined con-

PSfrag replacements

f f̄ ¯̄f

Fig. 4. Three different “versions” of f(y) = y2.

vex programming to consider such technical conditions seems an unnecessary
complication, particularly when the goal is to simplify the construction of
CPs.

To simplify the use of these composition rules, we begin by recognizing
something that seems intuitively obvious: f need only be nondecreasing over
the range of g. We can formalize this intuition as follows:

Lemma 2. Let f : R → (R ∪ +∞) and g : Rn → (R ∪ +∞) be two convex
functions. If f is nondecreasing over the range of g—i.e., the interval g(Rn)—
then h = f ◦ g is convex.

Proof. Let x1, x2 ∈ Rn and let θ ∈ [0, 1]. Because g is convex,

g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2) ≤ max{g(x1), g(x2)} (48)

The right-hand inequality has been added to establish that
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[g(θx1 + (1− θ)x2), θg(x1) + (1− θ)g(x2)] ⊆
[g(θx1 + (1− θ)x2),max{g(x1), g(x2)}] ⊆ g(Rn)

(49)

f is therefore nondecreasing over this interval; so

f(g(θx1 + (1− θ)x2)) ≤ f(θg(x1) + (1− θ)g(x2)) (f nondecreasing)

≤ θf(g(x1)) + (1− θ)f(g(x2)) (f convex)
(50)

establishing that h = f ◦ g is convex.

This lemma does indeed predict the convexity of (45): f is nondecreasing over
the interval [0,+∞), and g(Rn) = [0,+∞), which coincide perfectly; hence,
f ◦ g is convex.

And yet this revised lemma, while more inclusive, presents its own chal-
lenge. A critical goal for these composition rules is that adherence can be
quickly, reliably, and automatically verified; see §8. The simple composition
rules such as Lemma 1 plainly satisfy this condition; but can we be sure to
accomplish this with these more complex rules? We claim that it is simpler
than it may first appear. Note that our example function f(x) = x2 is non-
decreasing over a half-line; specifically, for all x ∈ [0,+∞). This will actually
be true for any nonmonotonic scalar function:

Lemma 3. Let f : R→ R∪+∞ be a convex function which is nondecreasing
over some interval F̄ ⊂ R, Int F̄ 6= ∅. Then it is, in fact, nonincreasing over
the entire half-line F = F̄ + [0,+∞); that is,

F = (Fmin,+∞) or F = [Fmin,+∞). (51)

Proof. If F̄ already extends to +∞, we are done. Otherwise, select any two
points x1, x2 ∈ F̄ and a third point x3 > x2. Then

f(x2) ≤ αf(x1) + (1− α)f(x3), α , (x2 − x1)/(x3 − x1)

=⇒ f(x2) ≤ αf(x2) + (1− α)f(x3) =⇒ f(x2) ≤ f(x3).
(52)

So f(x3) ≥ f(x2) for all x3 > x2. Now consider another point x4 > x3; then

f(x3) ≤ ᾱf(x2) + (1− ᾱ)f(x4), ᾱ , (x3 − x2)/(x4 − x2)

=⇒ f(x3) ≤ ᾱf(x3) + (1− ᾱ)f(x4) =⇒ f(x4) ≤ f(x3)
(53)

So f(x4) ≥ f(x3) for all x4 > x3 > x2; that is, f is nondecreasing for all
x > x2 ∈ F̄ .

In other words, any scalar convex function which is nondecreasing between two
points is so over an entire half-line. So determining whether f is nondecreasing
over g(dom g) reduces to a single comparison between Fmin and infx g(x). For
concave or nonincreasing functions, similar intervals can be constructed:

• f convex, nonincreasing: F = (−∞, Fmax] or F = (−∞, Fmax)
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• f concave, nondecreasing: F = (−∞, Fmax] or F = (−∞, Fmax)
• f concave, nonincreasing: F = [Fmin,+∞) or F = (Fmin,+∞)

As we show in §7, it is straightforward to include such intervals in the atom
library, so that they are readily available to verify compositions.

The task of determining infx g(x) or supx g(x) remains. In §7, we show
that function ranges are included in the atom library for just this purpose,
alongside information about their curvature and monotonicity properties. But
often the inner expression g(x) is not a simple function call, but an expression
reducible to the form (33):

g(x) = inf
x

a +

n
∑

i=1

bixi +

L
∑

j=1

cjfj(. . . ) (54)

We propose the following heuristic in such cases. Let Xi ⊆ R, i = 1, 2, . . . , n,
be simple interval bounds on the variables, retrieved from any simple bounds
present in the model. In addition, let Fj = fj(R) ⊆ R, j = 1, 2, . . . , L, be the
range bounds retrieved from the atom library. Then

g(R) ⊆ a +

n
∑

i=1

biXi +

L
∑

j=1

cjFj (55)

So (55) provides a conservative bound on infx g(x) or supx g(x), as needed. In
practice, this heuristic proves sufficient for supporting the composition rules
in nearly all circumstances. In those exceptional circumstances where it the
bound is too conservative, and the heuristic fails to detect a valid composition,
a model may have to be rewritten slightly—say, by manually performing the
decomposition (44) above. It is a small price to pay for added expressiveness
in the vast majority of cases.

Generalizing these composition rules to functions with multiple arguments
is straightforward, but requires a bit of technical care. The result is as follows:

The composition rules. Consider a numerical expression of the form

f(arg1, arg2, . . . , argm) (56)

where f is a function from the atom library. For each argument argk,
construct a bound Gk ⊆ R on the range using the heuristic described
above, so that

(arg1, arg2, . . . , argm) ∈ G = G1 ×G2 × · · · ×Gm (57)

Given these definitions, (56) must satisfy exactly one of the following
rules:
C1-C3 If the expression is expected to be convex, then f must be

affine or convex, and one of the following must be true for each
k = 1, . . . ,m:
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C1 f is nondecreasing in argument k over G, and argk is convex;
or

C2 f is nonincreasing in argument k over G, and argk is concave;
or

C3 argk is affine.
C4-C6 If the expression is expected to be concave, then f must be

affine or concave, and one of the following must be true for each
k = 1, . . . ,m:
C4 f is nondecreasing in argument k over G, and argk is concave;

or
C5 f is nonincreasing in argument k over G, and argk is convex;

or
C6 argk is affine.

C7 If the expression is expected to be affine, then f must be affine,
and each argk is affine for all k = 1, . . . ,m.

7 The atom library

The second component of disciplined convex programming is the atom library.
As a concept, the atom library is relatively simple: an extensible list of func-
tions and sets whose properties of curvature/shape, monotonicity, and range
are known. The description of the convexity ruleset in §6 shows just how this
information is utilized.

As a tangible entity, the atom library requires a bit more explanation. In
cvx, the library is a collection of text files containing descriptions of functions
and sets. Each entry is divided into two sections: the declaration and the
implementation. The declaration is divided further into two components:

• the prototype: the name of the function or set, the number and structure
of its inputs, and so forth.

• the attribute list : a list of descriptive statements concerning the curvature,
monotonicity, and range of the function; or the shape of the set.

The implementation is a computer-friendly description of the function or set
that enables it to be used in numerical solution algorithms. What is impor-
tant to note here is that the implementation section is not used to determine
whether or not a particular problem is a DCP. Instead, it comes into play only
after a DCP has been verified, and one wishes to compute a numerical solu-
tion. For this reason, we will postpone the description of the implementation
until §10.

7.1 The prototype

A function prototype models the usage syntax for that function, and in the
process lists the number and dimensions of its arguments; e.g.,
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function sq( x ); f(x) = x2 (58)

function max( x, y ); g(x, y) = max{x, y} (59)

Some functions are parameterized; e.g., hp(x) = ‖x‖p. In cvx, parameters are
included in the argument list along with the arguments; e.g.,

function norm_p( p, x[n] ) convex( x ) if p >= 1;

hp(x) = ‖x‖p (p ≥ 1)
(60)

Parameters are then distinguished from variables through the curvature at-
tribute; see §7.2 below.

The norm_p example also illustrates another feature of cvx, which is to
allow conditions to be placed on the a function’s parameters using an if

construct. In order to use a function with preconditions, they must be enforced
somehow; if necessary, by using an assertion. For example, norm_p( 2.5, x )

would be verified as valid; but if b is a parameter, norm_p( b, x ) would not
be, unless the value of b could somehow be guaranteed to be greater than 1;
for example, unless an assertion like b > 1 was provided in the model.

Set prototypes look identical to that of functions:

set integers( x ); A = Z = {. . . ,−2,−1, 0, 1, 2, . . . } (61)

set simplex( x[n] ); B = {x ∈ Rn | x ≥ 0,
∑

i xi = 1 } (62)

set less than( x, y ); C = { (x, y) ∈ R× R | x < y } (63)

Unlike functions, the actual usage of a set differs from its prototype—the
arguments are in fact the components of the set, and therefore appear to the
left of a set membership expression: e.g.,

x in integers; x ∈ A (64)

y in simplex; y ∈ B (65)

(x,y) in less than; (x, y) ∈ C (66)

For parameterized sets, there is yet another difference: the parameters are
supplied in a separate parameter list, preceding the argument list: e.g.,

set ball_p( p )( x[n] ) if p >= 1;

Bp(x) = {x ∈ Rn | ‖x‖p ≤ 1 } (p ≥ 1)
(67)

This parameter list remains on the right-hand side of the constraint along
with the name of the set:

z in ball p( q ); z ∈ Bq (68)

7.2 Attributes

As we have seen in §6, the convexity ruleset depends upon one or more of the
following pieces of information about each function and set utilized in a DCP.
For sets, it utilizes just one piece of information:
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• shape: specifically, whether or not the set is convex.

For functions, a bit more information is used:

• curvature: whether the function is convex, concave, affine, or otherwise.
• monotonicity : whether the functions are nonincreasing or nondecreasing;

and over what subsets of their domain they are so.
• range: the minimum of convex functions and the maximum of concave

functions.

The cvx framework allows this information to be provided through the use
of attributes: simple text tags that allow each of the above properties to be
identified as appropriate.

Shape

For sets, only one attribute is recognized: convex. A set is either convex, in
which case this attribute is applied, or it is not. Given the above four examples,
only integers is not convex:

set integers( x ); (69)

set simplex( x[n] ) convex; (70)

set less than( x, y ) convex; (71)

set ball p( p )( x[n] ) convex if p >= 1; (72)

Sets which are not convex are obviously of primary interest for DCP, but non-
convex sets may be genuinely useful, for example, for restricting the values of
parameters to realistic values.

Curvature

Functions can be declared as convex, concave, or affine, or none of the
above. Clearly, this last option is the least useful; but such functions can
be used in constant expressions or assertions. No more than one curvature
keyword can be supplied. For example:

function max( x, y ) convex; g(x, y) = max{x, y} (73)

function min( x, y ) concave; f(x, y) = min{x, y} (74)

function plus( x, y ) affine; p(x, y) = x + y (75)

function sin( x ); g(x) = sin x (76)

By default, a function declared as convex, concave, or affine is assumed to be
jointly so over all of its arguments. It is possible to specify that it is so only
over a subset of its arguments by listing those arguments after the curvature
keyword; for example,
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function norm_p( p, x[n] ) convex( x ) if p >= 1;

hp(x) = ‖x‖p (p ≥ 1)
(77)

In effect, this convention allows parameterized functions to be declared: ar-
guments omitted from the list are treated as the parameters of the function
and are expected to be constant.

Disciplined convex programming allows only functions which are globally
convex or concave to be specified as such. Functions which are “sometimes”
convex or concave—that is, over a subset of their domains—are not permitted.
For example, the simple inverse function

f : R→ R, f(x) , 1/x (x 6= 0) (78)

is neither convex nor concave, and so cannot be used to construct a DCP.
However, we commonly think of f as convex if x is known to be positive.
In disciplined convex programming, this understanding must be realized by
defining a different function

fcvx : R→ R, f(x) ,
{

1/x x > 0

+∞ x ≤ 0
(79)

which is globally convex, and can therefore be used in DCPs. Similarly, the
power function

g : R2 → R, g(x, y) , xy (when defined) (80)

is convex or concave on certain subsets of R2, such as:

• convex for x ∈ [0,∞) and fixed y ∈ [1,∞).
• concave for x ∈ [0,∞) and fixed y ∈ (0, 1];
• convex for fixed x ∈ (0,∞) and y ∈ R

In order to introduce nonlinearities such as x2.5 or x0.25 into a DCP, then,
there must be appropriate definitions of these “restricted” versions of the
power function:

fy : R→ R, fy(x) =

{

xy x ≥ 0

+∞ x < 0
(y ≥ 1) (81)

gy : R→ R, gy(x) =

{

xy x ≥ 0

−∞ x < 0
(0 < y < 1) (82)

hy : R→ R, hy(x) = yx (y > 0) (83)

Thus the disciplined convex programming approach forces the user to consider
convexity more carefully. We consider this added rigor an advantage, not a
liability.
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Monotonicity

The monotonicity of a function with respect to its arguments proves to be
a key property exploited by the ruleset. For this reason, the cvx atom li-
brary provides the keywords increasing, nondecreasing, nonincreasing,
or decreasing in each of its arguments. Each argument can be given a sepa-
rate declaration:

function exp( x ) convex increasing; f(x) = ex (84)

As far as the convexity ruleset is concerned, strict monotonicity is irrelevant;
so, for example, increasing and nondecreasing are effectively synonymous,
as are decreasing and nonincreasing.

There is one somewhat technical but critical detail that must be adhered
to when declaring a function to be monotonic. Specifically, monotonicity must
be judged in the extended-valued sense. For example, given p ≥ 1, the function

function pow_p( p, x )

convex( x ) if p >= 1;
fp(x) =

{

xp x ≥ 0

+∞ x < 0
(85)

is increasing (and, therefore, nondecreasing) over its domain. However, in the
extended-valued sense, the function is nonmonotonic, so fp cannot be declared
as globally nondecreasing.

As suggested in §6.4, the cvx atom library allows conditions to be placed
on monotonicity. So, for example, f̃p(x) is, of course, nondecreasing over x ∈
[0,+∞), suggesting the following declaration:

function pow_p( p, x ) convex( x ) if p >= 1,

increasing( x ) if x >= 0;
(86)

Multiple declarations are possible: for example, the function f(x) = x2 is both
nonincreasing over x ∈ (−∞, 0] and nondecreasing over x ∈ [0,+∞):

function sq( x ) convex, decreasing if x <= 0,

increasing( x ) if x >= 0;
(87)

Each argument of a function with multiple inputs can be given a sepa-
rate, independent monotonicity declaration. For example, f(x, y) = x − y is
increasing in x and decreasing in y:

function minus( x, y )

affine increasing( x ) decreasing( y );
(88)

Range

Each function definition can include a declaration of its its range, using a sim-
ple inequality providing a lower or upper bound for the function. For example,
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function exp( x ) convex, increasing, >= 0; f(x) = ex (89)

As with the monotonicity operations, the range must indeed be specified in the
extended-valued sense, so it will inevitably be one-sided: that is, all convex
functions are unbounded above, and all concave functions are unbounded
below.

8 Verification

In order to solve a problem as a DCP, one must first establish that it is indeed
a valid DCP—that is, that it involves only functions and sets present in the
atom library, and combines them in a manner compliant with the complexity
ruleset. A proof of validity is necessarily hierarchical in nature, reflecting the
structure of the problem and its expressions. To illustrate the process, consider
the simple optimization problem

minimize cx
subject to exp(y) ≤ log(a

√
x + b)

ax + by = d
(90)

where a, b, c, d are parameters, and x, y are variables. A cvx version of this
model is given in Figure 5. Note in particular the explicit declarations of the
three atoms exp, log, and sqrt. Usually these declarations will reside in an
external file, but we include them here to emphasize that every atom used in
a model must be accounted for in the atom library.

minimize c x;

subject to exp( y ) <= log( a sqrt( x ) + b );

a x + b y = d;

variables x, y;

parameters a, b, c, d;

function exp( x ) convex increasing >= 0;

function sqrt( x ) concave nondecreasing;

function log( x ) concave increasing;

Fig. 5. The cvx specification for (90).

It is helpful to divide the proof into two stages. The first stage verifies that
each of expressions involved is product-free. Below is a textual description of
this stage. Each line has been indented to represent the hierarchy present in
the proof, and includes the rule employed to establish that line of the proof:

cx is product-free, because (PN6)
c is a constant expression(T8)
x is product-free (PN1)
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exp(y) is product-free, because (PN3)
y is product-free (PN2)

log(a
√

x + b) is product-free, because (PN3)
a
√

x + b is product-free, because (PN4)
a
√

x is product-free, because (PN6)
a is a constant expression (PN2)√

x is product-free, because (PN3)
x is product-free (PN2)

b is product-free (PN2,T8)
ax + by is product-free, because(PN4)

ax is product-free, because (PN6)
a is a constant expression (T8)
x is product-free (PN1)

by is product-free, because (PN6)
b is a constant expression (T8)
y is product-free (PN1)

d is product-free (PN2)

The second stage proceeds by verifying that the top-level, sign, and composi-
tion rules in a similarly hierarchical fashion:

The minimization problem is valid if a ≥ 0, because (T1)
The objective function is valid, because (T1)

cx is convex (SN1)
The first constraint is valid if a ≥ 0, because (T1)

exp(y) ≤ log(a
√

x + b) is convex if a ≥ 0, because (T5)
exp(y) is convex, because (SN1)

exp(y) is convex, because (C1)
exp(·) is convex and nondecreasing (atom library)
y is convex (SN1)

log(a
√

x + b) is concave if a ≥ 0, because (SN2)
log(a

√
x + b) is concave if a ≥ 0, because (C4)

log(·) is concave and nondecreasing (atom library)
a
√

x + b is concave if a ≥ 0, because (SN2)√
x is concave, because (C4)√· is concave and nondecreasing (atom

library)
x is concave (SN2)

The second constraint is valid, because (T1)
ax + by = d is convex, because (T4)

ax + by is affine (SN3)
d is affine (SN3)

It can be quite helpful to examine the structure of the problem and its validity
proof graphically. Figure 6 presents an expression tree of the problem (90),
annotated with the relevant rules verified at each position in the tree.

The verification process is guaranteed to yield one of three conclusions:
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Fig. 6. An expression tree for (90), annotated with applicable convexity rules.

• valid: the rules are fully satisfied.
• conditionally valid: the rules will be fully satisfied if one or more additional

preconditions on the parameters are satisfied.
• invalid : one or more of the convexity rules has been violated.

In this case, a conclusion of conditionally valid has been reached: the anal-
ysis has revealed that an additional condition a ≥ 0 must satisfied. If this
precondition were somehow assured, then the proof would have conclusively
determined that the problem is a valid DCP. One simple way to accomplish
this would be to add it as an assertion; i.e., by adding the assertion a >= 0

to the list of constraints. If, on the other hand, we were to do the opposite
and add an assertion a < 0, the sign rule SN2 would be violated; in fact, the
expression a

√
x + b would be verifiably convex.

The task of verifying DCPs comprises yet another approach to the chal-
lenge of automatic convexity verification described in §3.5. Like the methods
used to verify LPs and SDPs, a certain amount of structure is assumed via the
convexity rules that enables the verification process to proceed in a reliable
and deterministic fashion. However, unlike these more limited methods, dis-
ciplined convex programming maintains generality by allowing new functions
and sets to be added to the atom library. Thus disciplined convex program-
ming provides a sort of knowledgebase environment for convex programming,
in which human-supplied information about functions and sets is used to ex-
pand the body of problems that can be recognized as convex.
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9 Creating disciplined convex programs

As mentioned previously, adherence to the convexity ruleset is sufficient but
not necessary to insure convexity. It is possible to construct mathematical
programs that are indeed convex, but which fail to be DCPs, because one or
more of the expressions involved violates the convexity ruleset.

It is actually quite simple to construct examples of such violations. For
example, consider the entropy maximization problem

maximize −∑n
i=1 xi log xi

subject to Ax = b
1T x = 1
x ≥ 0

(91)

where x ∈ Rn is the problem variable and A ∈ Rm×n and b ∈ Rm are
parameters; and log(·) is defined in the atom library. The expression xi log xi

violates the product-free rule PS6—and as a result, (91) is not a DCP, even
though it is a well-known CP.

Alternatively, consider the GP in convex form,

minimize log
∑K0

k=1 exp(aT
0kx + b0k)

subject to log
∑Ki

k=1 exp(aT
ikx + bik) ≤ 0 i = 1, 2, . . . ,m

A(m+1)x + b(m+1) = 0

(92)

where x ∈ Rn is the problem variable,

A(i) =
[

ai1 ai2 . . . aimi

]T ∈ Rmnmin

b(i) =
[

bi1 bi2 . . . bimi

]T ∈ Rmi

i = 1, 2, . . . ,m + 1 (93)

are parameters; and both log(·) and exp(·) are defined in the atom library.
This problem satisfies the product-free rules, but the objective function and
inequality constraints fail either the sign rule SN1 or composition rule C4,
depending on how you verify them. But of course, (92) is a CP.

It is important to note that these violations do not mean that the problems
cannot solved in the disciplined convex programming framework; it simply
means that they must be rewritten in a compliant manner. In both of these
cases, the simplest way to do so is to add new functions to the atom library
that encapsulate the offending nonlinearities. By adding the two functions

fentr(x) =











−x log x x > 0

0 x = 0

−∞ x < 0

flse(x) = log

n
∑

i=1

ex (94)

to the atom library, both problems can be rewritten as valid DCPs; (91) as
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maximize
∑n

i=1 fentr(xi)
subject to Ax = b

1T x = 1
x ≥ 0

(95)

and the GP (92) as

minimize flse(A
(0)x + b(0))

subject to flse(A
(i)x + b(i)) ≤ 0, i = 1, 2, . . . ,m

A(m+1)x + b(m+1) = 0

(96)

The ability to extend the atom library as needed has the potential to be
taken to an inelegant extreme. For example, consider the problem

minimize f0(x)
subject to fm(x) ≤ 0, k = 1, 2, . . . ,m

(97)

where the functions f0, f1, . . . , fm are all convex. One way to cast this problem
as a DCP would simply be to add all m + 1 of the functions to the atom
library. The convexity rules would then be satisfied rather trivially; and yet
this would likely require more, not less, effort than a more traditional NLP
modeling method. In practice, however, the functions fk are rarely monolithic,
opaque objects. Rather, they will be constructed from components such as
affine forms, norms, and other known functions, combined in ways consistent
with the basic principles of convex analysis, as captured in the convexity
ruleset. It is those functions that are ideal candidates for addition into the
atom library.

We should add that once an atom is defined and implemented, it can be
freely reused across many DCPs. The atoms can be shared with other users as
well. The effort involved in adding a new function to the atom library, then,
is significantly amortized. A collaborative hierarchy is naturally suggested,
wherein more advanced users can create new atoms for application-specific
purposes, while novice users can take them and employ them in their models
without regard for how they were constructed.

We argue, therefore, that (91) and (92) are ideal examples of the kinds of
problems that disciplined convex programming is intended to support, so that
the convexity ruleset poses little practical burden in these cases. While it is
true that the term −xi log xi violates the product-free rules, someone inter-
ested in entropy maximization does not consider this expression as a product
of nonlinearities but rather as a single, encapsulated nonlinearity—as repre-
sented by the function fexpr. In a similar manner, those studying geometric
programming treat the function fexpr(y) = log

∑

exp(yi) as a monolithic con-
vex function; it is irrelevant that it happens to be the composition of a concave
function and a convex function. Thus the addition of these functions to the
atom library coincides with the intuitive understanding of the problems that
employ them.
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Still, the purity of the convexity rules prevent even the use of obviously
convex quadratic forms such as x2 + 2xy + y2 in a model. It could be argued
that this is impractically restrictive, since quadratic forms are so common.
And indeed, we are considering extending the relaxation of the product-free
rules to include quadratic forms. However, in many cases, a generic quadratic
form may in fact represent a quantity with more structure or meaning. For
example, traditionally, the square of a Euclidean norm ‖Ax + b‖22 would be
converted to a quadratic form

‖Ax + b‖2 = xT Px + qT x + r, P , AT A, q , AT b, r , bT b (98)

But within a DCP, this term can instead be expressed as a composition

‖Ax + b‖2 = f(g(Ax + b)), f(y) , y2, g(z) , ‖z‖2 (99)

In disciplined convex programming, there is no natural bias against (99), so it
should be preferred over the converted form (98) simply because it reflects the
original intent of the problem. So we argue that support for generic quadratic
forms would be at least somewhat less useful than in a more traditional mod-
eling framework. Furthermore, we can easily support quadratic forms with
the judicious addition of functions to the atom library, such as the function
f(y) = y2 above, or a more complex quadratic form such as

fQ : Rn → R, fQ(x) = xT Qx (Q � 0). (100)

Thus support for quadratic forms is a matter of convenience, not necessity.

10 Implementing atoms

As enumerated in §3.2, there are a variety of methods that can be employed to
solve CPs: primal/dual methods, barrier methods, cutting-plane methods, and
so forth. All of these methods can be adapted to disciplined convex program-
ming with minimal effort. Limited space prohibits us from examining these
methods in detail; please see [74] for a more thorough treatment of the topic.
It is sufficient here to say this: that each of these methods will need to perform
certain computations involving each of the atoms, each of the functions and
sets, employed in the problems they solve. The purpose of the implementation
of an atom, first introduced in §7 above, is to provide these solvers with the
means to perform these calculations.

Disciplined convex programming and the cvx modeling framework distin-
guish between two different types of implementations:

• a simple implementation, which provides traditional calculations such as
derivatives, subgradients and supergradients for functions; and indicator
functions, barrier functions, and cutting planes for sets; and
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• a graph implementation, in which the function or set is defined as the
solution to another DCP.

The computations supported by simple implementations should be quite fa-
miliar to anyone who studies the numerical solution of optimization problems.
To the best of our knowledge, however, the concept of graph implementations
is new, and proves to be an important part of the power and expressiveness
of disciplined convex programming.

In cvx, an implementation is surrounded by curly braces, and consists of
a list of key/value pairs with the syntax key := value. See Figures 7 and 8
for examples. It is also possible for an implementation to be constructed in a
lower-level language like C, but we will not consider that feature here.

10.1 Simple implementations

Any continuous function can have a simple implementation. Simple function
implementations use the following key := value entries:

• value: the value of the function.
• domain_point: a point on the interior of the domain of the function. If

omitted, then the origin is assumed to be in the domain of the function.
• For differentiable functions:

– gradient: the first derivative.
– Hessian (if twice differentiable): the second derivative.

• For nondifferentiable functions:
– subgradient (if convex): a subgradient of a function f at point x ∈

dom f is any vector v ∈ Rn satisfying

f(y) ≥ f(x) + vT (y − x) ∀y ∈ Rn (101)

– supergradient (if concave): a supergradient of a function g at point
x ∈ dom g is any vector v ∈ Rn satisfying

g(y) ≤ g(x) + vT (y − x) ∀y ∈ Rn (102)

It is not difficult to see how different algorithms might utilize this informa-
tion. Most every method would use value and domain_point, for example.
A smooth CP method would depend on the entries gradient and Hessian to
calculate Newton search directions. A localization method would use the en-
tries gradient, subgradient, and supergradient to compute cutting planes.

Any set with a non-empty interior can have a simple implementation.
Simple set implementations use the following key := value entries:

• interior_point: a point on the interior of the set.
• indicator: an expression that is 0 for points inside the set, and +∞ for

points outside the set.
• At least one, but ideally both, of the following:
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– barrier: a reference to a convex, twice differentiable barrier function
for the set, declared separately as a function atom with a direct imple-
mentation.

– oracle: a cutting plane oracle for the set. Given a set S ⊂ Rn, the
cutting plane oracle accepts as input a point x ∈ Rn; and, if x 6∈ S,
returns a separating hyperplane; that is, a pair (a, b) ∈ Rn×R satisfying

aT x > b, S ⊆
{

y | aT y ≤ b
}

(103)

If x ∈ S, then the oracle returns (a, b) = (0, 0).

function min( x, y ) concave, nondecreasing {

value := x < y ? x : y;

supergradient := x < y ? ( 1, 0 ) : ( 0, 1 );

}

set pos( x ) convex {

interior_point := 1.0;

indicator := x < 0 ? +Inf : 0;

oracle := x < 0 ? ( 1, 0 ) : ( 0, 0 );

barrier := neglog( x );

}

function neglog( x ) convex {

domain_point := 1.0;

value := x <= 0 ? +Inf : - log( x );

gradient := - 1 / x;

Hessian := 1 / x^2;

}

Fig. 7. Simple implementations.

Figure 7 presents several examples of simple implementations. Again, we do
not wish to document the cvx syntax here, only illustrate key the feasibility of
this approach. Note that the set pos has been given both a barrier function and
a cutting plane generator, allowing it to be used in both types of algorithms.

10.2 Graph implementations

A fundamental principle in convex analysis is the very close relationship be-
tween convex and concave functions and convex sets. A function f : Rn →
R ∪+∞ is convex if and only if its epigraph

F = epi f = { (x, y) ∈ Rn × R | f(x) ≤ y } (104)

is a convex set. Likewise, a function g : Rn → R ∪+∞ is concave if and only
if its hypograph
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G = hypo g = { (x, y) ∈ Rn × R | g(x) ≥ y } (105)

is a convex set. These relationships can be expressed in reverse fashion as well:

f(x) = inf { y | (x, y) ∈ F } (106)

g(x) = sup { y | (x, y) ∈ G } (107)

A graph implementation of a function is effectively a representation of the
epigraph or hypograph of a function, as appropriate, as a disciplined con-
vex feasibility problem. The cvx framework supports this approach using the
following key := value pairs:

• epigraph (if convex): the epigraph of the function.
• hypograph (if concave): the hypograph of the function.

A simple example is the absolute value function f(x) = |x|. The epigraph of
this function is

epi f = { (x, y) | |x| ≤ y } = { (x, y) | − y ≤ x ≤ y } (108)

In Figure 8, we show how this epigraph is represented in cvx. Notice that the

function abs( x ) convex, >= 0 {

value := x < 0 ? -x : x;

epigraph := { -abs <= x <= +abs; }

}

function min( x, y ) concave, nondecreasing {

value := x < y ? x : y;

supergradient := x < y ? ( 1, 0 ) : ( 0, 1 );

hypograph := { min <= x; min <= y; }

}

function entropy( x ) concave {

value := x < 0 ? -Inf : x = 0 ? 0 : - x log( x );

hypograph := { ( x, y ) in hypo_entropy; }

}

set simplex( x[n] ) convex {

constraints := { sum( x ) = 1; x >= 0; }

}

Fig. 8. Graph implementations.

name of the function, abs is used to represent the epigraph variable.
The primary benefit of graph implementations is that they provide an

elegant means to define nondifferentiable functions. The absolute value func-
tion above is one such example; another is the two-argument minimum
g(x, y) = min{x, y}. This function is concave, and its hypograph is

hypo g = { (x, y, z) ∈ R× R× R | z ≤ x, z ≤ y } (109)
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Figure 8 shows how the function min represents this hypograph in cvx. Notice
that this function has a simple implementation as well—allowing the under-
lying solver to decide which it prefers to use. Of course, both abs and min

are rather simple, but far more complex functions are possible. For example,
graph implementations can be constructed for each of the norms examined in
§2.

More subtle but important instances of nondifferentiability occur in func-
tions that are discontinuous at the boundaries of their domains. These func-
tions require special care as well, and graph implementations provide that.
For example, consider the scalar entropy function

f : R→ R, f(x) ,











−x log x x > 0

0 x = 0

−∞ x < 0

(110)

This function is smooth over the positive interval, but it is discontinuous at the
origin, and its derivative is unbounded near the origin. Both of these features
cause problems for some numerical methods [93]. Using the hypograph

hypo f = cl { (x, y) ∈ R× R | x > 0, − x log x > y } (111)

can solve these problems. In Figure 8, we show the definition of a function
entropy that refers to a set hypo_entropy representing this hypograph. We
have chosen to omit the implementation of this set here, but it would certainly
contain a definition of the barrier function

φ : R× R→ (R ∪+∞),

φ(x, y) =

{

− log(−y − x log x)− log x (x, y) ∈ Int epi f

+∞ otherwise

(112)

[118], as well as an oracle to compute cutting planes a1x + a2y ≤ b, where

(a1, a2, b) ,



















(0, 0, 0) (x, y) ∈ hypo f

(−1, 0, 0) x < 0

(log(y/2) + 1, 1, y/2) x = 0, y > 0

(log x + 1, 1, x) x > 0

(113)

Graph implementations can also be used to unify traditional, inequality-
based nonlinear programming with conic programming. For example, consider
the maximum singular value function

f : Rm×n → R, f(X) = σmax(X) =
√

λmax(XT X) (114)

This function is convex, and in theory could be used in a disciplined convex
programming framework. The epigraph of f is
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epi f =
{

(X, y) ∈ Rm×n × R | σmax(X) ≤ y
}

=

{

(X, y)

∣

∣

∣

∣

∣

[

yI X
XT yI

]

∈ Sn
+, y ≥ 0

}

(115)

where Sn
+ is the set of positive semidefinite matrices. For someone who is famil-

iar with semidefinite programming, (115) is likely quite familiar. By burying
this construct within the implementation in the atom library, however, it en-
ables people who are not comfortable with semidefinite programming to take
advantage of its benefits in a traditional NLP-style problem.

Graph implementations are possible for sets as well, through the use of a
a single key := value pair:

• constraints: a list of constraints representing the set.

What this means is that a set can be described in terms of a disciplined
convex feasibility problem. There are several reasons why this might be used.
For example, graph implementations can be used to represent sets with non-
empty interiors, such as the set of n-element probability distributions

S =
{

x ∈ Rn | x ≥ 0, 1T x = 1
}

(116)

A cvx version of this set is given in Figure 8. Graph implementations can
also be used to represent sets using a sequence of smooth inequalities so that
smooth CP solvers can support them. For example, the second-order cone

Qn = { (x, y) ∈ Rn × R | ‖x‖2 ≤ y } (117)

can be represented by smooth inequalities as follows:

Qn =
{

(x, y) ∈ Rn × R | xT x/y − y ≤ 0, y ≥ 0
}

(118)

10.3 Using graph implementations

To solve a DCP involving functions or sets with graph implementations, those
transformations must be applied through a process we call graph expansion, in
which the DCP that describes a given atom is incorporated into the problem.
To illustrate what this entails, consider the problem

maximize min{cT
1 x + d1, c

T
2 x + d2}

subject to Ax = b
x ≥ 0

(119)

employing the function min{·, ·}. The hypograph of this function, presented
in (109) above, allows this problem to be rewritten as

maximize sup
{

y | y ≤ cT
1 x + d1, y ≤ cT

2 x + d2

}

subject to Ax = b
x ≥ 0

(120)
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Incorporating the variable y into the model itself yields expanded result

maximize y
subject to y ≤ cT

1 x + d1

y ≤ cT
2 x + d2

Ax = b
x ≥ 0

(121)

It is not difficult to see that this problem is equivalent to the original, and yet
now it is a simple LP.

Thus, as stated in §2.3, cvx allows the transformations required to convert
DCPs into solvable form to be encapsulated—and graph implementations are
how this is accomplished. Indeed, consider once again the `∞, `1, `p, and
largest-L minimization problems described in §2. The transformations used
to solve those problems in that section are, in fact, the very transformations
that cvx would use to solve them as well (or at least, very nearly so).

Because graph implementations are expanded before a numerical algo-
rithm is deployed, they require no adjustment on the part of those algorithms
to support them. Thus graph implementations are algorithm agnostic: any
algorithm which can successfully support simply implemented functions and
sets—by computing derivatives, sub/supergradients, barrier functions, etc.—
can solve problems with functions and sets with graph implementations as
well. Put another way, algorithms which previously could not support nondif-
ferentiable functions are enabled to do so through cvx.

The concept of graph implementations is based on relatively basic princi-
ples of convex analysis; and yet, an applications-oriented user—someone who
is not expert in convex optimization—is not likely to be constructing new
atoms with graph implementations. Indeed they are not likely to be construct-
ing new simple implementations either. Thankfully, they do not need to build
them to use them. The implementations themselves can be built by those with
more expertise in such details, and shared with applications-oriented users.
As the development of the cvx framework continues, the authors will build a
library of common and useful functions; and we hope that others will do so
and share them with the community of users.

11 Conclusion

In this article, we have introduced a new methodology for convex optimiza-
tion called disciplined convex programming. Disciplined convex programming
simplifies the specification, analysis, and solution of convex programs by im-
posing certain restrictions on their construction. These restrictions are simple
and teachable; they are inspired by the basic principles of convex analysis; and
they formalize the intuitive practices of many who use convex optimization to-
day. Despite the restrictions, generality is preserved through the expandability
of the atom library.
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We have enumerated a number of the benefits that disciplined convex pro-
graming obtains for practical convex optimization. Verifying that a model
is a valid DCP is a straightforward and reliable process. Nondifferentiable
functions may be freely employed without fear of sacrificing numerical per-
formance. And while we did not explore in detail how DCPs are solved, we
did discussed how the implementation of functions and sets enables a variety
of numerical methods to be used—methods whose performance and reliabil-
ity are well-known. We refer the reader to [74] for more development on this
topic.

An overarching goal of the development of disciplined convex program-
ming is unification. There are no less than seven standard forms for convex
programming being studied and used today: LS, LP, QP, SDP, SOCP, GP,
and smooth CP. Deciding which form best suits a given application is not
always obvious; and for many problems, a custom solver is the only appropri-
ate choice. Unification allows modelers to freely consider all of these problem
types simultaneously—because they need not think of them as separate types
at all.

The principles of disciplined convex programming have been implemented
in the cvx modeling framework. The current version employs a simple barrier
solver, but we intend to develop a more powerful solver in the future, and
we hope to convince other developers to provide a link to cvx for their own
solvers. We will be disseminating cvx freely with BSD-like licensing, and it is
our hope that it will be used widely in coursework, research, and applications.

The reader is invited to visit the Web site http://www.stanford.edu/

~boyd/cvx to monitor the development of cvx, to download the latest ver-
sions, and to read the accompanying documentation.

References

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users’ Guide. SIAM, 1992.

2. W. Achtziger, M. Bendsoe, A. Ben-Tal, and J. Zowe. Equivalent displacement
based formulations for maximum strength truss topology design. Impact of
Computing in Science and Engineering, 4(4):315–45, December 1992.

3. M. Avriel, R. Dembo, and U. Passy. Solution of generalized geometric pro-
grams. International Journal for Numerical Methods in Engineering, 9:149–
168, 1975.

4. M. Abdi, H. El Nahas, A. Jard, and E. Moulines. Semidefinite positive relax-
ation of the maximum-likelihood criterion applied to multiuser detection in a
CDMA context. IEEE Signal Processing Letters, 9(6):165–167, June 2002.

5. F. Alizadeh. Interior point methods in semidefinite programming with applica-
tions to combinatorial optimization. SIAM Journal on Optimization, 5(1):13–
51, February 1995.



DRAFT

Chapter 7: Disciplined Convex Programming 201

6. B. Alkire and L. Vandenberghe. Convex optimization problems involving finite
autocorrelation sequences. Mathematical Programming, Series A, 93:331–359,
2002.

7. E. Andersen and Y. Ye. On a homogeneous algorithm for the monotone com-
plementarity problem. Mathematical Programming, 84:375–400, 1999.

8. S. Boyd and C. Barratt. Linear Controller Design: Limits of Performance.
Prentice-Hall, 1991.

9. M. Bendsoe, A. Ben-Tal, and J. Zowe. Optimization methods for truss geom-
etry and topology design. Structural Optimization, 7:141–159, 1994.

10. C. Bischof, A. Carle, G. Corliss, A. Grienwank, and P. Hovland. ADIFOR:
Generating derivative codes from Fortran programs. Scientific Programming,
pages 1–29, December 1991.

11. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequal-
ities in System and Control Theory. SIAM, 1994.

12. S. Benson. DSDP 4.5: A daul scaling algorithm for semidefinite programming.
Web site: http://www-unix.mcs.anl.gov/~benson/dsdp/, March 2002.

13. D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, 1995.

14. R. Byrd, N. Gould, J. Norcedal, and R. Waltz. An active-set algorithm for
nonlinear programming using linear programming and equality constrained
subproblems. Technical Report OTC 2002/4, Optimization Technology Center,
Northwestern University, October 2002.

15. O. Bahn, J. Goffin, J. Vial, and O. Du Merle. Implementation and behavior
of an interior point cutting plane algorithm for convex programming: An ap-
plication to geometric programming. Working Paper, University of Geneva,
Geneva, Switzerland, 1991.

16. S. Boyd, M. Hershenson, and T. Lee. Optimal analog circuit design via geomet-
ric programming, 1997. Preliminary Patent Filing, Stanford Docket S97-122.

17. R. Banavar and A. Kalele. A mixed norm performance measure for the design
of multirate filterbanks. IEEE Transactions on Signal Processing, 49(2):354–
359, February 2001.

18. A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS: A User’s Guide.
The Scientific Press, South San Francisco, 1998. Web site: http://www.gams.
com/docs/gams/GAMSUsersGuide.pdf.

19. J. Borwein and A. Lewis. Duality relationships for entropy-like minimization
problems. SIAM J. Control and Optimization, 29(2):325–338, March 1991.

20. D. Bertsimas and J. Nino-Mora. Optimization of multiclass queuing networks
with changeover times via the achievable region approach: part ii, the multi-
station case. Mathematics of Operations Research, 24(2), May 1999.

21. D. Bertsekas, A. Nedic, and A. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific, Nashua, New Hampshire, 2004.

22. B. Borchers. CDSP, a C library for semidefinite programming. Optimization
Methods and Software, 11:613–623, 1999.

23. A. Ben-Tal and M. Bendsoe. A new method for optimal truss topology design.
SIAM J. Optim., 13(2), 1993.

24. A. Ben-Tal, M. Kocvara, A. Nemirovski, and J. Zowe. Free material optimiza-
tion via semidefinite programming: the multiload case with contact conditions.
SIAM Review, 42(4):695–715, 2000.



DRAFT

202 Michael Grant, Stephen Boyd, and Yinyu Ye

25. A. Ben-Tal and A. Nemirovski. Interior point polynomial time method for
truss topology design. SIAM Journal on Optimization, 4(3):596–612, August
1994.

26. A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite
programming. SIAM J. Optim., 7(4):991–1016, 1997.

27. A. Ben-Tal and A. Nemirovski. Structural design via semidefinite program-
ming. In Handbook on Semidefinite Programming, pages 443–467. Kluwer,
Boston, 2000.

28. S. Boyd and L. Vandenberghe. Semidefinite programming relaxations of non-
convex problems in control and combinatorial optimization. In A. Paulraj,
V. Roychowdhuri, , and C. Schaper, editors, Communications, Computation,
Control and Signal Processing: a Tribute to Thomas Kailath, chapter 15, pages
279–288. Kluwer Academic Publishers, 1997.

29. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

30. P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor
network localization. Technical report, Stanford University, April 2004. Web
site: http://www.stanford.edu/~yyye/adhocn4.pdf.

31. A. Conn, N. Gould, D. Orban, and Ph. Toint. A primal-dual trust-region
algorithm for non-convex nonlinear programming. Mathematical Programming,
87:215–249, 2000.

32. A. Conn, N. Gould, and Ph. Toint. LANCELOT: a Fortran Package for Large-
Scale Nonlinear Optimization (Release A), volume 17 of Springer Series in
Computational Mathematics. Springer Verlag, 1992.

33. A. Conn, N. Gould, and Ph. Toint. Trust-Region Methods. Series on Optimiza-
tion. SIAM/MPS, Philadelphia, 2000.

34. J. Chinneck. MProbe 5.0 (software package). Web site: http://www.sce.

carleton.ca/faculty/chinneck/mprobe.html, December 2003.
35. G. Calafiore and M. Indri. Robust calibration and control of robotic manipu-

lators. In American Control Conference, pages 2003–2007, 2000.
36. C. Crusius. A parser/solver for convex optimization problems. PhD thesis,

Stanford University, 2002.
37. T. Terlaky C. Roos and J.-Ph. Vial. Interior Point Approach to Linear Opti-

mization: Theory and Algorithms. John Wiley & Sons, New York, NY, 1997.
38. G. B. Dantzig. Linear Programming and Extensions. Princeton University

Press, 1963.
39. J. Dawson, S. Boyd, M. Hershenson, and T. Lee. Optimal allocation of local

feedback in multistage amplifiers via geometric programming. IEEE Journal
of Circuits and Systems I, 48(1):1–11, January 2001.

40. M. Dahleh and I. Diaz-Bobillo. Control of Uncertain Systems. A Linear Pro-
gramming Approach. Prentice Hall, 1995.

41. S. Dirkse and M. Ferris. The PATH solver: A non-monotone stabilzation
scheme for mixed complementarity problems. Optimization Methods and Soft-
ware, 5:123–156, 1995.

42. Y. Doids, V. Guruswami, and S. Khanna. The 2-catalog segmentation problem.
In Proceedings of SODA, pages 378–380, 1999.

43. T. Davidson, Z. Luo, and K. Wong. Design of orthogonal pulse shapes for
communications via semidefinite programming. IEEE Transactions on Com-
munications, 48(5):1433–1445, May 2000.



DRAFT

Chapter 7: Disciplined Convex Programming 203

44. G. Dullerud and F. Paganini. A Course in Robust Control Theory, volume 36
of Texts in Applied Mathematics. Springer-Verlag, 2000.

45. C. de Souza, R. Palhares, and P. Peres. Robust H∞ filter design for uncertain
linear systems with multiple time-varying state delays. IEEE Transactions on
Signal Processing, 49(3):569–575, March 2001.

46. A. Doherty, P. Parrilo, and F. Spedalieri. Distinguishing separable and entan-
gled states. Physical Review Letters, 88(18), 2002.

47. B. Dumitrescu, I. Tabus, and P. Stoica. On the parameterization of positive
real sequences and MA parameter estimation. IEEE Transactions on Signal
Processing, 49(11):2630–2639, November 2001.

48. R. Duffin. Linearizing geometric programs. SIAM Review, 12:211–227, 1970.
49. C. Du, L. Xie, and Y. Soh. H∞ filtering of 2-D discrete systems. IEEE

Transactions on Signal Processing, 48(6):1760–1768, June 2000.
50. H. Du, L. Xie, and Y. Soh. H∞ reduced-order approximation of 2-D digital

filters. IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 48(6):688–698, June 2001.

51. Laurent El Ghaoui, Jean-Luc Commeau, Francois Delebecque, and Ramine
Nikoukhah. LMITOOL 2.1 (software package). Web site: http://robotics.
eecs.berkeley.edu/~elghaoui/lmitool/lmitool.html, March 1999.

52. J. Ecker. Geometric programming: methods, computations and applications.
SIAM Rev., 22(3):338–362, 1980.

53. J.-P. A. Haeberly F. Alizadeh and M. Overton. Primal-dual interior-point
methods for semidefinite programming: Convergence rates, stability and nu-
merical results. SIAM J. Optimization, 8:46–76, 1998.

54. M. Fu, C. de Souza, and Z. Luo. Finite-horizon robust Kalman filter design.
IEEE Transactions on Signal Processing, 49(9):2103–2112, September 2001.

55. U. Feige and M. Goemans. Approximating the value of two prover proof sys-
tems, with applications to max 2sat and max dicut. In Proceedings of the 3nd
Israel Symposium on Theory and Computing Systems, pages 182–189, 1995.

56. R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for Math-
ematical Programming. Duxbury Press, December 1999.

57. A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut
and max bisection. Algorithmica, 18:67–81, 1997.

58. K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. SDPA (Semi-Definite
Programming Algorithm) user’s manual—version 6.00. Technical report, Tokyo
Insitute of Technology, July 2002.

59. U. Feige and M. Langberg. Approximation algorithms for maximization prob-
lems arising in graph partitioning. Journal of Algorithms, 41:174–211, 2001.

60. U. Feige and M. Langberg. The rpr2 rounding technique for semidefinte pro-
grams. In ICALP, Lecture Notes in Computer Science. Springer, Berlin, 2001.

61. R. Fourer. Nonlinear programming frequently asked questions. Web site: http:
//www-unix.mcs.anl.gov/otc/Guide/faq/

nonlinear-programming%-faq.html, 2000.
62. R. Freund. Polynomial-time algorithms for linear programming based only on

primal scaling and projected gradients of a potential function. Mathematical
Programming, 51:203–222, 1991.

63. Frontline Systems, Inc. Premium Solver Platform (software package). Web
site: http://www.solver.com, September 2004.

64. E. Fridman and U. Shaked. A new H∞ filter design for linear time delay sys-
tems. IEEE Transactions on Signal Processing, 49(11):2839–2843, July 2001.



DRAFT

204 Michael Grant, Stephen Boyd, and Yinyu Ye

65. J. Geromel. Optimal linear filtering under parameter uncertainty. IEEE Trans-
actions on Signal Processing, 47(1):168–175, January 1999.
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Summary. Global Optimization software packages for solving Mixed-Integer Non-
linear Optimization Problems are usually complex pieces of codes. There are three
main difficulties in coding a good GO software: embedding third-party local opti-
mization codes within the main global optimization algorithm; providing efficient
memory representations of the optimization problem; making sure that every part
of the code is fully re-entrant. Finding good software engineering solutions for these
difficulties is not enough to make sure that the outcome will be a GO software
that works well, of course. However, starting from a sound software design makes
it easy to concentrate on improving the efficiency of the global optimization algo-
rithm implementation. In this paper we discuss the main issues that arise when
writing a global optimization software package, namely software architecture and
design, symbolic manipulation of mathematical expressions, choice of local solvers
and implementation of global solvers.

Key words: MINLP, symbolic computation, multistart, variable neighbour-
hood search, branch-and-bound, implementation, software design.

1 Introduction

The object of Global Optimization (GO) is to find a solution of a given non-
convex mathematical programming problem. By “solution” we mean here a
global solution, as opposed to a local solution; i.e., a point where the objective
function attains the optimal value with respect to the whole search domain.
By contrast, a solution is local if it is optimal with respect to a given neigh-
bourhood. We require the objective function and/or the feasible region to be
nonconvex because in convex mathematical programming problems every lo-
cal optimum is also a global one. Consequently, any method solving a convex
problem locally also solves it globally.

In this paper we address Mixed-Integer Nonlinear Programming (MINLP)
problems in their most general setting:
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min
x∈Rn

cT x + f(x)

s.t. l ≤ Ax + g(x) ≤ u
xL ≤ x ≤ xU

xi ∈ Z ∀i ∈ Z















(1)

In the above formulation, x are the problem variables; some of them (those
indexed by the set Z ⊆ {1, . . . , n}) are constrained to take discrete values.
The objective function and constraints consist of a linear and nonlinear part:
f : Rn → R is a possibly nonlinear function, g : Rn → Rm is a vector of m
possibly nonlinear functions, c ∈ Rn, A is an m × n matrix, l, u ∈ Rm are
the constraint bounds (which may be set to ±∞ if a particular constraint is
never active), and xL, xU ∈ Rn are the variable bounds (again, some of these
bounds may be set to ±∞). We limit the discussion to the case where f, g are
continuous functions of their arguments. Formulation (1) encompasses most
kinds of mathematical programming problems. For example, if f = 0, g is a
constant (say −b), l = −∞, u = 0, xL = 0, xU =∞, and Z = ∅ we have the
canonical formulation of a Linear Programming problem (LP).

At the time of writing this paper, there is no GO software established as
standard. In fact, the GO software market is still rather poor and definitely
belonging to the academic world; GO is not being used extensively in the
corporate environment yet. Part of the reason for this is that linear modelling
is often a sufficient approximation to real-life processes, so GO software is not
required. Even when a nonlinear model arises, a lot of effort is put into lineariz-
ing it by standard or novel modelling techniques. Finally, most GO algorithms
rely on calling a local optimization procedure as a black-box function, and the
fastest local optimization algorithms for Nonlinear Programming (NLP) prob-
lems are often inherently fragile: they may fail to converge for many different
reasons even when the problem itself is reasonably smooth and well-behaved.
This makes general-purpose robust GO software codes virtually non-existent
(by contrast, GO software targeted at solving one particular problem can be
made rather robust). Seeing as there are no standardized guidelines for de-
signing GO software, this paper attempts to fill the gap by discussing a set
of methods that should make general-purpose GO software robust and hope-
fully efficient. This work is based on two different “software frameworks” for
GO designed by the author during his Ph.D. One of these, ooOPS(object-
oriented OPtimization System) [48], can be tested via the on-line interface
at http://or.dhs.org/liberti/ooOPS. The other, MORON (MINLP Op-
timization and Reformulation Object-oriented Navigator), is still very much
work in progress.

Most published papers on GO proposing a novel algorithm or a variant
of an existing algorithm also include computational results which have been
derived from some kind of software implementation of the method being pro-
posed. This suggests that there should be quite a lot of working GO software
available. Unfortunately, this is not the case. Most of these implementations
are no more than prototypes designed to produce the computational results.
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Methodologically speaking, at least in the academic world, there is nothing
wrong about writing software with a view to publishing a paper and nothing
else. This is not the approach to software writing that we are proposing to
illustrate here, however. We are interested in reviewing software design meth-
ods and GO algorithms for general-purpose global optimization software. A
clarifying analogy could be that we mean to describe methods to write a
GO software akin to what CPLEX [30] is to mixed-integer linear program-
ming. CPLEX is a software that can potentially solve any MILP problem
which is thrown at it, regardless of problem structure. It would be desirable
to have a corresponding software for solving arbitrarily structured MINLP
problems. CPLEX owes much of its success to a period of intense research in
the field of solution methods for MILPs in their most general form (cutting
plane, branch-and-bound, branch-and-price), as well as algorithmic improve-
ments which made the proposed algorithm practically viable (new families of
cuts, polyhedral theory, automatic reformulation methods, hierarchies of con-
vex relaxations leading to the convex hull). CPLEX is by no means the only
MILP-solving software on the market: but its efficiency is widely recognized,
and we believe that it may be called a de facto standard software for solving
MILPs. In the last two decades, many precise and heuristic GO methods have
been proposed for solving MINLPs. The work on algorithmic improvements
for these methods, however, is lagging behind if compared to the MILP scene.
For instance, symbolic reformulation techniques for MINLPs are still largely
an unexplored world, at least as far as computer implementations go: the most
common way to proceed seems to be that the reformulation is carried out by
hand, and then the reformulated problem is hard-coded in a “single-purpose”
solver wrapper. By contrast, automatic symbolic reformulation algorithms are
a crucial part of the CPLEX pre-solver. One possible explanation for such a
different state of affairs is that software design for MILP solvers is inherently
simpler than that required by GO algorithms, and even a relatively careless
design can result in a robust, efficient MILP solver. The situation is very differ-
ent in GO algorithms where re-entrancy, good memory management, efficient
data passing, and the ability to treat complex pieces of software like an NLP
local solver as a black box are all of paramount importance. Yet, all of these
issues have hardly been addressed in the existing GO literature. This paper
attempts to move a few steps in this direction.

We propose a software design based on a framework that deals with the
basic tasks required by any optimization solver code: reading the problem into
memory, performing symbolic manipulation, providing and modifying prob-
lem structure data, wrapping the solvers into independent callable modules,
configuring and running the solvers. Each solver can be called by any other
solver on any given problem, effectively allowing the use of any solver (be it
local or global) as a black-box. Solvers usually provide a numerical solution
as output, but a solver in this framework may even be a specialized symbolic
manipulation routine whose job is to change the structure of the problem.
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The rest of this paper is organized as follows. Section 2 is a review of three
existing algorithms that can be applied to optimization problems in form (1),
where Z (the set of integer variables) may or may not be non-empty; namely,
MultiStart (MS), Variable Neighbourhood Search (VNS) and spatial Branch-
and-Bound (sBB). Section 3 is a review of existing general-purpose GO soft-
ware packages. Section 4 lays the foundations for the software framework
where the GO solver codes are executed. Section 5 is an in-depth treatment
of the techniques used in the symbolic manipulation of the mathematical ex-
pressions in the objective function and constraints of the problem. Section 6 is
a review of some of the existing local LP and NLP solvers. Section 7 contains
descriptions of the global optimization solver implementations of MS, VNS
and sBB within the described framework.

2 Global Optimization algorithms

This section presents three of the the existing algorithms targeted at the
solution of problem (1): MultiStart (MS) (in fact a variant thereof called Multi
Level Single Linkage1 (MLSL)), Variable Neighbourhood Search2 (VNS) and
spatial Branch-and-Bound (sBB). The first two are classified as stochastic
algorithms, the latter as deterministic.

Most GO algorithms are two-phase. The solution space S is explored ex-
haustively in the global phase, which iteratively identifies a promising starting
point x̃. In the local phase, a local optimum x∗ is found starting from each
x̃. The local phase usually consists of a deterministic local descent algorithm
which the global phase calls as a black-box function. The global phase can be
stochastic or deterministic. Algorithms with a stochastic global phase are usu-
ally heuristic algorithms, whereas deterministic global phases often provide a
certificate of optimality, making the algorithm precise.

Stochastic global phases identify the starting points x̃ either by some kind
of sampling in S (sampling approach), or by trying to escape from the basin
of attraction of the local minima x∗ found previously (escaping approach), or
by implementing a blend of these two approaches. Stochastic global phases
do not offer certificates of optimality of the global optima they find, and they
usually only converge to the global optimum with probability 1 in infinite
time. In practice, though, these algorithms are very efficient, and are, at the
time of this writing, the only viable choice for solving reasonably large-scale
MINLPs. The efficiency of stochastic GO algorithms usually depends on the
proper fine-tuning of the algorithmic parameters controlling intensification of
sampling, extent of escaping and verification of termination conditions.

Deterministic global phases usually work by partitioning S into smaller
sets S1, . . . , Sp. The problem is then solved globally in each of the subsets

1 Also see Chapter 5.
2 Also see Chapters 6, 11 (Section 1.1).
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Sj . The global solution of each restriction of the problem to Sj is reached
by recursively applying the global phase to each Sj until a certificate of opti-
mality can be obtained for each Sj . The certificate of optimality is obtained
by computing upper and lower bounds u, l to the objective function value. A
local optimum x∗ in Sj is deemed global when |u − l| < ε, where ε > 0 is
a (small) constant. The convergence proofs for these algorithms rely on the
analysis of the sequence of upper and lower bounds: it is shown that these
sequences contain ε-convergent subsequences. The certificate of optimality for
the global optimum of the problem with respect to the whole solution space S
is therefore really a certificate of ε-global optimality. Such global phases are
called Branch-and-Select (the partitioning of the sets Sj is called branching;
the algorithm relies on selection of the most promising Sj for the computation
of bounds) [84]. Deterministic algorithms tend to be fairly inefficient on large-
scale MINLPs, but they perform well on small and medium-scale problems.
The efficiency of Branch-and-Select algorithms seems to depend strongly on
the particular instance of the problem at hand, and on the algebraic formu-
lation of the problem.

We note here, in passing, that not all solution methods for GO problems
follow such iterative approaches of finding candidate solution points x̃ and ap-
plying local descents to identify the closest local minimum x∗. Where f, g are
very expensive to evaluate, the local phase is usually skipped (as it requires
many function evaluations) and x∗ is set to x̃ (thus, these GO algorithms
only consist of the global phase). There exist algebraic methods (based on the
computation of Gröbner bases) that solve polynomially constrained polyno-
mial problems, which do not actually present either a global or a local phase
[26].

In the rest of this section, we shall give a short presentation of the follow-
ing stochastic algorithms: Multistart (MS), Variable Neighbourhood Search
(VNS); and of the deterministic algorithm called “spatial Branch-and-Bound”
(sBB). In fact, there are many other stochastic GO algorithms. To name but a
few which are not discussed in this paper: tabu search [38], genetic algorithms
[72], simulated annealing [44], differential evolution [74], adaptive Lagrange
multiplier methods [85], ant colony simulation [51], ruin and recreate [77],
dynamic tunnelling methods [65].

2.1 Multistart

Multistart (MS) algorithms are conceptually the most elementary GO al-
gorithms. Many local descents are performed from different starting points.
These are sampled with a rule that is guaranteed to explore the solution space
exhaustively (in infinite time), and the local minimum with the best objective
function value is deemed the “global optimum”. MS algorithms are stochastic
GO algorithms with a sampling approach. Their many variants usually differ
in sampling and local descent strategies.
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One of the main problems that MS algorithms face is that the same local
optimum is identified many times when the sampling rule picks starting points
in the basin of attraction of the same local optimum. Since the local descent is
the most computationally expensive step of MS, it is important to control the
extent to which this situation occurs. Obviously, identifying a local optimum
many times is useless to the end of finding the global optimum. The most
common method used to inhibit multiple local descents to start in the same
basin of attraction is called clustering. Sampled starting points are grouped
together in clusters of nearby points, and only one local descent is performed in
each cluster, starting from the most promising (in terms of objective function
value) cluster point. One particularly interesting idea for clustering is the
Multi Level Single Linkage (MLSL) method [60, 61]: a point x is clustered
together with a point y if x is not too far from y and the objective function
value at y is better than that at x. The clusters are then represented by a
directed tree, the root of which is the designated starting point from where
to start the local optimization procedure (see Fig. 1).

root node of the clustering tree

PSfrag replacements
: Local minima

: Starting point selected in the cluster

Fig. 1. Linkage clustering in the stochastic global phase. The points in the cluster
are those incident to the arcs; each arc (x, y) expresses the relation “x is clustered
to y”. The arcs point in the direction of objective function descent. The root of the
tree is the “best starting point” in the cluster.

One of the main problems with clustering is that as the number of problem
variables increases, the sampled points are further apart (unless one is willing
to spend an exponentially increasing amount of time on sampling, but this is
very rarely acceptable) and cannot be clustered together so easily.

Despite their conceptual simplicity, MS algorithms for GO usually perform
rather well on medium to large scale problems. The work of Locatelli and
Schoen on MS with random and quasi-random sampling shows that MS is,
to date, the most promising approach to solving the Lennard-Jones potential
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energy problem, arising in the configuration of atoms in a complex molecules
[46, 67, 68, 47, 69].

A MS algorithm for GO problems in form (1) (called SobolOpt3) was
developed by Kucherenko and Sytsko [37]. The innovation of the SobolOpt
algorithm is that the sampling rule is not random but deterministic. More
precisely, it employs Low-Discrepancy Sequences (LDSs) of starting points
called Sobol’ sequences whose distributions in Euclidean space have very de-
sirable uniformity properties. Uniform random distributions where each point
is generated in a time interval (as is the case in practice when generating a
sampling on a computer) are guaranteed to be uniformly distributed in space
in infinite time with probability 1. In fact, these conditions are very far from
the normal operating conditions. LDSs, and in particular Sobol’ sequences,
are guaranteed to be distributed in space as uniformly as possible even in
finite time. In other words, for any integer N > 0, the first N terms of a
Sobol’ sequence do a very good job of filling the space evenly. One further
very desirable property of Sobol’ sequences is that any projection on any co-
ordinate hyperplane of the Euclidean space Rn containing N n-dimensional
points from a Sobol’ sequence will still contain N projected (n−1)-dimensional
Sobol’ points. This clearly does not hold with the uniform grid distribution
where each point is located at a coordinate lattice point (in this case the num-

ber of projected points on any coordinate hyperplanes is O(N
n−1

n ), as shown
in Fig. 2). The comparison between grid and Sobol’ points in R2 is shown in
Fig. 3.

Fig. 2. Projecting a grid distribution in R2 on the coordinate axes reduces the
number of projected points. In this picture, N = 12 but the projected points are
just 4.

The SobolOpt algorithm has been used to successfully solve the Kiss-
ing Number Problem (KNP — determining the maximum number of non-
overlapping spheres of radius 1 that can be arranged adjacent to a central
sphere of radius 1) up to 4 dimensions, using a GO formulation proposed in

3 Also see Chapter 5, which is an in-depth analysis of the SobolOpt algorithm.
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grid

PSfrag replacements

Grid points

Sobol’ points

Fig. 3. Comparison between projected distribution of grid points and Sobol’ points
in R2.

[43]. The kissing number in 3 dimensions was first conjectured by Newton to
be equal to 12. Newton was proven to be right only 250 years later by Leech.
The 4D case was only very recently proved to be equal to 24 (a result by O.
Musin, still unpublished). The 5D case is still open. Unfortunately the prob-
lem formulation for the 5D case is too large to be solved by the SobolOpt
algorithm. Research in this field is ongoing.

A computational comparison of SobolOpt versus a spatial Branch-and-
Bound algorithm has been carried out and discussed in [41], showing that
SobolOpt performs well in box-constrained as well as equation and inequality-
constrained NLP problems. Some positive results have been obtained even for
modestly-sized MINLPs with a few integer variables4.

2.2 Variable Neighbourhood Search

Variable Neighbourhood Search5 (VNS) is a relatively recent metaheuristic
which relies on iteratively exploring neighbourhoods of growing size to identify
better local optima [29, 28, 27]. More precisely, VNS escapes from the current
local minimum x∗ by initiating other local searches from starting points sam-
pled from a neighbourhood of x∗ which increases its size iteratively until a
local minimum better than the current one is found. These steps are repeated
until a given termination condition is met. VNS is a combination of both the
sampling and the escaping approaches, and has been applied to a wide va-
riety of problems both from combinatorial and continuous optimization. Its

4 Also see Chapter 5, Section 4 for computational experiments with the SobolOpt
algorithm.

5 Also see Chapters 6, 11 (Section 1.1).
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early applications to continuous problems were based on a particular problem
structure. In the continuous location-allocation problem the neighbourhoods
were defined according to the meaning of problem variables (assignments of
facilities to customers, positioning of yet unassigned facilities and so on) [12].
In the bilinearly constrained bilinear problem the neighbourhoods took advan-
tage of a kind of successive linear programming approach, where the problem
variables can be partitioned so that fixing the variables in either set yields a
linear problem; the neighbourhoods of size k were then defined as the vertices
of the LP polyhedra that were k pivots away from the current vertex. In short,
none of the early applications of VNS was a general-purpose one.

The first VNS algorithm targeted at problems with fewer structural re-
quirements, namely, box-constrained NLPs, was given in [52]6 (the paper fo-
cuses on a particular class of box-constrained NLPs, but the proposed ap-
proach is general). Since the problem is assumed to be box-constrained, the
neighbourhoods arise naturally as hyperrectangles of growing size centered at
the current local minimum x∗.

1. Set k ← 1, pick random point x̃, perform local descent to find a local
minimum x∗.

2. Until k > kmax repeat the following steps:
a) define a neighbourhood Nk(x∗);
b) sample a random point x̃ from Nk(x∗);
c) perform local descent from x̃ to find a local minimum x′;
d) if x′ is better than x∗ set x∗ ← x′ and k ← 1; go to step 2;
e) set k ← k + 1

In the pseudocode algorithm above, the termination condition is taken to
be k > kmax. This is the most common behaviour, but not the only one
(the termination condition can be based on CPU time or other algorithmic
parameters). The definition of the neighourhoods may vary. If Nk(x) is taken
to be a hyperrectangle Hk(x) of size. k centered at x, sampling becomes easy;
there is a danger, though, that sampled points will actually be inside a smaller
hyperrectangular neighbourhood. A way to deal with this problem is to take
Nk(x) = Hk(x)\Hk−1(x), although this makes it harder to sample a point
inside the neighbourhood.

Some work is ongoing to implement a modification of the VNS for GO so
that it works on problems in the more general form (1) (at least when Z = ∅).
This was obtained by replacing the box-constrained local descent algorithm in
step (2c) with an SQP algorithm capable of locally solving constrained NLPs.

6 Also see Chapter 6, which is an in-depth analysis of the implementation of the
VNS algorithm for box-constrained global optimization in [52], together with a
presentation of computational results.



DRAFT

220 Leo Liberti

2.3 Spatial Branch-and-Bound

Spatial Branch-and-Bound (sBB) algorithms are the extension of traditional
Branch-and-Bound (BB) algorithms to continuous solution spaces. They are
termed “spatial” because they successively partition the Euclidean space
where the problem is defined into smaller and smaller regions where the prob-
lem is solved recursively by generating converging sequences of upper and
lower bounds to the objective function value. Traditional BB algorithms are
used for finding the optimal solution of MILP problems. They work by gen-
erating subproblems where some of the integer variables are fixed and the
others are relaxed, thus yielding an LP, which is easier to solve. Eventually,
the solution space is explored exhaustively and the best local optimum found
is shown to be the optimal solution.

Central to each sBB algorithm is the concept of a convex relaxation of
the original nonconvex problem; this is a convex problem whose solution is
guaranteed to provide an underestimation for the objective function optimal
value in the original problem. At each iteration of the algorithm, restrictions
of the original problem and its convex relaxations to particular sub-regions of
space are solved, so that a lower and an upper bound to the optimal value
of the objective function can be assigned to each sub-region; if the bounds
are very close together, a global optimum relative to the subregion has been
identified. The particular selection rule of the sub-regions to examine makes
it possible to exhaustively explore the search space rather efficiently.

Most sBB algorithms for the global optimization of nonconvex NLPs con-
form to the following general framework:

1. (Initialization) Initialize a list of regions to a single region comprising the
entire set of variable ranges. Set the convergence tolerance ε > 0, the
best current objective function value as U := ∞ and the corresponding
solution point as x∗ := (∞, . . . ,∞). Optionally, perform optimization-
based bounds tightening (see Section 7.3) to try to reduce the variable
ranges.

2. (Choice of Region) If the list of regions is empty, terminate the algorithm
with solution x∗ and objective function value U . Otherwise, choose a re-
gion R (the “current region”) from the list according to some rule (a
popular choice is: choose the region with lowest associated lower bound).
Delete R from the list. Optionally, perform feasibility-based bounds tight-
ening on R (see Section 7.3) to try to further reduce the variable ranges.

3. (Lower Bound) Generate a convex relaxation of the original problem in
the selected region R and solve it to obtain an underestimation l of the
objective function with corresponding solution x̄. If l > U or the relaxed
problem is infeasible, go back to step 2.

4. (Upper Bound) Solve the original problem in the selected region with a
local minimization algorithm to obtain a locally optimal solution x′ with
objective function value u.
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5. (Pruning) If U > u, set x∗ = x′ and U := u. Delete all regions in the list
that have lower bounds bigger than U as they cannot possibly contain the
global minimum.

6. (Check Region) If u − l ≤ ε, accept u as the global minimum for this
region and return to step 2. Otherwise, we may not yet have located the
region global minimum, so we proceed to the next step.

7. (Branching) Apply a branching rule to the current region to split it into
sub-regions. Add these to the list of regions, assigning to them an (initial)
lower bound of l. Go back to step 2.

The first paper concerning continuous global optimization with a BB al-
gorithm dates from 1969 [22]. In the 1970s and 1980s work on continuous or
mixed-integer deterministic global optimization was scarce. Most of the pa-
pers published in this period dealt either with applications of special-purpose
techniques to very specific cases, or with theoretical results concerning conver-
gence proofs of BB algorithms applied to problems with a particular structure.
In the last decade three sBB algorithms for GO appeared, targeted at con-
strained NLPs in form (1).

• The Branch-and-Reduce algorithm, by Sahinidis and co-workers [62, 63],
which was then developed into the BARON software (see below), one of
the best sBB implementations around to date (see Section 3.1).

• The αBB algorithm, by Floudas and co-workers [9, 7, 3, 1, 5, 2], that
addressed problems of a slightly less general form than (1). This algorithm
was also implemented in a software which was never widely distributed (see
Section 3.2).

• The sBB algorithm with symbolic reformulation, by Smith and Pantelides
[71, 75]. There are two implementations of this algorithm: an earlier one
which was never widely distributed, called GLOP (see Section 3.3), and a
recent one which is part of the ooOPS system, and for which development
is still active.

All three algorithms derive lower bounds to the objective function by solving
a convex relaxation of the problem. The main algorithmic difference among
them (by no means the only one) is the way the convex relaxation is derived,
although all three rely on the symbolic analysis of the problem expressions.

The list above does not exhaust all of the sBB variants that appeared
in the literature fairly recently. As far as we know, however, these were the
main contributions targeted at general-purpose GO, and whose correspond-
ing implementations were undertaken with a software-design driven attitude
aimed at producing a working software package. Other existing approaches for
which we have no information regarding the implementation are Pistikopoulos’
Reduced Space Branch-and-Bound approach [17] (which only applies to con-
tinuous NLPs), Grossmann’s Branch-and-Contract algorithm [86] (which also
only applies to continuous NLPs) and Barton’s Branch-and-Cut framework
[32]. We do not include interval-based sBB techniques here because their per-
formance is rather weak compared to the algorithms cited above, where the
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lower bound is obtained with a convex relaxation of the problem. Interval-
based sBB algorithms are mostly used with problems where the objective
function and constraints are difficult to evaluate or inherently very badly
scaled.

Convex relaxation

It is very difficult to devise an automatic method7 for generating tight convex
relaxations. Thus, many algorithms targeted at a particular class of problems
employ a convex relaxation provided directly by the user — in other words,
part of the research effort is to generate a tight convex relaxation for the
problem at hand. The standard automatic way to generate a convex relax-
ation consists in linearizing all nonconvex terms in the objective function and
constraints and then replacing each nonconvex definition constraint with the
respective upper concave and lower convex envelopes. More precisely, each
nonconvex term is replaced by a linearization variable w (also called added
variable) and a defining constraint w = nonconvex term. The linearized NLP
is said to be in standard form. The standard form is useful for all kinds of sym-
bolic manipulation algorithms, as the nonconvex terms are all conveniently
listed in a sequence of “small” constraints which do not require complex tree-
like data structures to be stored [71, 39].

The defining constraint is then replaced by a constraint

lower convex envelope ≤ w ≤ upper concave envelope.

Since it is not always easy to find the envelopes of a given nonconvex term,
slacker convex (or linear) relaxations are often employed. This approach to
linearization was first formalized as an automatic algorithm for generating
convex relaxations in [75], and implemented in the the GLOP software (see
Section 3.3). The approach used by BARON is similar (see Section 3.1). The
αBB code avoids this step but is limited to solving problems in a given form
(which, although very general, is not as general as (1)).

The downside to using linearization for generating the convex relaxation is
that the standard form is a lifting reformulation, that is, the number of vari-
ables in the problem is increased (one for each nonconvex term). Furthermore,
even if envelopes (i.e. tightest relaxations) are employed to over- and under-
estimate all the nonconvex terms, the resulting relaxation is not guaranteed
to be the tightest possible relaxation of the problem. Quite on the contrary,
relaxations obtained automatically in this way may in fact be very slack.

Common underestimators for bilinear [50, 8], trilinear, fractional, frac-
tional trilinear, [5], convex univariate, concave univariate ([75], Appendix A.4)
and piecewise convex and concave univariate terms [45] are all found in the
literature.
7 In fact, the work presented in Chapter 7 can also be seen as a first step in

this direction, providing automatic symbolic techniques to verify the convexity
properties of a given optimization problem and to generate new convex problems.
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3 Global Optimization software

This section is a literature review on the existing software for GO. The review
does not include software targeted at particular classes of problems, focusing
on general-purpose implementations instead.

3.1 BARON

The BARON software (BARON stands for “Branch And Reduce Optimiza-
tion Navigator”), written by Sahinidis and co-workers, implements a sBB-type
algorithm called Branch-and-Reduce (because it makes extensive use of range
reduction techniques both as a preprocessing step and at each algorithmic iter-
ation) first described in [62, 63]. BARON aims at solving factorable nonconvex
MINLPs. At the outset (1991), BARON was first written in the GAMS mod-
elling language [11]. It was then re-coded in Fortran in 1994 and successively
in a combination of Fortran and C for a more efficient memory management in
1996. The code was enriched in the number of local solvers during the years,
and put online until around 2002, when it was decided that it would be dis-
tributed commercially as a MINLP solver for the GAMS system. Nowadays
it can be purchased from GAMS (www.gams.com); for evaluation purposes, it
is possible to download the whole GAMS modelling language, together with
all the solvers, and run it in demo mode without purchasing a license. Unfor-
tunately, the demo mode for global optimization solvers is limited to solving
problems of up to 10 variables.

BARON and the Branch-and-Reduce algorithm it implements are further
described in [66, 82, 83]. The documentation of the GAMS software contains
a document about the usage of the BARON solver within GAMS. BARON
is currently regarded as the state of the art implementation for a sBB solver,
and in this author’s experience the praise is wholly deserved.

The main feature in this Branch-and-Bound implementation is the range
reduction technique employed before and after solving the lower and the up-
per bounding problems. Because range reduction allows for tighter convex
underestimators, the algorithm has the unusual feature that a subproblem
can be solved many times in the same node. As long as the range reduction
techniques manage to find reduced ranges for at least one variable, the convex-
ification on the same node becomes tighter and the variable bounds in both
lower and upper bounding problems change. The subproblems are then solved
repeatedly until a) the range reduction techniques fail to change the variable
bounds or b) the number of times a subproblem is allowed to be solved in the
same node reaches a pre-set limit. Condition (b) is a fail-safe device to prevent
slow convergence cases from stopping the algorithm altogether. Let P is the
original problem and R its convex relaxation. Let L be a lower bound for the
objective function of R and U an upper bound for the objective function of
P . If the constraint xj − xU

j ≤ 0 is active at the solution (i.e. the solution has
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xj = xU
j with Lagrange multiplier λ∗

j > 0) and if U − L < λ∗
j (x

U
j − xL

j ), then
increase the variable lower bound:

xL
j := xU

j −
U − L

λ∗
j

.

Similarly, if the constraint xL
j −xj ≤ 0 is active at the solution with Lagrange

multiplier µ∗
j > 0 and if U − L < µ∗

j (x
U
j − xL

j ), then decrease the variable
upper bound:

xU
j := xL

j +
U − L

µ∗
j

.

The geometrical interpretation of these range reduction tests is illustrated in
Figure 4. It can be seen that the changes of the bounds effected by these
rules do not exclude feasible solutions of P with objective function values
which are lower than U . Even if the variable bounds are not active at the

x j
L x j

L x j
U

U

L

Active constraint

l(x)

Fig. 4. Range reduction test. l(x) is the straight line λ∗
j xj + L.

solution, it is possible to “probe” the solution by fixing the variable value
at one of the bounds, solving the partially restricted relaxed problem and
checking whether the corresponding Lagrange multiplier is strictly positive. If
it is, the same rules as above apply and the variable bounds can be tightened.

Another range reduction test is as follows: suppose that the constraint
ḡi(x) ≤ 0 (where ḡ is the relaxed convex underestimator for the original
problem constraint g) is active at the solution with a Lagrange multiplier
λ∗

i > 0. Let U be an upper bound for the original problem P. Then the
constraint

ḡi(x) ≥ −U − L

λ∗
i
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does not exclude any solutions with objective function values better than U
and can be added as a “cut” to the current formulation of R to tighten it
further.

As explained in Section 2.3, the lower bound to the objective function in
each region is obtained by solving a convex relaxation of the problem. The
techniques used by BARON to form the nonlinear convex relaxation of fac-
torable problems are based on a symbolic analysis of the form of the factorable
function. Each nonconvex term is analysed iteratively and then the convex-
ification procedure is called recursively on each nonconvex sub-term. This
approach to an automatic construction of the convex relaxation was first pro-
posed in [75] (also see the implementation notes for the sBB solver in Section
7.3), and makes use of a tree-like data structure for representing mathematical
expressions (see Section 5). The novelty of the BARON approach, and one of
the main reasons why BARON works so well, is that it employs very tight
linear relaxations for most nonconvex terms.

In particular, convex and concave envelopes are suggested for various types
of fractional terms, based on the theory of convex extensions [80, 81]. The
proposed convex underestimator for the term x

y , where x ∈ [xL, xU ] and y ∈
[yL, yU ] are strictly positive, is as follows:

z ≥ xL

ya
(1− λ) + xU

yb
λ

yL ≤ ya ≤ yU

yL ≤ yb ≤ yU

y = (1− λ)ya + λyb

x = xL + (xU − xL)λ
0 ≤ λ ≤ 1































(2)

The underestimator is modified slightly when 0 ∈ [xL, xU ]:

z ≥ xL(yL+yU−ya)
yLyU (1− λ) + xU

yb
λ

yL ≤ ya ≤ yU

yL ≤ yb ≤ yU

y = (1− λ)ya + λyb

x = xL + (xU − xL)λ
0 ≤ λ ≤ 1































(3)

It is shown that these underestimators are tighter than all previously proposed
convex underestimators for fractional terms, in particular:

• the bilinear envelope:

max

{

xyU − yxL + xLyU

(yU )2
,
xyL − yxU + xUyL

(yL)2

}

• the nonlinear envelope:
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1

y

(

x +
√

xLxU

√
xL +

√
xU

)2

.

The above convex nonlinear underestimators are then linearized using an outer
approximation argument.

Furthermore, there is a specific mention of piecewise convex and piecewise
concave univariate terms (called concavoconvex by the authors) and the re-
spective convex and concave envelopes [83]. The convexification of this type
of nonconvex term — an example of which is the term x3 when the range
of x includes 0 — presents various difficulties, and it is usually not catered
for explicitly (see [45] for a detailed study). An alternative to this envelope
is suggested which circumvents the issue: by branching on the concavocon-
vex variable at the point where the curvature changes (i.e. the point where
the concavoconvex term changes from concave to convex or vice versa) at a
successive Branch-and-Bound iteration, the term becomes completely concave
and completely convex in each region.

Other notable features of the BARON software include: generating valid
cuts during pre-processing and and during execution; improving the branching
scheme by using implication lists which for each nonconvex term point out
the variable which most contributes to its nonconvexity [66, 83, 82, 64]; and
most importantly, targeting particular problem formulations with specialized
solvers [83]. These are available for:

• mixed-integer linear programming;
• separable concave quadratic programming;
• indefinite quadratic programming;
• separable concave programming;
• linear multiplicative programming;
• general linear multiplicative programming;
• univariate polynomial programming;
• 0-1 hyperbolic programming;
• integer fractional programming;
• fixed charge programming;
• problems with power economies of scale;

besides the “default” solver for general nonconvex factorable problems. BARON
runs as a solver of GAMS; therefore, it runs on all architectures where GAMS
can run.

3.2 αBB

The αBB algorithm [9, 6, 3, 2] solves problems where the expressions in the
objective function and constraints are in factorable form. The convex relax-
ation of general twice-differentiable nonconvex terms is carried out by using a
quadratic underestimation (based on the α parameter, which gives the name to
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the algorithm). Quadratic underestimations work for any twice-differentiable
nonconvex term, but are usually very slack. In order to relax the original prob-
lem to a tight convex underestimator, the “usual” convex underestimators are
proposed for bilinear, trilinear, fractional, fractional trilinear and concave uni-
variate terms [5].

A function f(x) (where x ∈ Rn) is underestimated over the entire domain
[xL, xU ] ⊆ Rn by the function L(x) defined as follows:

L(x) = f(x) +

n
∑

i=1

αi(x
L
i − xi)(x

U
i − xi)

where the αi are positive scalars that are sufficiently large to render the un-
derestimating function convex. A good feature of this kind of underestimator
is that, unlike other underestimators, it does not introduce any new variable
or constraint, so that the size of the relaxed problem is the same as the size
of the original problem regardless of how many nonconvex terms it involves.
Since the sum

∑n
i=1 αi(x

L
i − xi)(x

U
i − xi) is always negative, L(x) is an un-

derestimator for f(x). Furthermore, since the quadratic term is convex, all
nonconvexities in f(x) can be overpowered by using sufficiently large values
of the αi parameters. From basic convexity analysis, it follows that L(x) is
convex if and only if its Hessian matrix HL(x) is positive semi-definite. Notice
that:

HL(x) = Hf (x) + 2∆

where ∆ ≡ Diagn
i=1(αi) is the matrix with αi as diagonal entries and all ze-

roes elsewhere (diagonal shift matrix). Thus the main focus of the theoretical
studies concerning all αBB variants is on the determination of the αi param-
eters. Some methods are based on the simplifying requirement that the αi

are chosen to be all equal (uniform diagonal shift matrix), others reject this
simplification (non-uniform diagonal shift matrix). Under the first condition,
the problem is reduced to finding the parameter α that makes HL(x) positive
semi-definite. It has been shown that HL(x) is positive semi-definite if and
only if:

α ≥ max{0,−1

2
min

i,xL≤x≤xU
λi(x)}

where λi(x) are the eigenvalues of Hf (x). Thus the problem is now of finding
a lower bound on the minimum eigenvalue of Hf (x). The most promising
method to this end seems to be Interval Matrix Analysis. Various o(n2) and
o(n3) methods have been proposed to solve both the uniform and the non-
uniform diagonal shift matrix problem [20].

The αBB code itself is unfortunately not publicly distributed; refer to
http://titan.princeton.edu for further details. The αBB code is provided
with a front-end parser module which is accepts mathematical expressions and
generates corresponding “code lists”. The parser is capable of reading certain
types of quantifications in enumeration, summations and products, but is not



DRAFT

228 Leo Liberti

equivalent to a full-fledged modelling language like AMPL or GAMS. Follow-
ing parsing, automatic differentiation is applied to the code lists to generate
the first and second order derivatives. Code lists for the lower bounding prob-
lem are also automatically generated. The main sBB iteration loop can then
be started. αBB runs on Unix architectures.

3.3 GLOP

GLOP is the implementation of the spatial Branch-and-Bound with symbolic
reformulation proposed in [71, 73, 75]. This was the first sBB algorithm which
generated convex relaxations automatically for optimization problems in arbi-
trary form (1), using the linearization method explained in Section 2.3. Other
distinctive features of this algorithm are optimization and feasibility-based
range reduction procedures. The sBB solver in ooOPS is based around a
sBB derived directly from this algorithm. More information can be found in
Section 7.3.

The GLOP code is not distributed. Extensive information about this soft-
ware can be found in [71]. A brief description of this software is given here for
the following reasons:

• Some of the ideas for ooOPS were borrowed from GLOP. More precisely,
the software design and architecture are different, but the sBB algorithm
implemented in GLOP is the basis of the sBB algorithm in ooOPS.

• GLOP makes an interesting case study for an advanced software design,
with solvers calling each other, implemented with programming techniques
of about a decade ago. The first implementation was carried out mostly
in C, with some of the local solvers being coded in Fortran.

• GLOP was experimentally inserted in the integrated software environment
gPROMS for process synthesis [16]; in particular, a parallel version (which
can be called from gPROMS) was coded (in Modula-2). No other sBB
algorithm targeted at problems in form (1) ever had a working parallel
implementation, to the best of our knowledge.

• GLOP is one of the few general-purpose sBB codes which can generate
nonlinear, as well as linear, convex relaxation. Usually, the trade-off be-
tween tightness of convex relaxation and speed of solution is won by the
latter; thus, most sBB implementations only produce linear relaxation.
There are cases, however, where having a very tight convex relaxation
(which may be nonlinear) is advantageous.

GLOP uses the binary tree data structure to manipulate mathematical
expressions symbolically (see Section 5.1). Initially, GLOP reads a problem
definition file in a pre-parsed proprietary format which is basically a text de-
scription of the binary trees representing the mathematical expressions in the
problem, as well as the other numerical data defining the problem. Deriva-
tives are computed symbolically, and some degree of symbolic simplification
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is enforced. The user can select whether a nonlinear or a linear convex relax-
ation is desired, as well as the local upper and lower bounding solvers to use.
The selection includes CPLEX and MINOS for the lower bounding solver,
and CONOPT, together with various experimental local NLP codes, for the
upper bounding solver. E. Smith, the author of the software, also designed
and implemented a local NLP solver based on successive linear programming.

GLOP was not written according to object-oriented software design prin-
ciples. Some of the overall algorithmic control is carried out using global vari-
ables. Some care has been paid to the global variables not interfering with
parallel execution. However, this is not fully re-entrant software design. As
a stand-alone software, GLOP runs on Unix architectures. It was tested on
Solaris and Linux. As part of gPROMS, it runs on all architectures where
gPROMS runs.

3.4 ooOPS

ooOPS stands for object-oriented OPtimization System. It is a software
framework for doing optimization. As such, it contains a parser module, var-
ious reformulator modules, and various global and local solver modules; it
has full symbolic manipulation capabilities (with mathematical expressions
represented by binary trees) and is designed to tackle large scale global opti-
mization problems. Its software design is such that the code is fully re-entrant.
The architecture makes it possible for a number of modules to configure the
solver parameters, even at different stages of the solution process. Its parser is
interfaced with AMPL so that a full-fledged modelling language can be used to
input problems. The parser and the rest of the systems are separated, so that
ooOPS can actually be used as an external library (with a well documented
API [48]).

ooOPS was designed as the environment where an advanced sBB solver
code based on the spatial Branch-and-Bound with symbolic reformulation
(see Section 3.3) should have been executed. As such, solvers are largely in-
terchangeable, in the sense that they all bind to the same set of library calls.
Technically, it is even possible to call sBB itself as the local solver of another
sBB instance. With time, more global solvers were added to ooOPS, so that
now it can be considered as a general-purpose global optimization software
of good quality, implementing sBB, MLSL and VNS algorithms targeted at
solving MINLPs in form (1). ooOPS is fairly reliable, and was tested on
a number of different problem classes (bilinear pooling and blending prob-
lems, Euclidean location-allocation problems, the Kissing Number problem,
molecular distance geometry problems, and various other problem classes and
instances) with considerable success. ooOPS consists of over 40000 lines of
C++, in addition to the code of several local solvers (SNOPT [24], UCF from
the NAG library [53], lp solve [10]. The distribution package of ooOPS con-
tains all the source code for compiling the system. It was decided, at this stage,
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to interface only to solvers whose source code is available (hence the promi-
nent exclusion of CPLEX from the list of local solvers). ooOPS can be linked
as a static executable including all the solvers, or as a dynamically-linked
executable which loads the available solver modules as needed.

The public distribution of ooOPS is at the moment still being discussed
between Imperial College, who holds the rights to the code, and the author.
ooOPS runs on most Unix architectures. It has been tested on Linux and
Solaris; earlier versions had been produced to run on Windows, both under
the CYGWIN environment and under the MS Visual C++ compiler, but
maintenance of the Windows-based versions has been discontinued. ooOPS
was mostly written by the author of this paper, but C. Pantelides, B. Keeping,
P. Tsiakis, S. Kucherenko of CPSE, Imperial College, London all contributed
to the software.

Sections 3.4 and 3.4 give some details about the inner working of ooOPS.
Please note that not all of the ooOPS system conforms to the guidelines
given in Section 4 for writing a good optimization software; many ideas given
in Section 4 were developed by considering the inefficiencies of the existing
ooOPS implementation.

Object classes

ooOPS consists of 4 major classes of objects, each with its own interface.

1. The ops object.
An ops object is a software representation of a problem problem. The
corresponding interface provides the following functionality.
• It allows problem objects to be constructed and modified in a struc-

tured manner.
• It allows access to all numerical and symbolic information pertaining

to the problem in structured, flat (unstructured) and standard form.
2. The opssystem object.

This is formed by the combination of an ops object with a solver code.
The corresponding interface provides the following functionality.
• It allows the behaviour of the solver to be configured via the specifi-

cation of any algorithmic parameters that the solver may support.
• It permits the solution of the problem.

3. The opssolvermanager object.
This corresponds to a particular solver and allows the creation of an
opssystem object combining this solver with a given ops object. The
corresponding interface provides the following functionality.
• It allows the creation of many different opssystem objects, all of which

have the same solver parameter configuration.
4. The convexifiermanager object.

This embeds the convexification code. The corresponding interface pro-
vides the following functionality.
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• It allows the creation of the convex relaxation of the problem (in
ooOPS we only employ linear relaxations).

• It allows the on-the-fly update of the convex relaxation when the vari-
able ranges change.

Control flow

In this section, we describe how the user code (also called the client) calls the
objects described above to formulate and solve an optimization problem. This
involves a number of steps.

1. Construction of the problem ops object.
2. Creation of an opssolvermanager for the solver code to be used.
3. Creation of the necessary opssystem (by passing the ops object created

at step 1 to the opssolvermanager created at step 2).
4. Solution of the problem (via the opssystem’s Solve() method).
5. Solution data query (via the ops object’s interface).

Note that the opssystem’s Solve() method places the solution values back
in the ops object containing the original problem, so they can be recovered
later by the user code (also called the client code) by using a variable query
method.

3.5 Other GO software packages

There are a few other GO codes targeted at fairly large classes of NLPs and
MINLPs, which we do not discuss in detail either because of availability issues,
lack of stability or simply because they are “solvers” rather than “software
packages”.

• The LGO (Lipschitz Global Optimizer) solver, coded and marketed by
Janós Pintér [55], only requires function evaluation (no derivatives) as
external user-defined routines. Bounds on the objective function value
are obtained through Lipschitz analysis, and then employed in a spatial
Branch-and-Bound framework. Currently, several versions of this solver
exist: the core library object (for both Windows and Unix operating sys-
tems), an integrated development environment for Windows, and solver
engines for Microsoft Excel, GAMS, Mathematica and Matlab. See the
website http://www.pinterconsulting.com/l s d.html for more infor-
mation.

• The GlobSol solver, by Robert Kearfott [33], is based on interval arith-
metics to compute upper and lower bounds for a spatial Branch-and-Bound
framework. There is no integrated environment for this solver.

• The Coconut Environment. This is a large global optimization project
which is ongoing at Universität Wien, headed by A. Neumaier. One of
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the products of this project is a software framework for global optimiza-
tion, which offers an API [70] for external linking, and includes local and
global solvers. Unfortunately, the code is still too unstable to be used pro-
ductively. See the project website at http://www.mat.univie.ac.at/co-
conut-environment/.

• Lindo API [79]. This is an optimization framework for programmers. It
offers an API and several solvers, among which a global one. A lim-
ited version can be downloaded for evaluation purposes from the website
http://www.lindo.com.

• MORON stands for MINLP Optimization and Reformulation Object-
oriented Navigator. This project was started by the author of this pa-
per in order to produce a GO code that could be released to the public.
MORON is still very much work in progress, but it will offer substantial
improvements over ooOPS, the main one being much more advanced sym-
bolic manipulation capabilities. MORON uses an n-ary tree representation
for mathematical expressions (see Section 5.3), which makes it possible
to simplify algebraic expressions much more effectively. The software ar-
chitecture is mostly borrowed from ooOPS but the code is completely
re-written from scratch.

4 Optimization software framework design

As has been remarked, a general-purpose GO software is a complex program
requiring interactions among many software modules. One of the major dif-
ficulties, requiring a high degree of programming abstraction, is to be able
to replace a given software module with another one of the same type but
different mathematical properties. For example, as most GO algorithm call a
local optimization procedure as a sub-algorithm, we may wish to replace the
default local solver embedded in the GO solver with a sparse local solver when
solving large-scale problems to global optimality. Thus the local solver should
not be “hard-wired” in the GO solver, but rather be a pluggable software
module. Suppose further that we know the problem to be a bilinear one: then
we might wish to replace the standard pre-solver (reformulator module) with
one which is more apt to the task. With this philosophy, nearly every step
in the global solution of a problem is implemented as a pluggable software
module. This calls for a core software module where every other module can
be plugged in. The core module supplies the necessary Application Program-
ming Interfaces (APIs) so that the different modules can be called using the
same standard function calls.

This type of software design may, with a bit of tweaking, be implemented
in almost every programming language. Its proper semantic domain, however,
is within the object-oriented programming paradigm. We chose C++ [78] to
write implementations of the proposed software design, as it is widely available
on almost every hardware and Operating System platform.
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4.1 Control Flow

In this software description we follow a top-down approach, so that the reader
may find higher level requirements before reading about the consequent im-
plementation choices at lower level. The first thing that is necessary to know
about how a software works is the control flow.

At first, a file representation of problem (1) is read into memory, parsed,
and transformed into a memory representation of the problem. This task is
carried out by the parser module, and the memory representation of the prob-
lem is stored within the data fields of the core module, which exposes a com-
mon API for each solver module to retrieve the problem data. Subsequent to
parsing, the first task is to apply a symbolic reformulator to the problem. The
reformulator tries a number of standard symbolic manipulations to reduce the
number of variables and constraints, as well as reformulating the problem to
a simpler, or more convenient form, if required. Next, based on user request,
the control is passed to the solver module. Each solver is embedded into a
wrapper module which allows solver software written by different people with
different ad-hoc APIs to be interfaced with the core module uniformly. Solver
modules written natively for the core module may dispense with the wrapper
and directly use the core module’s API. Each solver may call other modules
(reformulators or solvers) as required by the algorithm being implemented.
Before the solver terminates its execution, it stores the optimal solution, the
optimal objective function value and other information regarding algorithmic
performance and solution reliability within the core module, so that this in-
formation can be accessed by other solvers. When the first-level solver (i.e.
the solver that was called first) terminates, the solution is output to the user
and program execution stops.

Fig. 5 shows the control flow of a first-level solver module requiring two
different second-level solvers, one for the main problem and the other to be
applied to an auxiliary problem derived from the main one by means of sym-
bolic reformulation (for example, consider a sBB algorithm requiring local
solutions to a nonconvex NLP problem and to its convex relaxation).

4.2 Data Flow

Since we are envisaging an object-oriented architecture and re-entrant cod-
ing, global variables may not be used. The data relating to the mathematical
formulation of the problem (i.e. the equations in (1)) are stored in the core
module, as has been remarked. In practice, these data are fields of a class
called Problem (more or less equivalent to what the class ops is in the ooOPS
software, see Section 3.4). Since the parser module builds the Problem object
corresponding to the main problem, it must have read/write permissions on
Problem objects. Consider also that some GO algorithms need to solve aux-
iliary problems at each step as part of the overall solution method (e.g. sBB
solves a lower-bounding problem at each step); since the auxiliary problems
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Start

memory representation of the problem
Read the problem description and build a

Call the GO solver

GO algorithm requiring two
different local solvers

End
Output solution

Call the wrapper to the 1st local solver

Local solver n. 1

Local solution algorithm n. 1

Call the symbolic reformulator to simplify
the problem

Call the wrapper to the 2nd local solver

Local solver n. 2

Local solution algorithm n. 2

auxiliary problem to be solved by 2nd solver
Call symbolic reformulator to generate an

Fig. 5. Example of control flow.

may in principle be solved by any of the available solvers, it makes sense to
embed them in an object of the Problem class. The reformulator module which
generates the auxiliary problem must therefore have read/write permissions
on Problem objects. Care must be taken to make the variable numbering con-
sistent between the main problem and the derived auxiliary problems. Solvers
need to read problem data rather than modify the problem, so they only need
read access to Problem objects.

The Problem class, implementing the core module, is the fundamental
class of the proposed GO framework. It stores information about variables,
constraints and objective function. A variable has the following basic prop-
erties: integrality (whether it is an integer or a continuous variable), bounds
and current value. A constraint has two basic properties: symbolic expression
of the constraint and bounds. The objective function also has two basic prop-
erties, namely the symbolic expression it consists of, and the optimization
direction (min or max). For simplicity, and without loss of generality, we shall
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thereafter assume that the optimization direction is that of minimization. The
Problem class offers an API containing methods for performing the following
actions:

• creation of problem entities
1. create a new variable (including integrality, bounds and current value)
2. create a new constraint (including constraint bounds)
3. create the objective function (including optimization direction)

• output of problem data
1. get problem sizes (number of variables, number of constraints, number

of integer variables, number of linear constraints)
2. get variable integrality, linearity, bounds and current values
3. get constraint symbolic expression and bounds
4. get the symbolic expression for the first (optionally second) order par-

tial derivative of each constraint with respect to each variable
5. get the symbolic expression and the optimization direction of the ob-

jective function
6. get the symbolic expression of the first (optionally second) order partial

derivative of the objective function with respect to each variable
• modification of problem data

1. modify a variable (including integrality, bounds and current value)
2. modify a constraint (including symbolic expression and bounds)
3. modify the objective function

• output of dynamic information (i.e. depending on the current variable
values)
1. evaluate the constraint at the current variable values
2. evaluate the constraint derivatives at the current variable values
3. evaluate the objective function at the current variable values
4. evaluate the objective function derivatives at the current variable val-

ues
5. test whether current variable values are a feasible solution
6. test whether a variable only occurs linearly in the problem or not
7. test whether problem has a particular structure (linear, bilinear, con-

vex)

The part of the API that tests wether the problem has a particular struc-
ture is called the symbolic analyser, and can also be considered as a separate
module instead of being part of the Problem API. Testing whether a problem
is linear or bilinear is easy; devising an algorithmic convexity test is far from
trivial8.

Fig. 6 shows an example of data flow in the proposed framework. The
arrows represent the relationship “modifies the data of” between modules. It
appears clear that certain reformulators change the core modules (Problem
object), whilst others read the data from the core module to generate another

8 Some work is being carried out on such a task; see Chapter 7.
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core module for an auxiliary problem. Each solver wrapper has to internally
store the data of the problem it is solving in order to pass these data to
the solver proper in its required format. Figure 6 describes a sBB solver: the

Core module for
the main problem

Reformulator for

Solver for main
problem

Core module for

Reformulator for
auxiliary problem

auxiliary problem

Solver for 
auxiliary problem

simplifying main p.

Fig. 6. Example of data flow. An arrow between modules A and B means that A

modifies the internal data of B.

core module for the main problem contains the data relative to the problem.
This data is modified when the problem is simplified by the simplifying re-
formulator. The core module then loads its data in the main solver module
(the global solver), which solves the problem. During the solution process,
the solver module tells the core module to create a reformulator for generat-
ing a convex relaxation. The core module loads its data in the reformulator,
which generates another core module for the auxiliary problem (the convex
relaxation). The main solver then instructs the core module of the auxiliary
problem to load its data in the auxiliary solver (the local solver), which solves
the convex relaxation. The implementation of this sequence of data exchanges
might be carried out so as to reduce the amount of transferred data.

4.3 Parser module

The ideal parser reads the mathematical formulation of an optimization prob-
lem, and transforms it in the appropriate data structures. Since optimiza-
tion problems are often expressed in terms of quantifiers, indices and multi-
dimensional sets of various kinds, to design such a parser is akin to crafting a
modelling language, which is an extremely difficult and time-consuming task.
Existing modelling languages (e.g. AMPL [19, 11]) usually provide an API
for external solvers. If the API goes as far as providing symbolic information
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for the equations, we can design our software framework as a “super-solver”
hooked to the modelling language software. The implementations described in
this paper use AMPL as a modelling language. The documented AMPL API
is very limited in its capabilities for passing structural problem information
to solvers. However, AMPL also offers an undocumented API [21, 23] which
makes it possible to read the mathematical expressions in the problem in a
tree-like fashion. Both ooOPS and MORON work by using the undocumented
AMPL API for building the internal data structures.

It is, of course, very easy to write a parser that reads optimization problems
in flat form, i.e., where no quantifier appears in any of the problem expressions
(for example, a constraint like ∀i ∈ N(xi+x1 ≤ 1) would be written in the flat
form as a list of |N | constraints where all the indices have been made explicit).
Such parsers can be written by using standard programming tools like LEX
and YACC [42] or from scratch: one good starting point can be found in the
first chapters of [78]. Again, both ooOPS and MORON are equipped with
such flat form parser modules. Interfacing with AMPL was actually carried
out with a small external program which uses the undocumented AMPL API
to produce a flat form representation of the problem that the optimization
software can read.

A standard MINLP description file format

The widespread adoption of a standard, flat-form problem definition file for
MINLPs (akin to what the MPS and LP file formats are to linear program-
ming) would be a very desirable event. AMPL is capable of producing .nl

ASCII files which are complete descriptions of MINLP problems. However,
they are so cryptic to the human eye that suggesting their adoption as stan-
dard would pose serious problems. Unfortunately, the same goes for the rather
widespread SIF format [4], which also has more stringent limitations: for exam-
ple, it is impossible to express arbitrary compositions of nonlinear functions.

ooOPS and MORON currently read flat-form definition files in the fol-
lowing format.
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# a comment
variables =

LowerBound1 < V arName1 < UpperBound1/V arType1,
...

LowerBoundn < V arNamen < UpperBoundn/V arTypen;
objfun =

[cTx + f(x)];
constraints =

[LowerBound1 < a1x + g1(x) < UpperBound1],
...

[LowerBoundm < amx + gm(x) < UpperBoundm];
startingpoint =

x′
1, . . . , x

′
n;

options =

ParameterName1 ParameterV alue1,
...

ParameterNamek ParameterV aluek;

The symbols are the same as in (1). Here, a1, . . . , am are the rows of the ma-
trix A. The symbol “<” has been employed instead of “≤” because the text
file is less cluttered with just one ASCII symbol (<) instead of two (<=), but
the semantics of the (<) symbol is actually “less than or equal to”. V arType
is a string (Integer or Continuous) describing the type of variable. Although
objective function and constraints are separated in linear and nonlinear parts
in the format description above, there is no reason why this task should not
be performed directly by the software. Indeed, MORON separates linear and
nonlinear parts automatically. ooOPS, which relies on a less advanced sym-
bolic manipulation library, requires the linear parts to be made explicit in
the description file, with the special character “|” syntactically separating
linear and nonlinear parts (with the semantics of “sum”). The nonlinear func-
tions f(x), g1(x), . . . , gm(x) are strings describing the mathematical expres-
sions. The only really non-trivial piece of code required for reading the above
problem description file is therefore a small parser that, given a string con-
taining a mathematical expression (containing just variable names, numbers,
and operators, without indices or quantifiers), builds a binary (or n-ary) tree
representing the expression. As has been remarked in Section 4.3, this task is
actually fairly easy.

Below is an example of a problem expressed in the format described in
this section.

# problem: Yuan 1988 (MINLP)

variables =

0 < y1 < 1 / Integer,
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0 < y2 < 1 / Integer,

0 < y3 < 1 / Integer,

0 < x4 < 10 / Continuous,

0 < x5 < 10 / Continuous;

objfun =

[ 2*x4 + 3*x5 + 1.5*y1 + 2*y2 - 0.5*y3 ];

constraints =

[1.25 < y1 + x4^2 < 1.25],

[3 < 1.5*y2 + x5^1.5 < 3],

[MinusInfinity < y1 + x4 < 1.6],

[MinusInfinity < y2 + 1.3333*x5 < 3],

[MinusInfinity < -y1 - y2 + y3 < 0];

startingpoint =

0, 0, 1, 1, 1;

options =

MainSolver sBB,

sBBLowerBoundSolver lp_solve,

sBBUpperBoundSolver snopt;

Although a starting point is usually not required for most GO algorithms, it
was decided to include the possibility of passing this information to the solver,
since this standard might be used as input for a local NLP solver.

We suggest that a suitable extension of this file format (encompassing an
arbitrary number of objective functions and other minor adjustments) should
be used as a standard MINLP problem description file format.

4.4 Data structures

The most important data structures in the Problem class refer to the main
problem entities: variables, objective function and constraints. The mathemat-
ical expressions defining objective function and constraints are stored symbol-
ically in a tree-like fashion, as explained in Section 5 below. Many of the other
properties of the problem entities, like names, bounds and so on, can be im-
plemented as desired, as they do not pose any particular practical problem.
ooOPS and MORON use the C++ STL string class [78] for names and the
basic double type for real numbers.

The most puzzling issues in designing data structures for problem entities
are to do with indexing of variables and constraints, and usually give rise to
the worst bugs. Since many global optimization algorithms work by reformu-
lating the problem symbolically, and since each reformulation is conveniently
stored in a separate object, it is important to retain the identity of each
variable and constraints, even when they undergo symbolic transformations.
Variable IDs are the most critical pieces of information: a sBB algorithm has
to act alternately on the original problem and on its convex relaxation. Since
the convex relaxation may be the result of a complex symbolic manipulation
(involving adding and removing problem variables as needed), a mapping be-
tween variables in the original and in the convexified problem is of the utmost
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importance. After much coding experimentation, the most practical solution
seems to be the following:

• the original problem is first simplified as much as possible, and as many
variables as possible are deleted from the problem;

• the variables in the simplified problem are flagged “unchangeable” to all
subsequent reformulator modules;

• reformulators which perform liftings, i.e. which add variables to the prob-
lem, flag the added variables as “changeable”, so that subsequent refor-
mulators can remove them if required.

Each variable is assigned a unique ID when the problem is first read by the
parser. These IDs are stored in lists. Deletion of a variable is equivalent to
removing the corresponding ID from the list; no other variable is re-indexed
(obviously, deleting a variable can only be done if the variable does not appear
in any of the problem expressions). A variable can be added by finding an
unassigned variable ID and inserting it into the list. Cycling over all variables
is equivalent to traversing the list. Similar lists containing variable names,
bounds, values and other properties are easily kept synchronized with the
“basic” ID list.

Constraints can be dealt with similarly, although symbolic manipulation
of constraints is usually much less problematic.

4.5 Configuration of solver parameters

The performance of most solver codes is usually hugely conditioned by proper
parameter settings (like tolerances, limits on the number of iterations and so
on). If a GO algorithm relies on a cascaded sequence of solvers being called,
each solver must be properly configured; this, however, poses some problems,
because whilst some configuration parameters can be set by the user, others
are better left to the higher-level solver, which will set them based on the
current performance of the algorithm run. Thus, solvers are first created in
memory by a solver manager, which pre-configures them; subsequently, the
solver and the problem object being solved are bound together in a solver sys-
tem, which offers further configuration capabilities and finally offers the API
for starting the solution process. A parameter list is stored both in the solver
manager and in the solver system (which inherits a pre-configured parameter
list from the solver manager). This treatment of parameter setting follows
the guidelines of the Global CAPE-Open consortium for chemical engineering
software [36, 57, 56].

5 Symbolic manipulation of mathematical expressions

Symbolic computation is usually something that the mathematical practi-
tioner employs dedicated software for; software like Maple, Mathematica, Mat-
lab and so on. Numerical methods, and in particular optimization, have always
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been taught in the spirit of number crunching, the most notable exception be-
ing linear algebra, for the simple reason that doing symbolic manipulation on
linear expressions is very easy. It is difficult to even envisage how to write
a symbolic computation program on a computer whose basic data types are
integer and floating point numbers. The following books provide good intro-
ductions to symbolic computation methods [76, 15, 14].

Symbolic computation relies on a machine representation of mathemati-
cal operations on some numbers or literal symbols (constants, variables, or
expressions involving constants and variables). Usually, one of the following
techniques is employed to represent these operations:

• binary trees;
• lists;
• n-ary trees.

5.1 Binary Trees

Binary trees have been proposed as a way of representing mathematical ex-
pressions by Knuth [34] and made their way in computational engineering and
other fields of scientific computing [13]. This representation is based on the
idea that operators, variables and constants are nodes of a digraph; binary
operators have two outcoming edges and unary operators only have one; leaf
nodes have no outcoming edge. One disadvantage is that binary tree repre-
sentation makes it cumbersome to implement associativity. For example, the
expression y + x + 2x + 3x is represented as (((y + x) + 2x) + 3x), so it would
require three recursive steps to lower tree ranks to find out that it is possible
to write it as (y+6x). Another disadvantage is that different parsers may have
different representations for the same expressions. With the example above, a
“left-hand-side-first” parser would create (y + (x + (2x + 3x))) instead of the
“right-hand-side-first” (((y + x) + 2x) + 3x).

Where symbolic manipulation is only desired to compute symbolic deriva-
tives and performing little or no symbolic manipulation, this approach may
be the best, as it is simpler to implement than the other techniques and gen-
erally performs very efficiently [54, 48]. ooOPS uses binary trees to store
expressions.

5.2 Lists

The representation of algebraic expressions by lists dates back to the AI-
type languages Prolog and Lisp. Lisp, in particular, was so successful at the
task that a lot of CASes, today, are still based on Lisp’s list manipulation
abilities. Prolog has some interesting features in conjunction with symbolic
computation, in particular the “computation-reversing” ability, by which if
you compute a symbolic derivative and do not bother to simplify it, Prolog
lets you integrate it symbolically performing virtually no calculation at all.
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Any symbolic computation library written in Prolog/Lisp faces the hard
problem of implementing an API which can be used by procedural languages
like Fortran, C or C++. Whilst technically not impossible, the architectures
and OSes offering stable and compatible Lisp and C/C++ compilers are few.
GNU/Linux actually has object-compatible Lisp and C/C++ compilers; how-
ever, the GNU Lisp compiler uses an array of internal data structures which
are very difficult to read from a C/C++ program, making data interchange
between the different modules hard to implement.

There are two other problems faced by Prolog/Lisp programs: portability
(many Prolog/Lisp compilers implement different dialects of the languages)
and a reduced user base.

5.3 n-ary Trees

Expression representation by n-ary trees can be seen as a combination of the
previous two techniques. MORON makes use of this representation. In order
to characterize this representation formally, we need some definitions.

An operator is a node in a directed tree-like graph. Let L be the set

{+,−,×, /, ^, (−1)×, log, exp, sin, cos, tan, cot,VAR,CONST}

of operator labels. An operator with label VAR is a variable, an operator with
label CONST is a constant. Operator nodes may generally have any number
of outcoming edges; variables and constants have no outcoming edges and are
called leaf nodes. A variable is also characterized by a non-negative integer
index i, and a constant by a value which is an element of a number field
F . We shall assume F = R (or at least, a machine representation of R) in
what follows, but this can vary. Let V be the set of all variable-type operator
nodes. Let T0 = V ∪ R. This is the set of the terminal (or leaf) nodes, i.e.
the variables and constants. Now for each positive integer i, define recursively
Ti = L × (Ti−1 ∪ T0)

<ω. Elements of Ti are operator nodes having rank i.
Basically, an element of Ti is made up of an operator label l ∈ L and a finite
number of subnodes. A subnode s of n is a node s in the digraph so that there
is an edge leaving node n and entering s.

The biggest advantage of n-ary tree representation is that it makes it very
fast and easy to perform expression simplification. Another advantage is that
expression evaluation on n-ary trees is faster than that obtained with a binary
tree structure [40].

5.4 Main symbolic manipulation algorithms

In this section we discuss the most important algorithms for symbolic manipu-
lation: allocation and deallocation of memory for recursive data structures like
trees, evaluation of an expression at a point, symbolic differentiation and basic
simplification rules. Many more symbolic algorithms are actually used in both
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ooOPS and MORON, including a standard representation for mathematical
expressions, equality tests, advanced simplification routines and separation of
linear and nonlinear parts of an expression. The latter is particularly impor-
tant as most nonlinear local solvers require the linear parts of the constraints
to be input separately from the nonlinear parts.

Allocation and deallocation

One of the biggest challenges in tree handling is memory allocation/deallocation.
A tree-node class normally consists of its own semantic data and two (or more,
in the case of n-ary trees) references to its children subnodes. In this setup,
the following memory-related problems arise.

• When a node is allocated, the subnodes are not automatically allocated,
so they have to be allocated manually when the need arises (see fig. 7).

NULL NULL

Fig. 7. Allocation of a node does not allocate subnodes.

• When a node is copied, the question arises whether all the subnode hier-
archy should be copied or just the references to the immediate subnodes
(see fig. 8). The two cases must be treated separately.

• Supposing a tree has been allocated, with some of its nodes copied hier-
archically and some others just copied as references, how does one deallo-
cate the tree? Just deleting all the nodes will not work because the nodes
copied as references are still in use by other trees. A node cannot hold the
information about all the trees it belongs to, as it may belong to a huge
number of trees. The standard way to deal with this situation is to store
a counter in each node that counts the number of times it is copied as a
reference. Each time the deallocation of the node is requested the counter
is decreased. The node is truly deallocated only when the counter is zero.

Evaluation

Normal mathematical operations on expressions amount to the manipulation
of nodes. These can be copied to form new expressions, replaced by other
nodes to achieve symbolic simplification and so on. Two expressions can be
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Original tree Subnodes hierarchical copy

Subnodes reference copy

Fig. 8. Copy of subnodes and copy of references.

summed (or in fact acted on by any other binary operator) just by creating
a new top node and setting the top nodes of the two expressions as its two
subnodes. Substitution of a variable can be obtained by replacing the relevant
variable indices in the terminal nodes; special care must be taken if these
terminal nodes are in use in other trees within the program. If they are, then
new terminal nodes should be created before the changes occur. Evaluation
of an expression tree is obtained by recursing on each node in the following
way.

evaluate(node, variable_values) {

if (node is terminal) {

return variable value corresponding to variable index;

} else {

result = 0;

for each subnode in node {

partial_result = evaluate(subnode, variable_values);

result = result (node.operator) partial_result;

}

return result;

}

}

Both result and partial result in the above pseudocode indicate real
numbers. If the same tree has to be evaluated several times, it may be conve-
nient to store the linear order of recursive evaluation of each node and then
call a modified evaluation procedure which is linear in nature rather than
recursive. This avoids the computational overhead of recursiveness (although
optimizing compilers reduce that overhead considerably nowadays). The de-
tails of this strategy are analysed in [35].
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Differentiation

Derivatives of the objective function and constraints are used (or can be used)
by most nonlinear deterministic local solvers, so an efficient way to calculate
these derivatives gains good computational savings. Ordinarily, derivatives
are computed by finite differences or by hard-coding the symbolic derivative
inside the program at compile-time. The first method has huge associated
computational costs, whilst the second method only targets programs devised
to solve one particular optimization problem, which is not suitable for our
purposes.

There are two alternatives: automatic differentiation (AD) [25] and sym-
bolic derivative computation. A. Griewank, in his fascinating 1989 paper on
AD, claims that AD is better than symbolic differentiation. However, the
limitation of the symbolic differentiation methods he was referring to were
twofold: hardware-wise, in lack of RAM (he was using a Sun3 with 16MB
ram); and software-wise, in having to pass the output of a symbolic derivative
computed by Macsyma 1 or Maple 1 to a Fortran compiler before the evalu-
ation, apparently with the overhead of shell-piping mechanisms. Besides, AD
inherently has one very stringent limitation which makes it unsuitable for use
in a software framework: namely, that AD algorithms automatically generate
derivative evaluation code, which must be compiled before it can be useful.
This would make the optimization framework dependent on a compiler and
a linker, which is not usually an acceptable choice for a stand-alone software.
For this reason we chose to employ symbolic differentiation techniques.

Once the symbolic derivatives are calculated for the objective function and
constraints, they only need to be evaluated in order to produce the derivative
value at a point. Other advantages of this approach are that (a) by using
expression trees and recursive procedures, symbolic derivatives are not com-
putationally expensive to construct; and (b) the derivative values they provide
are exact, whereas finite difference methods can only approximate the values
at best.

The following pseudocode shows how to construct a node representing the
symbolic derivative of node with respect to variable.

diff(node, variable) {

retnode = 0;

for each subnode in node {

if (subnode depends on variable) {

if (subnode is terminal) {

retnode = 1;

} else {

case of node.operator {

case ’+’:

retnode = retnode + diff(subnode, variable);

case ’-’:

retnode = retnode - diff(subnode, variable);

case ’*’:
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retnode = retnode + diff(subnode, variable) * node / subnode;

// and all the other derivative rules...

}

}

}

}

return retnode;

}

Notice that retnode in the above pseudocode indicates a node, so all the
operations that act on retnode (addition, subtraction, multiplication, division
and so on) are to be implemented as procedures which manipulate expression
trees.

Derivative rules are the usual ones; the rule for multiplication is expressed
in a way that allows for n-ary trees to be correctly derived:

∂
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All valid algebraic simplifications can be used to simplify symbolic expres-
sions. However, all simplifications have an associated computational cost so
it is essential to find a balance between the degree of simplification of each
expression and the cost of the simplification itself. Simplifying sin2(f(x)) +
cos2(f(x)) = 1, for example, involves a tree search that spans 7 nodes (ad-
dition, exponentiation and “2” as a constant in two nodes, sine and cosine
operators) and is of limited use, so it is not advisable to employ it unless it is
known in advance that most of the expressions will involve sines and cosines.

Simplification

The basic simplifications which should be carried out are the following:
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constant (operator) constant = constant(resultofoperation)

−(−f(x)) = f(x)

f(x) + 0 = f(x)

f(x)− 0 = f(x)

0− f(x) = −f(x)

f(x)× 1 = f(x)

f(x)

1
= f(x)

(f(x))0 = 1

(f(x))1 = f(x)

f(x) + f(x) = 2f(x)

f(x)− f(x) = 0

f(x)× f(x) = (f(x))2

f(x)

f(x)
= 1

Note that binary trees are not commutative, so the commuted simplifications

0 + f(x) = 0

1× f(x) = f(x)

should also be carried out. Note also that after a tree has been simplified
once there is scope for further simplification. For example applying the above
rules in succession to x2y−2y − 1 would gather x0 − 1, but it is evident that
the expression can be simplified even more. A second application of the rules
would gather 1 − 1 and a third application would finally gather 0. Ideally,
thus, simplification should be carried out repeatedly until the expression does
not change under the simplification rules. Where this is too computationally
expensive, a compromise may be enforced.

6 Local solvers

By “local solvers” we mean here those solvers which decide on the local or
global optimality of a point by performing an analysis of a point neighbour-
hood. As such, local solvers may implement local solution algorithms (for
NLPs) and global solution algorithms (for LPs). Mostly, local solvers are used
within global solvers as black-box calls to solve the main problem, or auxil-
iary problems, locally. In most GO algorithms, the global phase has a limited
numerical knowledge of the problem structure; the “dirty work” is usually per-
formed by the local solvers. In the case of LPs, the local solver needs to know
the linear coefficients of all the variables in the objective and the constraints,
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as well as the variable and constraint bounds. In the case of NLPs, the lo-
cal solver needs to evaluate objective function, constraints, first derivatives of
both, and optionally also second derivatives, for any given point. Large-scale
local NLP solvers need to be explicitly told about linear and nonlinear parts
of each expression in the problem. As most local solvers are in fact “solver
libraries”, with varying degrees of user-friendliness, sometimes the problem
variables and/or the constraints need to be re-ordered. This is very time-
consuming and error-prone, as the inverse re-ordering needs to be applied to
the solution vector.

The task of interfacing a local solver with the rest of the optimiza-
tion system is carried out by the solver wrapper. In this author’s experi-
ence, solver wrappers for existing local NLP solvers (specially those requir-
ing variable and constraint re-ordering) are the most frustrating source of
software bugs. Interfacing with local LP solvers is easier; however, since
many local LP solvers do not accept constraints in “double bounded for-
mat” (LowerBound ≤ g(x) ≤ UpperBound), preferring the “single bounded

format” instead (g(x) T Bound), some of the constraints might have to be
replicated with different directions and bounds.

One word should be spent about the reliability of local solver codes.
Whereas LP solvers are next to 100% reliable, some of the most efficient
algorithms for the local solution of nonconvex NLPs are inherently unreliable.
Sequential Quadratic Programming (SQP), for example, is a standard and
widely used technique for locally solving constrained NLPs in general form.
SQP might fail (rather spectacularly in certain cases) if a feasible starting
point cannot be provided, or if the linearized constraints are infeasible (even
though the original nonlinear constraints may be feasible). Both these occur-
rences are far from rare, so local NLP solvers are rarely reliable. Since most
GO algorithms delegate the numerical work to the local solvers, a global solver
is only as reliable as its local sub-solver, that is to say, not very reliable at all.
Therefore, it is always a good idea for the wrapper to be able to deal properly
with all the return messages of the local solver; in our opinion, it is also a
good idea to have the wrapper double-check on the feasibility of the solution
provided by the local solver.

ooOPS at the moment has three local solvers: NPSOL (or rather, the
VCF optimization code in the NAG library), a rather old version of SNOPT
(which is a large-scale modification of NPSOL), and lp solve, which is a free
LP solver.

MORON is interfaced to a recent version of SNOPT and the GLPK [49]
local LP solver.

7 Global solvers

GO algorithms mostly require very high-level steps, like local solution of sub-
problems, symbolic manipulation of mathematical expressions, and so on.
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Embedding global solvers within optimization environment which offer these
possibilities makes it possible to implement and test a global solver in a very
short time. In this section we shall describe the three global solvers found in
ooOPS. At this stage, MORON only has a very preliminary version of a sBB
solver, which is not discussed here.

7.1 SobolOpt multistart algorithm

SobolOpt9 (also see Section 2.1) is an implementation of a Multi-Level Sin-
gle Linkage (MLSL) algorithm; its main strength is that it employs certain
Low-Discrepancy Sequences (LDSs) of sampling points called Sobol’ sequences
whose distributions in Euclidean space have very desirable uniformity proper-
ties. Let Q be the set of pairs of sampled points q together with their evaluation
f(q) (where f is the objective function). Let S be the list of all local minima
found up to now.

1. (Initialization) Let Q = ∅, S = ∅, k = 1 and set ε > 0.
2. (Termination) If a pre-determined termination condition is verified, stop.
3. (Sampling) Sample a point qk from a Sobol’ sequence; add (qk, f(qk)) to

Q.
4. (Clustering distance) Compute a distance rk (which is a function of k and

n; there are various ways to compute this distance, so this is considered
as an “implementation detail” — one possibility is rk = βk− 1

n , where β
is a known parameter and n is the number of variables).

5. (Local phase) If there is no previously sampled point qj ∈ Q (with j < k)
such that ||qk − qj || < rk and f(qj) ≤ f(qk)− ε, solve problem (1) locally
with qk as a starting point to find a solution y with value f(y). If y 6∈ S,
add y to S. Set k ← k + 1 and repeat from step 2.

The algorithm terminates with a list S of all the local minima found. Find-
ing the global minimum is then a trivial matter of identifying the minimum
with lowest objective function value f(y). Two of the most common termina-
tion conditions are (a) maximum number of sampled points and (b) maximum
time limit exceeded. A discussion of how Sobol’ sequences can be generated
is beyond the scope of this paper. A good reference is [59], p.311.

The implementation of the SobolOpt algorithm, which is very robust, was
carried out by S. Kucherenko and Yu. Sytsko and successively adapted to the
ooOPS framework. For more details about this algorithm, see [37].

9 The SobolOpt solver within ooOPS shares the same code as the implementation
described in Chapter 5.
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7.2 Variable Neighbourhood Search

In this section we discuss the implementation of the Variable Neighbourhood
Search10 algorithm for GO presented in Section 2.2. The search space is de-
fined as the hypercube given by the set of variable ranges xL ≤ x ≤ xU . At
first we pick a random point x̃ in the search space, we start a local search
and we store the local optimum x∗. Then, until k does not exceed a pre-set
kmax, we iteratively select new starting points x̃ in a neighbourhood Nk(x∗)
and start new local searches from x̃ leading to local optima x′. As soon as we
find a local minimum x′ better than x∗, we update x∗ = x′, re-set k = 1 and
repeat. Otherwise the algorithm terminates.

For each k ≤ kmax consider hyper-rectangles Rk(x∗) similar to xL ≤ x ≤
xU , centered at x∗, whose sides have been scaled by k

kmax
. More formally, let

Rk(x∗) be the hyper-rectangle yL ≤ x ≤ yU where, for all i ≤ n:

yL
i = x∗

i −
k

kmax
(x∗

i − xL
i )

yU
i = x∗

i +
k

kmax
(xU

i − x∗
i ).

This construction forms a set of hyper-rectangular “shells” centered at x∗.
For k > 0, we define the neighbourhoods Nk(x∗) as Rk(x∗)\Rk−1(x

∗) (ob-
serve that R0(x

∗) = ∅). The neighbourhoods are disjoint, which gives the
VNS algorithm a higher probability not to fall in local optima that have al-
ready been located. Furthermore, the union of all the neighbourhoods Nk(x∗)
is the whole space xL ≤ x ≤ xU . This is a rather unusual features in VNS im-
plementation, specially when VNS is applied to combinatorial problems. Here
it is justified by the (partial) continuity of the search space. The neighbour-
hoods are obviously just used for sampling; the local search itself is performed
in the whole space.

Sampling in the neighbourhoods Nk(x∗) is a non-trivial task. Since sam-
pling in hyper-rectangles is easy, one possible solution would be to sample a
point in Rk(x∗) and reject it if it is in Rk−1(x

∗), but this would be highly
inefficient. A different strategy was preferred in this implementation.

1. Choose an index j ≤ n randomly.
2. Sample a random value x′

j in the one-dimensional interval given by pro-
jection of Rk(x∗) on the j-th coordinate.

3. Let the projection of Rk−1(x
∗) on the j-th coordinate be the interval

ρ = [yL
j , yU

j ]. If x′
j ∈ ρ, then: if |x′

j − yL
j | ≤ |x′

j − yU
j | let x′

j = yL
j , else let

x′
j = yU

j .
4. For all i ≤ n such that i 6= j, sample a random value x′

i in the projection
of Rk(x∗) on the i-th coordinate.

10 The implementation of the VNS solver in ooOPS is fundamentally different from
the GLOB implementation described in Chapter 6.
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The above procedure generates a point x′ = (x′
1, . . . , x

′
n) which is guaranteed

to be in Nk(x∗). Evidently, x′ ∈ Rk(x∗). Now suppose, to get a contradiction,
that x′ ∈ Rk−1(x

∗). But then for each i ≤ n we have yL
i ≤ x′

i ≤ yU
i . Since

we specifically set one of the x′
i to be outside this interval in steps 1-3 of

the algorithm, x′ 6∈ Rk−1(x
∗) as claimed. Therefore x′ ∈ Nk(x∗). The only

problem with this method is that the sampling is not uniformly distributed
anymore, as there are areas of Nk(x∗) where there is zero probability of sam-
pling x′. This, unfortunately, affects the convergence proof of the algorithm,
since there are unexplored areas. A simpler, more robust strategy is to define
each neighbourhood Nk(x∗) as the hyper-rectangle Rk(x∗). This is wasteful (a
point might be sampled in Nk−1(x

∗), which had already been explored at the
previous iteration), but the convergence proof holds. Both approaches have
been coded in the solver, and selection occurs by modifying an appropriate
parameter.

The other main solver parameters control: the minimum k to start the
VNS from, the number of sampling points and local searches started in each
neighbourhood, an ε tolerance to allow moving to a new x∗ only when the
improvement was sufficiently high, and the maximum CPU time allowed for
the search.

7.3 Spatial Branch-and-Bound

The overall sBB algorithm was discussed in Section 2.3. Below, we consider
some of the key steps of the algorithm in more detail.

Bounds tightening

These procedures appear in steps 1 and 2 of the algorithm structure outlined
in Section 2.3. They are optional in the sense that the algorithm will, in
principle, converge even without them. Depending on how computationally
expensive and how effective these procedures are, in some cases convergence
might actually be faster if these optional steps are not performed. In the great
majority of cases, however, the bounds tightening steps are essential to achieve
fast convergence. Two major bounds tightening schemes have been proposed
in the literature: optimization-based and feasibility-based.

The optimization-based bounds tightening procedure identifies the small-
est range of each variables subject to the convex relaxation of the problem to
remain feasible. This ensures that the sBB algorithm will not have to explore
hyper-rectangles which do not actually contain any feasible point. Unfortu-
nately, this is a computationally expensive procedure which involves solving
at least 2n convex NLPs (or LPs if a linear convex relaxation is employed)
where n is the number of problem variables. Let α ≤ ḡ(x) ≤ β be the set of
constraints in the relaxed (convex) problem (α, β are the constraint limits).
The following procedure will construct sequences xL,k, xU,k of lower and up-
per variable bounds which converge to new variable bounds that are at least
as tight as, and possibly tighter than xL, xU .
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1. Set xL,0 ← xL, xU,0 ← xU , k ← 0.
2. Repeat

xL,k
i ← min{xi | α ≤ ḡ(x) ≤ β ∧ xL,k−1 ≤ x ≤ xU,k−1} ∀i ≤ n;

xU,k
i ← max{xi | α ≤ ḡ(x) ≤ β ∧ xL,k−1 ≤ x ≤ xU,k−1} ∀i ≤ n;

k ← k + 1.

until xL,k = xL,k−1 and xU,k = xU,k−1.

Because of the associated cost, this type of tightening is normally performed
only once, at the first step of the algorithm.

Feasibility-based bounds tightening is computationally cheaper than the
one described above, and as such it can be applied at each and every re-
gion considered by the algorithm. Variable bounds are tightened by using the
problem constraints to calculate extremal values attainable by the variables.
This is done by isolating a variable on the left hand side of a constraint and
evaluating the right hand side extremal values by means of interval arithmetic.

Feasibility-based bounds tightening is trivially easy for the case of linear
constraints. Given linear constraints in the form l ≤ Ax ≤ u where A = (aij),
it can be shown that, for all 1 ≤ j ≤ n:

xj ∈
[

max

(

xL
j ,mini

(

1
aij

(

li −
∑

k 6=j

max(aikxL
k , aikxU

k )

)))

,

min

(

xU
j ,maxi

(

1
aij

(

ui −
∑

k 6=j

min(aikxL
k , aikxU

k )

)))]

if aij > 0

xj ∈
[

max

(

xL
j ,mini

(

1
aij

(

li −
∑

k 6=j

min(aikxL
k , aikxU

k )

)))

,

min

(

xU
j ,maxi

(

1
aij

(

ui −
∑

k 6=j

max(aikxL
k , aikxU

k )

)))]

if aij < 0.

As pointed out in [71] p.202, feasibility-based bounds tightening can also be
carried out for certain types of nonlinear constraints.

Choice of region

The region selection at step 2 follows the simple policy of choosing the region
in the list with the lowest lower objective function bound as the one which
is most promising for further consideration (recall that the lower bound l
calculated in each region is associated to the subregions after branching —
see step 7 of the sBB algorithm).
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Local solution of the original problem

The most computationally expensive step in the sBB algorithm is typically the
call to the local NLP solver to find the upper bound to the objective function
value relative to the current region. The two methods described below should
at least halve the number of upper bounding problems that are solved during
the sBB algorithm. Note that a distinction is made between the variables that
are present in the original NLP (“original variables”) and those added by the
standardization procedure (“added variables” — see Section 2.3).

1. Branching on added variables. Suppose that in the sBB algorithm an
added variable w is chosen as the branch variable. The current region
is then partitioned into two sub-regions along the w axis, the convex re-
laxations are modified to take the new variable ranges into account, and
lower bounds are found for each sub-region. The upper bounds, however,
are found by solving the original problem which is not dependent on the
added variables. Thus the same exact original problem is solved at least
three times in the course of the algorithm (i.e. once for the original re-
gion and once for each of its two sub-regions). The obvious solution is
for the algorithm to record the objective function upper bounds in each
region. Whenever the branch variable is an added variable, avoid solving
the original (upper bounding) problem and use the stored values instead.

2. Branching on original variables. Even when the branching occurs on an
original problem variable, there are some considerations that help avoid
solving local optimization problems unnecessarily. Suppose that the origi-
nal variable x is selected for branching in a certain region. Then its range
[xL, xU ] is partitioned into [xL, x′] and [x′, xU ]. If the solution of the upper
bounding problem in [xL, xU ] is x∗, and x∗ ∈ [xL, x′], then it is unneces-
sary to solve the upper bounding problem again in the sub-region [xL, x′]
as an upper bound is already available at x∗. Of course, the upper bound-
ing problem still needs to be solved for the other subregion [x′, xU ] (see
Fig. 9).

Branching

There are many branching strategies [18] available for use in spatial Branch-
and-Bound algorithms. Generally, branching involves two steps, namely deter-
mining the point (i.e. set of variable values) on which to branch, and finding
the variable whose domain is to be sub-divided by the branching operation.
Here, we use the solution x̃ of the upper bounding problem (step 4) as the
branching point, if such a solution is found; otherwise the solution of the
lower bounding problem x̄ (step 3) is used. We then use the standard form
to identify the nonlinear term with the largest error with respect to its con-
vex relaxation. By definition of the standard form (see Section 2.3), this is
equivalent to evaluating the defining constraints at x̄ and choosing the one
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x xL Ux* x’

Fig. 9. If the locally optimal solution in [xL, xU ] has already been determined to
be at x∗, solving in [xL, x′] is unnecessary.

giving rise to the largest error in absolute value. In case the chosen defining
constraint represents a unary operator, the only variable operand is chosen
as the branch variable; if it represents a binary operator, the branch variable
is chosen as the one whose value at the branching point is nearest to the
midpoint of its range (see [71], p. 205-207).

Generation of convex relaxation

As has been explained in Section 2.3, the automatic generation of the convex
relaxation entails putting the problem in standard form and then replacing
each nonlinear defining constraint with a linear convexification thereof.

The problem in standard form consists of:

• the objective function, consisting of one linearizing variable only (a defin-
ing constraint for this equation also exist in the problem, obviously);

• the linear constraints, represented by a matrix;
• the nonlinear constraints, represented by triplets of variable indices and

an operator label;
• the constraint bounds;
• the variable ranges;
• the variable values.

Since the nonlinear constraints are isolated in the form xi = xj⊗xk where
⊗ is an operator, they can be efficiently represented by the triplet (i, j, k) and
an operator label, Λ, which indicates what operator acts on xj , xk to produce
xi. If Λ is a unary operator, the index k is set to a dummy value representing
“not a variable”. If one of the operands is a constant, the respective variable
index is set to “not a variable” and the constant value should be stored in a
special purpose data field. If both operands are constants, the triplet can be
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evaluated and discarded. The result of the evaluation replaces all instances of
the variable with index i; this implies the elimination of the problem variable
with index i.

The procedure that transforms a problem in standard form is based on
the following steps:

1. copy original variable values and bounds, original constraint bounds and
linear constraint coefficients from the original problem to initialize the
respective standard form data structures;

2. add a constraint xi = objectivefunction to the problem (separating lin-
ear and nonlinear parts) and set i as the variable index representing the
objective function;

3. cycle over the original nonlinear parts of the constraints:
a) recursively split the nonlinear part of the current constraint into

triplets;
b) check if the current triplet already exists. If not, store it, otherwise

use the existing triplet and discard it;
4. store all linear triplets (i.e. all triplets where the operand is linear) as linear

constraints into the linear constraint matrix and then discard them;
5. eliminate the one-variable constraints (i.e. constraints where the algebraic

expression only consists of a one-variable term) and use the bounds to
update the respective variable range;

6. eliminate constraints of the form 0 ≤ xi − xj ≤ 0 and substitute the
variable xj by the variable xi throughout.

Note that the variable elimination schemes are applied to added variables
only. The original variables remain unchanged. This is an important issue as it
makes it easy to map original problem variables to relaxed problem variables
throughout the sBB execution.

Note also that when linear triplets are stored in the linear constraint ma-
trix, particular care should be taken that the minimum amount of new linear
constraints is added to the problem. This is best explained with an example.
Let w1 = w2 + w3, w4 = −w5 and w2 = w6 − w7; the first triplet is refor-
mulated as the linear constraint 0 ≤ w1 − w2 − w3 ≤ 0; the second triplet is
reformulated as a new linear constraint 0 ≤ w4 + w5 ≤ 0 because it is inde-
pendent of the first one. But the third triplet should not be reformulated as
a new constraint because w2 already appears in the first constraint. Instead,
w2 in the first constraint is replaced by w6−w7 and the variable w2 (if it does
not appear anywhere else in the problem) is eliminated.

The convexified problem can be described by the same data structure used
to represent the original problem. In ooOPS, because the implementation uses
linear relaxations only, the structure can be simplified by removing all refer-
ences to nonlinear expressions; also note that since the convexified problem
is actually of a different type to that of the original problem, it is stored in a
separate object instance. The convexification algorithm is as follows:
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1. copy variable bounds, constraint bounds and linear constraint matrix from
the problem in standard form;

2. cycle on the standard form triplets:
a) analyse the current triplet and add its convex envelope constraints to

the convexified problem.

Although the above process explained in this section involves quite a lot
of data copying between data structures, it is not in fact data replication as
the procedures operating on the structures may need to change some of the
copied values. The purpose of having different sets of copied values is to allow
for full code re-entrancy.

Region storage scheme

In abstract terms, a region in the sBB algorithm is a hypercube in Euclidean
space; thus, it is characterized by a list of n variable ranges. However, this
characterization means that, to store n variable ranges explicitly one must
allocate and manage memory of size 2n. This means that to create a new
region, we have to repeatedly copy 2n memory units from the old region to the
new one. Because the partitioning always acts on just one branch variable, all
of the other variable ranges would be copied unchanged. Furthermore, because
the partitioning always produces two subregions, the waste would be doubled.

In view of the above, we only store the new range for each child subregion
together with a pointer to the parent region in order to retrieve the other
ranges. This gives rise to a tree of regions where each node contains:

• a pointer to the parent region;
• the branch variable when the region was created;
• the branch variable range of this region;
• the branch point of the parent variable range (one of the endpoints of the

branch variable range, it indicates whether this is the “upper” region or
the “lower” region);

• the objective function lower and upper bounds;
• a flag that signals whether an upper bound is already available for the

region prior to calculation (see Section 7.3).

Starting from any particular region, we can derive the complete set of variable
bounds for it by ascending the tree via its parent. In order also to allow
traversing the tree in a downwards direction (see below), we add another
piece of information:

• pointers to the children subregions.

Also note that some of the regions in the list may be discarded from further
consideration at some point in the algorithm. However, we cannot just delete
the discarded regions from the tree because they hold information about the
variable ranges, so we need a discarding scheme which involves no actual
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deletion. This is very easy to accomplish with a boolean flag that indicates
whether a region is active or inactive (discarded):

• a flag that indicates whether the region is active or not.

Control flow in the sBB solver

This section refers to the control flow of the sBB solver in ooOPS (also see
Sections 3.4, 3.4). At the outset, we assume that the user code has created
an opssolvermanager for the sBB solver and an opssystem binding the sBB
solver and the problem. The list below starts after the Solve() method has
been called.

1. Creation of the opssolvermanager for the local solver that will be used
to solve the upper bounding problem.

2. Creation of an opssystem using the opssolvermanager just created and
the original problem.

3. Creation of the convexifiermanager acting on the original problem.
4. Generation of the convex (linear) relaxation. This is held in a modified

ops class object which only includes data structures for storing linear
objective function and coefficients.

5. Creation of the opssolvermanager for the local solver used to solve the
lower bounding problem.

6. Creation of the opssystem using the opssolvermanager just created and
the convex relaxation.

7. Iterative process:
a) Follow the sBB algorithm repeatedly calling the opssystem acting on

upper and lower bounding problems.
b) On changing the variable ranges update the lower bounding problem

on-the-fly (via the UpdateConvexVarBounds() method in the convex-
ifiermanager).

8. Deallocation of objects created by the global solver code.

8 Conclusion

In this paper we discussed various aspects of writing general-purpose global
optimization software. We first performed a literature review of existing global
optimization algorithms and existing global optimization software packages
targeted at solving problems in general form (1). The most important issue
is that of a sound software architecture and design, which makes it possi-
ble to implement very high-level algorithms (including those that call whole
sub-algorithms as black box procedures, and those based on symbolic ma-
nipulation of mathematical expressions) fairly easily. We suggested a possible
standard file format for describing MINLP problems in flat form. Various
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symbolic computation algorithms have been discussed. We then discussed lo-
cal solvers generally, and performed an in-depth analysis of the three global
solvers implemented within ooOPS.
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Summary. Integrated scientific-technical computing (ISTC) environments play an
increasing role in advanced systems modeling and optimization. MathOptimizer
Professional (MOP) has been recently developed to solve nonlinear optimization
problems formulated in the ISTC system Mathematica. We introduce this software
package, and review its key functionality and options. MOP is then used to solve
illustrative circle packing problems, including both well-frequented models and a
new (more difficult) model-class.

Key words: Integrated computing systems, Mathematica, LGO solver suite,
MathOptimizer Professional, circle packings, illustrative results.

1 Introduction

Operations Research (O.R.) provides a consistent quantitative framework and
techniques, to assist analysts and decision-makers in finding “good” (feasible)
or “best” (optimal) solutions in a large variety of contexts. For an overview
of prominent O.R. application areas, consult e.g. the 50th anniversary issue
of the journal Operations Research (2002).

A formal procedure aimed at finding optimized decisions consists of the
following key steps.

• Conceptual description of the decision problem at a suitable level of ab-
straction that retains all essential attributes, but omits secondary details
and circumstances.

• Development of a quantitative model that captures the key elements of
the decision problem, in terms of decision variables and functional rela-
tionships among them.

• Development and/or adaptation of an algorithmic solution procedure, in
order to explore the set of feasible solutions, and to select the best decision.
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• Numerical solution of the model and its verification; interpretation and
summary of results.

• Posterior analysis and implementation of the decision(s) selected.

The problems tackled by O.R. are often so complex that the correct model
and solution procedure may not be clear at the beginning. Therefore, deci-
sion makers often must carry out the steps outlined above in an iterative
fashion. The analyst repeatedly modifies and refines the model formulation
and solution procedure until the model captures the essence of the problem,
is computationally tractable, and its numerical solution is applicable in the
context of the problem studied.

These considerations make a strong case for using high-level, integrated
software tools that can effectively assist in performing all related tasks in
a unified framework. This point is particularly valid in modeling nonlinear
systems, since their analysis may involve the evaluation of computationally
intensive functions, visualization, animation, and so on.

Maple (Maplesoft, 2004a), Mathematica (Wolfram Research, 2004), and
Matlab (MathWorks, 2004) are prominent, fully integrated scientific-technical
computing systems. The capabilities and range of applications of these soft-
ware products and related application packages are documented in software
manuals, hundreds of books, and many thousands of articles and presenta-
tions. The current user base of ISTC systems is several million people world-
wide.

A concise list of the most significant features and capabilities of ISTC
environments includes the following (note that each feature listed below is
currently supported by at least one – and sometimes by all – of the three
ISTC systems mentioned):

• A broad range of simple and advanced computations with high – or even
with arbitrarily high, adjustable – precision

• Support for symbolic calculations
• Extensive set of readily available functions, from programming language

standards to special functions and general-purpose, complete numerical
procedures (examples of the latter are integration routines, differential
equation solvers, and numerical optimization routines)

• Context-specific “point and click” (essentially syntax-free) operations via
GUI elements that help to execute various tasks

• Support for concise, transparent code development and maintenance
• Support for several programming styles (procedural, functional, and rule-

based paradigms)
• Full programmability (i.e., extendibility by adding new functionality)
• Posterior analysis and implementation of the decision(s) selected
• Advanced technical documentation, desktop publishing, and presentation

features
• Interactive and multimedia tools (in-situ evaluation, visualization, anima-

tion, sound)
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• Built-in, fully integrated help system that includes portable application
examples

• Automatic code generation from a given ISTC language to more “tra-
ditional, lower-level” programming languages (such as Basic, C, Fortran,
Java, and so on)

• Automatic conversions of ISTC system documents to tex, html, xml, ps,
pdf (and possibly other) file formats

• Direct links to external application packages, to other software products,
and to the Internet

• Portability across a broad range of hardware platforms and operating sys-
tems (such as e.g., Windows, Macintosh, Linux, and Unix versions).

Many of these features can be effectively used during the various stages of
developing O.R. applications. In particular, data analysis, model formulation,
solution strategy and algorithm development, numerical solution, and project
documentation can all be put together from the beginning – even in a single
unified work document, if the developer wishes to do so. Hence, ISTC environ-
ments can increasingly provide a “one-stop” solution, to meet a broad range of
needs of researchers, educators and students. This tendency has been receiv-
ing growing attention also in the O.R. community: for example, Mathematica
has been recently reviewed in ORMS Today (Sodhi, 2003).

We emphasize here that, although all modeling and computational envi-
ronments – from Excel spreadsheets, through optimization-specific algebraic
modeling languages (such as AIMMS, AMPL, GAMS, LINGO, MPL, and
others) to the more general-purpose computing (ISTC) systems – may have
a lower program execution speed when compared to a compiled “pure num-
ber crunching” system, the overall application development time can often
be massively reduced by using higher-level systems, especially when develop-
ment can be started from scratch. It is instructive to recall in this context the
debate that surrounded the early development of programming languages –
such as Algol, Basic, C, Fortran, Pascal, etc. – as opposed to machine-level
assembly programming.

Within the broad category of modeling and optimization problems, we
see particularly strong application potentials for ISTC systems in studying
nonlinear systems. For discussions of nonlinear system models and a broad
range of their applications, consult e.g. Aris (1999), Bazaraa, Sherali, and
Shetty (1993), Beltrami (1993), Bertsekas (1999), Bracken and McCormick
(1968), Chong and Zak (2001), Diwekar (2003), Edgar, Himmelblau and Las-
don (2001), Gershenfeld (1999), Grossmann (1996), Hansen and Jørgensen
(1991), Hillier and Lieberman (2005), Kampas and Pintér (2005), Murray
(1983), Papalambros and Wilde (2000), Pardalos, Shalloway, and Xue (1996),
Parlar (2000), Pearson (1986), Pintér (1996, 2005), Rich (1973), Schittkowski
(2002), Tawarmalani and Sahinidis (2002), Wilson, Turcotte and Halpern
(2003), Zabinsky (2003), and Zwillinger (1989).



DRAFT

266 János D. Pintér and Frank J. Kampas

2 Global Optimization

As the books listed above well illustrate, nonlinearity is literally ubiquitous in
the development (and modeling) of objects, formations and processes, includ-
ing also living organisms of all scales, as well as various man-made systems.
Decision-making (optimization) models that incorporate such a nonlinear sys-
tem description frequently lead to complex problems that may or provably do
have multiple - local and global - optima. The objective of global optimiza-
tion (GO) is to find the “absolutely best” solution of nonlinear optimization
models under such circumstances.

In order to formalize the general global optimization paradigm considered
here, we shall use the following notation:

• x decision vector, an element of the real Euclidean n-space Rn

• f(x) objective function, f : Rn → R
• D non-empty set of admissible decisions.

The set D is defined by

• xl, xu : explicit, finite bounds of x (an embedding “box” in Rn)
• g(x): m-vector of constraint functions, g : Rn → Rm

Applying the notation given above, the GO model can be stated as

min f(x) x ∈ D = {x | xl ≤ x ≤ xu ∧ g(x) ≤ 0}. (1)

Note that in (1) all inequalities are interpreted component-wise. Under fairly
general analytical conditions, the GO model (1) has a global solution (set).
(For example, if D is non-empty, and f , g are continuous functions, then
the model has a non-empty set of global solutions X∗). Note that –although
we know that X∗ exists – if we use “traditional” local scope optimization
strategies, then – depending on the starting point of the search – we will
find only the corresponding locally optimal solution. In order to find – i.e.,
to properly approximate) – the “true” solution, a genuine global scope search
effort is needed.

Global optimization is of great theoretical and practical importance, with
significant existing and prospective applications. As of today (2004), a few
hundred books, thousands of articles and dozens of web sites are devoted to
the subject. For detailed discussions of the most prominent GO model types
and solution approaches, consult, for example, Horst and Pardalos (1995),
and Pardalos and Romeijn (2002), visit also Neumaier (2004). Among the
earlier cited books on nonlinear systems models and optimization, e.g. Gross-
mann (1996), Kampas and Pintér (2005), Pardalos, Shalloway and Xue (1996),
Pintér (1996, 2005), Tawarmalani and Sahinidis (2002), Zabinsky (2003) – as
well as many others – discuss nonlinear models and real-world applications
which require a global solution approach.
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3 LGO Solver Suite

The LGO (Lipschitz Global Optimizer) software package serves to find – i.e.,
to numerically approximate – global and local solutions to nonlinear opti-
mization models. The current LGO implementation incorporates the following
solver modules:

• Branch-and-bound global search method (BB)
• Global adaptive random search (single-start) (GARS)
• Multi-start based global random search (MS)
• Constrained local search (LS) by the reduced gradient method

All three global search methods will generate one (BB, GARS) or several (MS)
approximations of the global optimizer point(s), before LGO is automatically
switched to local search. The LS option can also be used in stand-alone mode,
when started from a user-supplied initial point.

For theoretical details of the underlying global search methodology, consult
Pintér (1996). The LS approach used is discussed in numerous textbooks: see
for instance, Edgar et al. (2001). The LGO software system itself has been
discussed in books and articles: consult e.g., Pintér, 2001, 2002, 2004, and
the peer review by Benson and Sun, 2000. Therefore here we provide only a
brief summary of the solver components. (Since LGO is a commercial software
product, many of the implementation details will be omitted.)

The BB module is based on a theoretically established (rigorous) global
optimization approach. BB combines set partition steps with deterministic
and randomized sampling: this combination also enables a statistical bounding
procedure. Note, however, the program runtimes can be expected to grow
fast(er) for higher-dimensional and more difficult models, if we want to find a
close approximation of the global solution solely by BB. (A similar comment
applies also to all other theoretically rigorous global search methods.)

Pure random search is a very simple, “folklore” approach to global opti-
mization that converges to the global solution (set) with probability 1. GARS
is an improvement over that passive search approach in the sense that it adap-
tively attempts to focus the global search effort in the region which – on the
basis of the actual sample results – is estimated to contain the global solution
point (or, in general, one of these points).

Multi-start (MS) based global search applies a similar search strategy
to GARS; however, the total sampling effort is distributed among several
searches. Each of these leads to a “promising” starting point for subsequent
local search. Typically, this approach takes the most computational effort (due
to its multiple local searches); however – especially in more difficult models –
it often finds the best numerical solution (Pintér, 2003).

In all global search modes an exact penalty (merit) function serves to
aggregate the objective and constraint functions. Obviously, this assumes that
the model functions are “acceptably” scaled. (A constraint penalty parameter
can be adjusted via an LGO solver options file, to assist scaling.)
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Ideally – and also in many actual model-instances – all three global search
methods will give the same answer, except perhaps small numerical differ-
ences. In practice, especially when solving more difficult problems, the LGO
user may wish to try all three global search options (in conjunction with the
subsequent local search), to see which method gives the best results.

The local search (LS) component is based on the generalized reduced gra-
dient (GRG) algorithm. In general, this search strategy is “only” locally con-
vergent: therefore its use is recommended following one of the global searches,
except in local optimization contexts. The application of LS, as a rule, re-
sults in a solution that is feasible and satisfies the Karush-Kuhn-Tucker local
optimality conditions.

The solver suite approach – based on three different global solvers –
supports the robust and efficient numerical solution of nonlinear models. The
entirely derivative-free methods implemented in LGO enable the handling of
merely computable model functions: this is of particular relevance with respect
to applications, in which higher order (gradient, Hessian, etc.) information is
impossible, difficult, or too costly to obtain. LGO can be used even to handle
“black box” models provided (only) as object files, dynamic link libraries, or
executable programs.

The LGO solver suite is currently available for C and Fortran compiler
platforms, with customized links to Excel, GAMS, Maple, Mathematica and
Matlab (via TOMLAB). For specific descriptions of the versions not discussed
here, see e.g. Frontline Systems and Pintér Consulting Services (2001), GAMS
Development Corporation and Pintér Consulting Services (2003), Maplesoft
(2004b), TOMLAB Optimization Inc. and Pintér Consulting Services (2004).
LGO is also offered – in a demo (size-limited) version – with the latest edition
of the classical O.R. textbook by Hillier and Lieberman (2005). LGO, in its
various implementations, has been used in commercial applications, as well as
in a variety of research and educational environments for more than a decade.

4 Mathoptimizer Professional

The MathOptimizer Professional software product is based on an external
LGO solver implementation that is seamlessly linked to the Mathematica
platform. In other words, MathOptimizer Professional offers a combination
of Mathematica’ s sophisticated application development tools with core LGO
solver functionality. This leads to a numerical performance that – in terms
of both solution quality and solver speed – is comparable to other (compiler-
based or optimization modeling language-related) LGO implementations, es-
pecially when models are more difficult and/or computationally intensive. In
this section, we review the key features of MOP. Further details and an exten-
sive list of practically motivated examples are discussed in the user manual
(Pintér and Kampas, 2003), as well as in our forthcoming book (Kampas and
Pintér, 2005).
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The functionality of MOP can be summarized by the following steps:

• Optimization model formulation, in a Mathematica document (notebook)
• Automatic export and translation of the model into C or Fortran code
• Compilation of the generated code into a dynamic link library (DLL)
• Call to the external LGO engine: the latter is a “ready-made” executable

program that is now linked to the model-dependent DLL
• Automatic model solution and report generation by LGO
• Import and display of results into the calling Mathematica notebook.

We refer to the approximately 150-page (printed) manual for further details.
It should be noted that the approach outlined supports automatically

“only” the solution of models defined by Mathematica functions that can
be directly converted into (C or Fortran) program code. This, however, still
allows the handling of a fairly broad range of continuous nonlinear optimiza-
tion models (including, of course, all models that could be directly written in
C or Fortran). Other implementations (with extended functionality) are also
possible.

One “side benefit” of using MOP is that models built in Mathematica can
be directly used to generate corresponding C or Fortran test models. This is
particularly advantageous in case of larger model-instances.

MathOptimizer Professional (MOP) – and its solver function callLGO –
is launched by the Mathematica statement

Needs["MathOptimizerPro‘callLGO‘"];

The basic functionality of callLGO can be queried by the following Math-
ematica statement: see the auto-generated reply immediately below. (The for-
mat of this reply is slightly edited for the present purposes.)

?callLGO

callLGO[obj_, cons_List, varswithbounds_List, opts___]:

obj is the objective function,

cons is a list of the constraints,

varswithbounds are the variables and their bounds in the format

{{variable, lower bound, initial value for local search, upper

bound...} or {{variable, lower bound, upper bound}...}.

Function return is the value of the objective function, a list of

rules giving the solution, and the maximum constraint violation.

See Options[callLGO] for the options and also see the usage statements

of the various options for their possible values. For example, enter

?Method for the possible settings of the Method option.

Table 1 summarizes the current callLGO option list, with added notes. All
options can be changed by users, following MOP specifications.

As indicated above, callLGO is activated by a statement of the form
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Option name and default setting Additional notes

ShowSummary→False Display (or not) LGO report file
Method→MSLS Alternatives: BBLS, GARSLS, LS
MaxEvals → ProblemDetermined Global search effort, set by default

to 1000(n + m) (global search phase
stopping criterion)

MaxNoImprov→ProblemDetermined Global search effort without sufficient
improvement, set by default to
200(n + m) (global stopping criterion)

PenaltyMul→1 Penalty multiplier
ModelName→LGO Model Model-dependent name

(can be chosen by user)
DllCompiler→BC Supported compilers: Borland C,

Lahey Fortran, Microsoft C,
Salford Fortran

ShowLGOInputs→False Display (or not) LGO input files
LGORandomSeed→0 Set internally (can be reset by user)
TimeLimit→300 Seconds (global search phase

stopping criterion)
TOBJFGL→-1000000 Target objective function value in

global search phase (global search
phase stopping criterion)

TOBJFL→-1000000 Target objective function value in
local search phase (local search phase
stopping criterion)

MFPI→ 10−6 Merit function precision improvement
tolerance (local search phase
stopping criterion)

CVT→ 10−6 Accepted constraint violation tolerance
(local search phase stopping criterion)

KTT→ 10−6 Kuhn-Tucker condition tolerance
(local search phase stopping criterion)

Table 1. MathOptimizer Professional: callLGO options.

callLGO[f,{g},{x,xl,xn,xu}, options]

Here the notations f, g, x, xl and xu directly correspond to the symbols
defined in (1). In addition, xn (xl≤xn≤xu) is a user-supplied nominal solu-
tion — or a default setting, if xn is absent — that is used by LGO in its
initial local search mode; finally, options denotes the calling parameters of
the function callLGO.

The following simple example serves to illustrate the basic MOP function-
ality, as it appears to the user in default mode. Consider the model

min x2 + 2y2; x + y ≥ 1; −2 ≤ x ≤ 2; −2 ≤ y ≤ 2.

This optimization problem is solved by the next Mathematica statement that
leads to the answer shown immediately below:
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callLGO[x^2+2*y^2,{x+y>=1},{{x,-2,0,2},{y,-2,0,2}}]
The answer received is a Mathematica list (as shown by the curly braces

and comma separators):
{0.6666666666666666, {x --> 0.6666666667,

y --> 0.3333333333}, 5.551115123125783*^-17}
Here the first list element is the optimal objective function value found,

followed by the list of corresponding variable assignments, and the maximal
constraint violation at the solution point. (More details are shown automati-
cally in the generated LGO report that can also be displayed in the notebook.)
An extensive set of interesting GO challenges and practically motivated nu-
merical examples are discussed also in the MOP User Guide.

In the numerical examples discussed here Mathematica versions 5.01 or 5.1
are used in conjunction with the Microsoft Visual C/C++ (MSVC, version
6.0) or the Salford FORTRAN 95 (FTN95) compiler. Furthermore, in all cases
Pentium 4 processor based machines running under Microsoft Windows XP
Professional version are used. Let us also note here that the RAM requirements
of MOP per se are rather modest, at least for small or mid-size models; e.g., a
personal computer with 256 MB RAM is certainly adequate to handle MOP
models with up to (at least) 1000 variables and 1000 constraints. In principle,
arbitrarily large models can be handled using virtual memory, given sufficient
hard drive space and time.

5 Illustrative applications: solving sphere packing models

Object packing models are aimed at finding the best non-overlapping arrange-
ment of a set of objects in a container object. This general modeling paradigm
can be specified in many ways, leading to interesting – and typically quite dif-
ficult – models. In addition to a more theoretical interest directed towards spe-
cific, analytically tractable problem-instances, there is also an obvious practi-
cal motivation to solve packing models.

In our recent and ongoing studies, we have found that this general model-
class can be used to test and benchmark global optimization software. Several
special cases and model-instances will be discussed below, to illustrate the
potentials of numerical global optimization in solving object packing problems.

5.1 Packing Identical Size Circles in the Unit Square

The problem can be stated as follows: given the unit square and a positive
integer k, find the maximal radius r of k identical circles that can be placed
into the square, without overlaps (evidently, r = r(k)).

This problem, as well as some other related circle packing models, has
become a fascinating subject for both professional researchers and amateurs,
at least in recent decades. There exists a significant body of literature (books,
articles, dissertations, and web sites) discussing uniform circle packings. This
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information available includes proofs (only) for a small number of special
cases (namely, for k=2,. . . ,9, 14, 16, 25, and 36 circles), or computer aided
optimality proofs, with guaranteed bounds (for up to k=30). In many other
cases, only “best known” constructions are known.

To illustrate some rigorous bounding results, Csendes and his colleagues
have applied interval arithmetic based GO methodology to prove bounds for
best circle packings. The websites of Csendes (2004) and Markót (2004) list
their related publications.

Referring to the general case, Graham noted in an interview (Albers, 1996)
that he does not expect to know the true (i.e., proven optimal) solution for
placing 1000 equal size circles in the unit square. The reason for his “learned
skepticism” is that there is no unifying theory, and that intuition may fail:
for example, in the k=49-circle case the seemingly obvious “seven-by-seven”
configuration is not optimal, consult e.g. Specht (2004).

Without going into further details regarding this area of research, let us
mention the thesis of Melissen (1997): he provides a detailed review of uniform
circle packing model statements and key analytical results, with more than
350 topical references. The website of Specht (2004) is another rich source of
information related to uniform size circle packings (in the unit square, the unit
circle, and in rectangles): the site also includes references. We will compare our
numerical results to those listed at this website as best (proved or postulated).

We also wish to emphasize that our sole purpose here is to illustrate the ap-
plicability of numerical global optimization (specifically, of LGO and thereby
of MathOptimizer Professional) to difficult packing models, even without spec-
ifying or postulating any prior structure. More extensive studies should be
based on more detailed and sophisticated modeling than what we are present-
ing here. We will cite only some of our existing numerical results: more details
are available upon request, and will appear elsewhere.

Let us denote by ci=(xi yi) the center of circle i =1,. . . ,k: the coordinate
pairs (xi yi) and the radius r of these circles are the decision variables. The
constraint that the circles i and j do not overlap means that the sum of their
radii is less than the distance between the centers:

||ci − cj || ≥ 2r (2)

here ||ci − cj || =
√

(xi − xj)2 + (yi − yj)2 for each 1 ≤ i < j ≤ k.
Note that each instance of the inequality in (2) is a non-convex constraint

(since the norm function is convex). For k-circle configurations, we have k(k−
1)/2 such constraints.

We shall consider the unit square that is centered at the origin. Additional
constraints postulate that the circles are inside the enclosing square. These
are derived from simple geometrical considerations; a possible formulation is:

|xi|+ r ≤ 0.5 ∧ |yi|+ r ≤ 0.5 for 1 ≤ i ≤ k. (3)

This way, in addition to the non-convex constraints we have 2k non-linear
convex constraints. (Alternative formulations are also possible, e.g. by replac-
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ing the latter constraints by linear ones. However, we have been using the
constraints (3) in our numerical experiments.). Under the conditions (2)-(3),
our objective is to

max r. (4)

We have developed a Mathematica model (a function) that is directly based
on relations (2)-(4). This function is parameterized by the number of circles:
therefore inserting a positive integer value k in the function provides the cor-
responding k-circle model instance. As noted earlier, MathOptimizer Profes-
sional automatically translates this Mathematica model to C or Fortran form,
and then the external LGO solver is invoked to solve it. For illustration, the
20-circle solution found is shown in Fig. 1.

Fig. 1. Packing 20 uniform size circles in the unit square.

Note that this figure is directly imported from the Mathematica notebook
document where the model formulation and all calculations have also been
done. The optimized value of the circle radius r = r(20) found by MOP is
r ∼ 0.1113823476.

The radius found agrees well (to about 10−10 absolute precision) with
the value 0.111382347512 posted at http://www.packomania.com. Note that
such — arguably minor — imprecision can be due to several factors: one
of the significant factors is that LGO applies central finite-difference based
gradient approximation in its local search phase. This adds some error to that
of standard floating point precision calculations.

The computer used to solve this example has a 3.2 GHz Pentium 4 pro-
cessor and is running Windows XP; we used the Salford Fortran 95 compiler
(Salford Software, 2004). The corresponding runtime is about 19 seconds. Note
that runtimes may change slightly even when repeating the same run, due to
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hardware and OS status changes: however, the timing cited gives an impres-
sion of the MOP solver speed. (LGO per se runs faster, of course.) Recall
that the 20-circle model instance of (2)-(4) has 41 decision variables, and 230
nonlinear constraints of which 190 are non-convex. Further detailed numerical
results will appear e.g. in our forthcoming book (Kampas and Pintér, 2005).

5.2 Packing Identical Size Circles in the Unit Circle

This problem can be stated as follows: given the unit circle and a positive
integer k, find the maximal radius r = r(k) of k identical circles that can be
placed into the circle, without overlaps.

Applying straightforward modifications of model (2)-(4), the adapted
model can be written as

max r (5)

||ci − cj || ≥ 2r 1 ≤ i < j ≤ k (6)

r + ||ci|| ≤ 1 1 ≤ i ≤ k. (7)

As above, ||ci − cj || =
√

(xi − xj)2 + (yi − yj)2 and ||ci|| =
√

x2
i + y2

i . This
model has 2k+1 decision variables, k convex nonlinear constraints, and k(k-
1)/2 non-convex constraints.

For illustration, we cite the solution of the 20-circle model instance (that
has 41 decision variables and 210 constraints of which again 190 are non-
convex). Fig. 2 shows the configuration obtained.

Fig. 2. Packing 20 uniform size circles in the unit circle.

The radius r = r(20) found by MOP in this example equals 0.1952240114.
This value agrees to at least 10−9 absolute precision with the best known result
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cited at www.packomania.com (0.1952240110...) The corresponding runtime
is approximately 43 seconds, on the same computer as mentioned above.

5.3 Packing Non-Uniform Size Circles in an Optimized Circle

In this section, we introduce a new class of object packing models. Our ob-
jective is to find the minimal size circle that contains a given non-overlapping
circle configuration that is made up by (in principle, arbitrary size) circles.
To our best knowledge, this model has not been studied before by others in a
GO setting: we also think that such models can be significantly more difficult
than the more specific cases discussed in the preceding two sections.

We shall denote by ri the radius of circle i for i=1,. . . , k. With a straight-
forward generalization of (5)-(7), we obtain the following model:

min r (8)

||ci − cj || ≥ ri + rj 1 ≤ i < j ≤ k (9)

ri + ||ci|| ≤ r 1 ≤ i ≤ k. (10)

Notice that now r is the unknown radius of the circumscribing circle that is
minimized: its value depends on the set of circle radii {ri}. Similarly to (5)-(7),
model (8)-(10) has 2k+1 decision variables, k convex nonlinear constraints,
and k(k − 1)/2 non-convex constraints.

To illustrate this model, in the last numerical example presented here we

will pack circles of radius ri =
√

1
i for i = 1, . . . , k into a circumscribing

circle. Notice that in this case the total area of the embedded circles is slowly
divergent as k goes to infinity: therefore the optimized radius also will be
unbounded as a function of k (packings with bounded total area may also be
of interest, of course). Fig. 3 shows the optimized circle arrangement found
for k=20.

The radius of the circumscribing circle r = r(20) in this case approximately
equals 2.12545. The corresponding runtime is about 47 seconds, on the ma-
chine mentioned before. Comparing this runtime with the previous one (that
was 43 seconds for packing 20 identical size circles) one can see that MOP (i.e.,
LGO) handles the more general model with fairly little extra computational
effort.

Although obviously all numerical test results depend also on certain solver
parameterizations, we think that the examples presented indicate the capa-
bilities and potentials of MOP. (The same default solver settings were used in
all examples reviewed here, without any “tweaking”.)

Let us remark finally that we have attempted to solve a large variety
of circle packing model instances using also other “general purpose” com-
mercial optimization software products (and applying all solver options with
default settings, the same way MOP was used). The solvers tested specifically
included Mathematica’s built-in constrained optimization function (NMini-
mize), and several third party packages. Our comparative results consistently
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Fig. 3. Packing 20 uniform size circles in the unit circle.

have demonstrated the relative strength and efficiency of MOP, both in terms
of solution quality and runtime. These results will appear in a forthcoming
paper, as well as in Kampas and Pintér (2005).

6 Conclusions

In addition to perhaps more “traditional” development environments –such
as compiler platforms, spreadsheets, and algebraic modeling languages – in-
tegrated scientific-technical computing systems will play an increasing role in
advanced systems modeling and optimization.

In order to meet related user demands, MathOptimizer Professional has
been recently developed to handle nonlinear optimization problems formulated
in Mathematica. MOP operations are based on an easy-to-use Mathematica
interface to the LGO solver suite. Following a brief introduction to the key
features of MathOptimizer Professional, we illustrate its usage by solving rel-
atively small, yet non-trivial circle packing problems. More detailed numerical
results and comparative assessments will appear elsewhere.

For over a decade, the core LGO solver suite has been applied in a large
variety of research and professional contexts: consult, e.g., Pintér (1996, 2001,
2002, 2003, 2004, 2005), with numerous further references to such applica-
tions. In recent years, LGO has become a solver engine option available for
use with an increasing number of modeling environments. Currently these
include essentially “all” C and Fortran compilers, Excel spreadsheets, the
GAMS modeling language, and the integrated scientific-technical computing
systems Maple, Mathematica and MATLAB. (Further similar development
is in progress.) The current LGO implementations have been used to solve
models in up to a few thousand variables and constraints. We expect that
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MathOptimizer Professional will enable the solution of sizable, sophisticated
Mathematica models with efficiency comparable to that of compiler platform
based nonlinear solvers.
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Summary. The AutoGraphiX (AGX) system for computer assisted or, for some
of its functions, fully automated graph theory was developed at GERAD, Montreal
since 1997. We report here on a new version (AGX 2) of that system. It contains
many enhancements, as well as a new function for automated proof of simple propo-
sitions. Among other results, AGX 2 led to several hundred new conjectures, ranking
from easy ones, proved automatically, to others requiring longer unassisted or par-
tially assisted proofs, to open ones. Many examples are given, illustrating AGX 2’s
functions and the results obtained.

Key words: Graph theory, automated system, computer-assisted, AGX, au-
tomated proof, conjecture, refutation.

1 Introduction

Computers have been extensively used in graph theory and its applications
to various fields since the fifties of the last century. The main use was compu-
tation of the values of graph invariants, i.e., quantities such as the indepen-
dence and chromatic numbers, the radius or the diameter of a graph, which
do not depend on the labelling of its vertices or edges. In addition to such
tasks of intelligent number-crunching (which imply the design of exact algo-
rithms or heuristics as well as their efficient implementation with well-chosen
data-structures [34, 35, 40, 41]), computers can also be used for graph drawing
[17, 18] and for advancing the theory itself, i.e., finding in a computer-assisted
or sometimes fully automated way conjectures, proofs and refutations. See [27]
for a survey and discussion of systems designed for that purpose, focussed on
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the operational systems Graph [14, 15], Graffiti [22, 23] and AutoGraphiX
[10, 11], as well as the forthcoming book Graphs and Discovery [24], in par-
ticular chapters 4, 5, 6, 9 and 10 which discuss those systems. The systems
VEGA [38], Graph Theorist [19, 20, 21] and HR [12] are also relevant (al-
though the last one is more often applied to algebra and number theory).
The AutoGraphiX (AGX) system was developed at GERAD, Montreal since
1997. It addresses the following problems:

(i) Find a graph G satisfying given constraints;
(ii) Find a graph G maximizing or minimizing a given invariant, possibly

subject to constraints;
(iii) Find a conjecture, which may be algebraic, i.e., a relation between graph

invariants, or structural, i.e., a characterization of extremal graphs for
some invariant;

(iv) Corroborate, refute and/or strengthen or repair a conjecture;
(v) Suggest ideas of proof.

The AGX system was first described in [10]; three ways it uses to fully auto-
mate conjecture making are presented in [11]. Applications to graph theory are
given in [1, 6, 16, 29]; applications to chemical graph theory in [7, 8, 25, 30, 31],
and developments of these results in [9, 26].
AGX was enriched in various ways over the years. It appeared however that
a new version, in C++, comprising a series of enhancements and some new
features should be written. A main goal was to follow closely the way a graph
theorist proceeds with his work, both in the discovery of new conjectures and
in the proof or refutation of them. As explained below, this makes various
tasks much more efficient and points the way towards obtaining first suc-
cesses in other ones such as automated proof in graph theory.
The main ideas behind AGX are that
(i) all problems listed above can be expressed as parametric constrained op-
timization ones on an infinite family of graphs, and
(ii) a generic heuristic can be used for solving all of them. More precisely,
letting i(G) denote an invariant of G, or a formula involving several invari-
ants which is itself an invariant, Gn the set of all graphs with n vertices, Gn,m

the set of all graphs with n vertices and m edges, one solves heuristically the
problem

Min/Max{i(G), G ∈ Gn} or Min/Max{i(G), G ∈ Gn,m}.

In practice only moderate values of n and m will be considered. In this paper
we report on AGX 2, the new version of AGX which results from work done
in the three last years. The paper is organized as follows: interactive features
of AGX 2 are described and illustrated in a series of figures in the next sec-
tion. The algebraic structure of AGX 2 is presented in Section 3, together
with lists of currently available invariants and operators. A new optimization
routine is explained in Section 4. Ways to solve the five problems listed above
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are detailed in Section 5. A new feature, i.e., a routine for automated proof
of simple conjecture is presented in Section 6. Examples illustrating various
types of results obtained are given in section 7. Brief conclusions are given in
Section 8.
In order to test extensively AGX 2, we selected a form of problem of rea-
sonable difficulty, i.e., we consider problems which lead to some very easy
conjectures, more complex ones needing a few pages of proof, as well as some
open conjectures which we are, up to now, unable to prove. We adopted the
following AGX form:
For all connected graphs G = (V,E) with n = |V |, find conjectures of the
form

l(n) ≤ i1(G)⊕ i2(G) ≤ u(n) (1)

where i1(G) and i2(G) are invariants;⊕ is one of the four operations +,−,×, /;
l(n) and u(n) are lower and upper bounding functions of the order n of G
which are best possible, i.e., such that for each value of n (except possibly
very small ones where border effects appear) there is a graph G for which the
bound is tight.
Note that this form extends that of the well-known Nordhaus-Gaddum [37]
relations in that
• i1(G) and i2(G) are two different invariants instead of i2(G) being equal
to i1(Ḡ), where Ḡ is the complementary graph of G (in which an edge joins
vertices u and v if and only if no edge does so in G);
• operations − and / are considered in addition to + and ×;
• it is required that the relations be best possible (instead of this being only
desirable).

Over 700 conjectures or observations (i.e., results proved by the system) have
been obtained by AGX 2 in a fully automated way and it is not hard to obtain
many more. Several examples given below have the form (1).

2 AGX 2 Interactive Functions

This section describes the interactive functions of AGX 2, from the syntax of
the problem to the analysis of results.

Control center

When launching AGX 2, using the command “AGX 2”, a dialogue box appears
(Figure 1). It contains a list of problems (defined by the user) and a set of
buttons, each representing a function (Optimize single, Optimize batch, View
results...).



DRAFT

284 Aouchiche et al.

Fig. 1. AGX 2 Control Center

Fig. 2. Problem structure (left) and optimization parameters (right)

Editing a problem

An AGX 2 problem file (see Figure 2) is a “.def” file, edited first using a text
editor such as Nedit or Emacs. Instructions begin with the keyword Begin and
end with End. We may also add comments before Begin or after End. The
components of the problem file are:
• Define: An optional part that enable us to define a new invariant using
existing ones and predefined operations (we can get the list of all existing
invariants and all possible operations using the View Documentation button).
The keyword Define is followed by the name of the invariant and then the
expression of its definition (in Figure 2 LL is the second smallest eigenvalue of
the Laplacian matrix). In order to avoid runtime errors, names must not: (i)
be any reserved word such as a function name (SQRT or LOG for example)
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or an invariant name, (ii) end by the sequence “BAR” as it is reserved to
the computation of an invariant for the complementary graph, (iii) contain
any non-alphanumeric character as this may induce errors in the latex report
generation or in the syntax analysis of expressions.
• Parameters: Names of the problem parameters.
• InitialGraph: Any optimization process needs an initial solution; AGX 2
needs an initial graph. InitialGraph is followed by the keyword corresponding
to the initial graph (we can get the list of all possible graphs using the View
Documentation button). In Figure 2 (left), the initial graph is a star on n (a
parameter) vertices.
• Minimize or Maximize followed by the expression of the objective function.
In Figure 2, the objective is to maximize LL − LLBAR (the algebraic con-
nectivity, second smallest eigenvalue of the Laplacian matrix, of a graph G
minus the algebraic connectivity of the complement of G).
• Constraint (optional) followed by a list of constraints (with a constant and
a linear penalty for violation) ending with “;”. In the present example the
constraints are the values of n and m and RADIUS <= ORDER which
imposes the connectedness of G.

Fig. 3. Optimization single (left) and optimization batch (right)

Optimization parameters

Before starting the optimization process (which will be described in details in
Section 4), we can modify parameters of the Variable Neighborhood Search
optimization heuristic by pressing the Modify Optimization params button.
When the window on the right in Figure 2 appears, we can modify the min-
imum (VnsMin) or the maximum (VnsMax) size of a perturbation, the per-
turbation increment (VnsStep), the number of trials before incrementation
(VnsTry), the maximum time allowed for the optimization (VnsMaxTime),
the time without improvement of the solution (VnsMaxTimeWithoutImprove-
ment) or VnsBound, that is used when refuting conjectures (the program stops
if a counter-example is generated; if you do not want to use this feature, simply
set VnsBound to 100000000).
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Fig. 4. List of graphs related to the problem (top) and a graph (bottom)

Optimization

Once the optimization parameters are set, we can optimize in two ways. The
first one is by giving a single value for each parameter in the window (Figure 3,
left) that we get when pressing the Optimize single button. An alternative to
this option is to enter the command line “xagx -opt prob param1 param2”,
where “prob” is the problem name and “param1 param2” are the current
values of the problem parameters (here two). The second option is to specify
a range of values for each parameter in the window that appears when pressing
the Optimize batch button (Figure 3, right).

Fig. 5. To get a better visualization of the graph we can choose a node coloration
(right bottom), edge highlighting (left) and vertex labelling (right top)
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View graphs

When we press the View graphs button, the list (Figure 4, top) of all available
graphs corresponding to the selected problem is displayed. We just have to
select the desired graph and press Launch to display it (Figure 4, bottom),
and then modify it interactively if needed (possible modifications are described
below).

Fig. 6. Display matrices (right, top) and vectors (right, bottom)

Interactive mode

In addition to loading an existing graph (that is a result of the optimization
process), we can generate or draw a new one. After starting AGX 2 Interac-
tive by pressing the Interactive mode button in the control center (or using
the line command xagx -i”) we can built a graph“as we want it” using dif-
ferent possible operations: add, move or remove a vertex, add or delete an
edge, swap between the graph and its complement. Each of these operations
is represented by a button in the top of the window. Moreover, it is possible to
display informations (Figure 5) about the current graph in three ways. (i) On
the graph itself such as chromatic or degree coloration, edge highlighting (for
shortest paths, radius, diameter, girth,...), labelling of the vertices by simple
numbering, their degrees, transmissions (i.e., sum of distances to all other
vertices) or distances from a selected vertex. (ii) Display selected invariants,
from a list that appears in a window by pressing the corresponding button,
and their values for the current graph and/or its complement. The invariants
and their values appear in the left margin of the window. (iii) Open a new
window on which we can display (Figure 6) vectors or matrices (one at a
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time) related to the current graph such as degree, eigenvalue, eccentricity or
transmission vector and adjacency, distance or Laplacian matrix.
All the informations related to the current graph discussed above are auto-
matically updated when modifying the graph.

Fig. 7. Backup window

Backup window

The main aim of changing interactively a graph is to get a better one (with
respect to our objective), so we need to keep the current best one to make
comparisons. It is the task of the backup window (see Figure 7). The backup
window in the right margin contains the current“referential” graph, the values
of the selected invariants and of the objective function. Once the“referential”
graph is kept, we can modify as desired or as needed the current graph and
make comparisons between both graphs. It is possible to swap between the
two graphs or replace any one by the other.

View results

Pressing the View results button in the control center dialogue box gives us
the tools to analyze the results. First, a small dialogue box asks us for choosing
one (to get a 2D curve) or two (3D curve) parameters among those of the prob-
lem, and a filter (optional, when no filter is selected all available graphs are
taken) to select among the resulting graphs those satisfying some conditions
(connected, complements connected, feasible with respect to the problem con-
straints, ranges for the parameters). Then (Figure 8) the objective appears
as a (2D or 3D) curve or a set of points in 2 or 3 dimensional space. The
curve or the point set (it is possible to swap between the two representations)
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Fig. 8. Viewing results in a 3D representation

Fig. 9. A comparison with the known Hong bound

gives the objective function values for the chosen parameters ranges and rep-
resents the graphs that satisfy the chosen conditions only. We can perform
many geometric manipulations that help us to view and analyze the results:
rescaling the axis (Scale X, Scale Y, Scale Z), rotation with respect to any axis
(Rotation A, Rotation B, Rotation C), move the axis to the right, left, top
or bottom, projecting on the XOZ or the YOZ plane, swapping between OX
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Fig. 10. An extremal graph for the index and values of selected invariants of the
graph and its complement

and OY axis. All buttons used in these manipulations are in the left margin
of the (View results) window. If the mouse gets over a point, the status bar
(in the bottom of the window) indicates the name of the graph and values
of the parameters and of the objective function, in this graph. To see any of
the represented graphs, we click on the corresponding point, and it appears in
the interactive mode window. Once the graph is available, all manipulations
described in Interactive mode and Backup window are possible.

Plotting functions

An interesting feature in the interactive AGX 2, is the ability to plot functions
in the View results window. This is done in two ways. First, we open the Input
function dialogue box using the appropriate button in the left margin of the
View results window (that one representing two superposed curves). Then (i)
we display the value curve of an invariant chosen from a list of available ones
or (ii) we enter a function that is expressed using the syntax rules of the
objective function described in Editing a problem, and the corresponding
curve is displayed. Plotting functions is a useful tool for curve fitting and
deriving conjectures interactively. The curves in Figure 9 represent the Hong
bound (top) on the index, i.e. the largest eigenvalue of the adjacency matrix,
of a graph ([33]: λ1 ≤

√
2m− n + 1, where m and n are the size and the order

of a graph respectively), and (bottom) the bound given by AGX. An extremal
graph corresponding to the AGX bound (Figure 9) is displayed in Figure 10.
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Fig. 11. Selecting invariants to look for conjectures

Find conjectures

Once the optimization process is achieved, in addition to the View graphs
and results options we try to find conjectures starting from the control cen-
ter. First, we press the Find Conjectures button, then we are asked to choose
invariants from the list of all of them (existing in the system or defined by
the user in the editing problem phase). Once the invariants are chosen and
the launch button pressed, AGX 2 will try to find affine relations between
the selected invariants, based on the available graphs, found during the op-
timization or those modified interactively (if saved). If such relations exist,
AGX 2 gives a basis of all affine relations satisfied by all available graphs.
Note that, because of the numerical stability of the method (used to find the
affine relations), the number of invariants to select must be at most half the
number of available graphs.

3 Algebraic Syntax Used in AutoGraphiX

Each term used in AGX is assigned a name and an expression, the first to allow
its use in any expression, and the second to make its computation possible.
Expressions are stored in Reverse Polish Notation (RPN) which is computed
by the parser from the standard algebraic expression provided by the user. Any
expression may involve invariants or operators using graphs, matrices, vectors
or numbers. Once a term is defined, it may be used as any hardcoded invariant.
Some special expressions are generated by AGX and have reserved words to be
accessed from; these are “OBJ”, representing the objective function,“LHSn”



DRAFT

292 Aouchiche et al.

or“RHSn” representing respectively the left or the right hand side of the nth

constraint. Terms are recorded by the user using the keyword“define” in the
problem definition file. By the use of flags in the data structure, AGX never
computes twice the same term for the same graph; the definition of custom
term is thus a way to speed up the optimization process. There is no restriction
on the nature of a term as long as it remains an object that could be handled
by AGX; thus a term may represent a graph, a matrix a vector or a number.
For example, the distance-k domination, minimum number of vertices to select
such that each vertex of the graph G is either selected or at a distance of at
most k from a selected vertex, may be defined by the user as the classical
domination number, which corresponds to the case k = 1, on the graph G′

obtained from G by adding edges to connect vertices that are at a distance
smaller than or equal to k in the original graph. Constructing this graph G′

is called KTRANSITIVE in AGX and it uses the number k as argument.
The following line may be used in AGX to define k − domination:

define DISTKDOMIN DOMINATION(KTRANSITIV E(k))

where k may be a parameter or be replaced by the desired value. To improve
the performance of the optimization in AGX, a growing number of invariants
are hardcoded, some of which could also be defined by the user as an expression
using the others. A list of the main invariants, vectors, matrices or graphs
presently available in AGX is given in Table 1, and operators in Table 2.

AVDEG : Average degree of the graph.
AVDIST : Average distance between pairs of vertices.

CHEMENERGY :
∑n/2

i=1 2eig[i] + eig[n+1
2 ] if n odd where eig[i] is the ith

eigenvalue of the adjacency matrix.
CHROMATIC : Chromatic number, minimum number of colors needed
so that each vertex is assigned a color and two adjacent vertices do not
share the same color.
CLIQMAX : Size of the maximum clique.
DEGMAX : Maximum degree.
DEGMIN : Minimum degree.
DOMINATION : Minimum number of vertices to select so that each
vertex of G either is selected or is adjacent to a selected vertex.
DIAMETER : Maximum distance between 2 vertices; maximum eccen-
tricity of a vertex.
ECONN : Edge connectivity number: minimum number of edges that must
be removed to disconnect the graph.
ENERGY :

∑n
i=1 |eig[i]| where eig[i] is the ith eigenvalue of the adjacency

matrix.
GIRTH : Size of the smallest elementary cycle
INDEX : Largest eigenvalue of the adjacency matrix.
K4 : Number of K4 (cliques on 4 vertices).
MATCHING : Maximum cardinality matching
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NCONN : Node connectivity number: minimum number of vertices that
must be removed to disconnect the graph.
ORDER : Number of vertices.
SIZE : Number of edges.
STABLEMAX : Size of the maximum stable set.
SEPARATOR : Difference between the first and the second eigenvalue of
the adjacency matrix.
SUMDEG2 :

∑n
i=1 d2

i where di is the degree of vertex i.
RADIUS : Radius of a graph; minimum eccentricity of a vertex.
RANDIC : Randić index:

∑

ij∈E
1√
didj

.

TRIANGLES : Number of triangles in the graph.
VARDEG : Degree variance
WIENER :

∑n
i=1

∑n
j=i+1 dij .

DEGREE : (Vector) Degrees vector.
TRANS : (Vector) Transmissions vector.
NAVDEG : (Vector) Average Degree of neighbors vector.
ADJACENCY : (Matrix) Adjacency matrix
DISTANCE : (Matrix) Distances matrix
LAPLACIAN : (Matrix) Laplacian matrix
KTRANSITIVE : (Graph) Graph G′ obtained from G by adding edges
connecting vertices that are at distance less than k in G.

Table 1: Invariants available in AGX

Operators using 2 arguments:
* : matrix multiplication; output = matrix
.* : term by term matrix multiplication; output = matrix
./ : term by term matrix division; output = matrix
+ : addition; output = matrix
- : subtraction; output = matrix
ONE : construction of a matrix of ones; output = matrix
FREQ : number of times a value occurs in the matrix; output = number
FREQVECTOR : vector of frequencies of the values of the argument
matrix; output=vector
Operators using 1 argument:
FLOOR : term by term floor; output = matrix
CEIL : term by term ceiling; output = matrix
TRANSPOSE : transpose of the matrix; output = matrix
MINROW : minimum row by row; output = column vector
MAXROW : maximum row by row; output = column vector
MINCOL : minimum column by column; output = row vector
MAXCOL : maximum column by column; output = row vector
AVGCOL : average column by column; output = column vector
AVGROW : average row by row; output = column vector
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VARCOL : variance column by column; output = row vector
VARROW : variance row by row; output = row vector
SUMROW : sum row by row; output = column vector
SUMROW : sum row by row; output = column vector
ABS : term by term absolute value; output = matrix
SUM : sum of elements of matrix; output = number
MODE : mode of the matrix; output = number
in case of ties, the first encountered value is considered
MAX or SUP : maximum of the matrix; output = number
MIN or INF : minimum of the matrix; output = number
ID : construction of an identity matrix; output = matrix
EIG : computation of the eigenvalues of a square matrix; output vector
example: (EIG(ADJACENCY))[2] gives the third eigenvalue of the adja-
cency matrix (don’t forget that indices start from 0)
MEAN : computation of the average of a matrix; output = number
VARIANCE : computation of the variance of a matrix; output = number
STDEV : computation of the standard deviation of a matrix output =
number
MINPEIG : minimum positive eigenvalue of a matrix; output = number
MAXNEIG : maximum negative eigenvalue of a matrix; output = number
RANK : computation of the rank of a square matrix; output = number
SQRT : term by term square root of a matrix; output = matrix

Table 2: Operators available in AGX

4 Optimization Using Variable Neighborhood Search

Optimization in AGX 1 is performed by specializing the Variable Neighbor-
hood Search (VNS) [32, 36] metaheuristic (general framework to build heuris-
tics) to the problem of finding extremal graphs. VNS extends local search
methods in order to get out of local optima in a systematic way, avoiding
cycling through some random moves.

Initialization:
Select the set of neighborhoods structures Nk, k = 1, . . . kmax that will be
used in the search and a stopping condition; find an initial solution x.
Repeat until condition is met:
• Set k ← 1;
• Until k = kmax,do:

(a) Generate a point x′ at random from the kth neighborhood
of x (x′ ∈ N(x));
(b) Apply Variable Neighborhood Local Search (VNLS) with x′
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as initial solution; denote with x′′ the obtained local optimum;
(c) If the solution thus obtained is better than the incumbent,
move there (x ← x′′) and continue the search with N1(x) (k=1);
otherwise, set k ← k + 1.

done

Table 3: Rules of Variable Neighborhood Search.

Local search methods proceed by performing a sequence of local transforma-
tions in an initial solution which improve each time the objective function
value until a local optimum is found. That is, at each iteration, an improved
solution x′ in the neighborhood N(x) of the current solution x is obtained.
VNS generalizes local search in two ways: several neighborhoods are consid-
ered instead of one, and they are used first in an exhaustive search of the
smaller ones, and then in a random search of the larger ones. Contrary to
other metaheuristics such as Simulated Annealing or Tabu search, VNS does
not follow a trajectory but explores increasingly distant neighborhoods of the
current solution, and jumps from there to a new one if and only if an im-
provement has been made. In this way, often favorable characteristics of the
current incumbent solution, e.g. that most variables are already at their op-
timal value, are kept and used to obtain promising neighborhood solutions,
from which a further local search is performed.
Rules of VNS are recalled in Table 3.

The stopping condition may be: maximum number of iterations, maximum
CPU time allowed or maximum number of iterations between improvements.
Rules of the routine VNLS used in VNS are given in Table 4.

Initialization:
Select the set of neighborhood structures N ′

k, k = 1, . . . k′
max that will be

used. Consider an initial solution x;
Main Step:
Set k ← 1 and improved← false ;
Until k = k′

max, do :
(a) Find the best neighbor x′ of x in N ′

k(x).
(b) If the solution x′ so obtained is better than x,

set x← x′ and improved← true.
(c) Set k ← k + 1;
(d) if k = k′

max and improved = true
set k ← 1.

done

Table 4: Rules of Variable Neighborhood Local Search (Variable
Neighborhood Descent).
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Usually, the neighborhoods Nk(x) in VNS will be nested, while the neighbor-
hoods N ′

k(x) in VNLS need not be so. In the VNS applied to finding extremal
graphs these neighborhoods correspond to removing or adding 1, 2, · · · k edges.
In VNLS they correspond to a series of elementary local changes: rotation of
an edge (keeping one vertex fixed and changing the other), removal or addi-
tion of an edge, displacement of an edge, detour (replacing an edge by 2-path),
2-Opt and several others. While it is possible to change this last set within
VNS (e.g. using different neighborhoods at the beginning and the end of the
search), it is most often kept constant.

4.1 VNS optimization in AGX 2

The optimization algorithm implemented in AGX 2 is designed in the same
way as in AGX 1 except that the VNLS routine uses the new Adaptive Local
Search (ALS) described below as one of its descent methods. However, as
ALS only deals with transformations of moderate size (moves involving at
most 4 vertices), for some special problems, the user may still need to use
specific moves not covered by ALS in the descent. In this case, the special
move needs to be implemented and used in the VNLS routine as it was the
case in AGX 1. Up to now, problems handled with AGX 2 did not need this
feature and choosing only potentially useful moves is no more needed as the
algorithm is designed to achieve this task in most cases. In order to do so,
the program uses a list of moves that have proved to be improving at least
for one graph. Using a special data structure, the program learns during the
optimization process and constructs a list of improving moves to use. Even
if a small number of moves is used during the optimization, the algorithm
is designed to ensure that no other move (involving 4 vertices or less) could
improve the local optimum found.
The description of the adaptive neighborhood search is done in three parts;
in the first one the data structure is described, then a basic local search using
this structure is explained and finally, based upon this local search algorithm,
the adaptive local search is described.

Data structure and encoding

Let G=(V,E) be a labelled graph on n vertices (v1, v2, . . . vn) and G′ be an
induced subgraph of G on n′ vertices. To each subgraph G′ is associated a
pattern that is defined by the following procedure:
- relabel the vertices of G′ from v′

1 to v′
n′ in the way that preserves the order

of the labels of these vertices in G;
- from the lexicographical ordering of the possible edges of G′, compute the
corresponding binary vector by writing a 1 if the edge is present and a 0
otherwise.
Example 1:
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Edge binary vector pattern
(1,2) 000001 1
(1,3) 000010 2
(1,4) 000100 4
(2,3) 001000 8
(2,4) 010000 16
(3,4) 100000 32

If n′ = 4, the possible edges are the following:

Each subgraph G′ is characterized by a unique label (called pattern) from 0

to 2
n′(n′

−1)
2 as shown on the example below:

pattern 0: empty subgraph
pattern 1: E = {(1, 2)}
pattern 2: E = {(1, 3)}
pattern 3: E = {(1, 2), (1, 3)}
:
pattern 13 (1+4+8): E = {(1, 2), (1, 4), (2, 3)}
:
pattern 18 (2:16): E = {(1, 3), (2, 4)}
:
pattern 33 (1+32): E = {(1 : 2), (3, 4)}
:
pattern 63: complete subgraph on 4 vertices.

General local search algorithm

Using this scheme, one may define a local search by the following algorithm.

Initialization:
Set improved← true;
While improved = true do:

set improved← false
For each subgraph G′ on n′ vertices do:

- Compute the pattern number corresponding to G′.
- Consider replacing G′ in G by the subgraph corresponding
to each possible alternative pattern.

- If this change improves the objective function:
(a)apply this change
(b)set improved← true

done
done
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A local optimum is found; it is not possible to improve the current graph
by any transformation that involves at most n’ vertices

Table 5: General local search algorithm

Adaptive local search

Unfortunately, as soon as n’ is not very small, the local search is time con-
suming and is almost impossible to use for large graphs.
Furthermore, most of the alternative patterns are useless depending on the
initial pattern, the objective function and the constraints.
To improve the optimization algorithm in AGX 2, we aim at trying only the
alternative patterns that may improve the graph. In order to perform a fast
search, AGX uses a knowledge base indicating only the potentially improving
moves. This information is stored as a binary matrix T indicating whether
changing the pattern (i) to (j) needs to be considered. The tij entry is set to
1 if replacing the pattern i by j was found interesting at least once. Note that
most of the local moves involved in AGX 1 were special cases of moves for
AGX 2 (for example, changing the pattern 33 to pattern 18 is a 2-opt move).
The adaptive neighborhood search for n’ given may be defined as follows.

Step 1:
If it is the first time the algorithm is run on this problem:

- initialize T = {tij = 0}.
If the program was already run:

- load the last version of the matrix T for the problem under study.

Step 2:
Set f ← false (this flag indicates that no pattern was added to the list at
this iteration).
For each subgraph of the current graph with n′ vertices do:

Let pi be the corresponding pattern
for each alternative pattern pj do:

if replacing the subgraph pi by the pattern pj would
improve the current solution:

update the matrix T by setting tij ← true
set f ← true.

done
done

Step 3:
If f = true: Update the matrix T to take symmetry into account:

for each tij = true do:
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for each pattern i′ obtained from i by relabelling the
vertices do:
let pj′ be the pattern obtained from pj by the same
relabelling
set ti′j′ ← true.

done
done
If f = false:

Stop; a local optimum is found.
Save the matrix T for the next time AGX will be running on
the same problem.

Step 4:
set improved← true
while improved = true do:

set improved← false
For each subgraph G′ of G on n′ vertices do:

let pi be the corresponding pattern
For each alternative pattern pj:

if tij ← true do:
if replacing pi by pj in the current graph improves the
solution:

apply the change
improved← true

done
done

done
Go to Step 2

Table 6: Adaptive local search.

5 AutoGraphiX Tasks

In this section we discuss the ways in which AGX 1 and AGX 2 address the
five problems listed in the introduction.

Find a graph satisfying given constraints

Let i1(G), i2(G), · · · ik(G) denote k invariants of a given graph G and b1, b2, · · · bk

real numbers. AGX makes a search for a graph satisfying given constraints of
the form

il(G)







≤ bl if l ∈ I−

= bl if l ∈ I=

≥ bl if l ∈ I+
(2)
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where I− ∪ I= ∪ I+ = {1, 2, ...k}.
For this aim, the constraints in 2 are transformed into

hl(G) =







max{il(G)− bl, 0} if l ∈ I−

|il(G)− bl| if l ∈ I=

max{bl − il(G), 0} if l ∈ I+
(3)

Thus the problem of finding a graph G satisfying (2) is equivalent to the
following optimization problem on a family of graphs Gn (or Gn,m),

min
G∈Gn

f(G) =

k
∑

l=1

hl(G)

Any graph G with f(G) = 0 satisfies constraints (2).
The constraint set (2) can be generalized by replacing one or more invariants
by an expression of several invariants.

Find graphs with an optimal or near-optimal value for an invariant
subject to constraints

Here the problem is to find a graph G among those satisfying given constraints,
as chosen, that minimizes (or maximizes) the value of a given invariant i(G).
The problem can be stated as follows

min
G∈Gn

f(G) = i(G) + M

k
∑

l=1

hl(G)

where M is a constant large enough to ensure that any graph G′ not satisfying
one or more constraints has a larger objective function value than any graph
satisfying all of them.

Refute a conjecture

Let us consider a conjecture of the form h(G) ≤ g(G) where h(G) and g(G)
are functions of one or several invariants of a graph G. AutoGraphiX then
solves heuristically the following problem

min
G∈Gn

f(G) = g(G)− h(G).

If a negative value of the function f(G) is found, i.e., a graph G′ such that
f(G′) < 0, then the conjecture is disproved and G′ is a counter-example.
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Suggest or reinforce a conjecture

In general, we use the AutoGraphiX system to solve an optimization problem
of the form minG∈Gn

f(G) where n is a parameter (such as the order and
we can use several parameters), f a function of one or more invariants of
G and Gn the set of all graphs of parameter n. The analysis of the graphs
obtained (under the assumption that they are extremal) suggest us relations,
so conjectures, between the invariants considered in the function f . There are
several ways to generate conjectures [11].

Give an idea of proof

It is the most difficult among all AutoGraphiX tasks and those of any other
system used for assisted or automated proofs. The observation of the progres-
sion process followed by AGX to the extremal graph can help to prove the
result. In particular if best results are obtained with a single transformation
it suffices to prove that this transformation can be applied and improves the
objective function value for any non optimal graph in the family considered
[29].

6 Automated Proofs

Computer-assisted proofs are currently quite frequent in graph theory and
have led to many successes, the most prominent of which is the four-color
theorem [2, 3, 4, 5, 39]. In contrast, fully automated proofs are rare, although
a couple of approaches have been explored. The system Graph of Cvetković
and his collaborators [14, 15] has pioneered the computer-assisted approach to
graph theory. It also comprises a component, THEOR, for automated proof
of graph theoretical properties. THEOR uses a special first-order predicate
calculus, called ”arithmetic graph theory”, together with a resolution-based
prover. It appears however that full formalization of graph theory is a difficult
task, and even simple properties require long proofs. To illustrate, it takes 10
lines to prove that

“If the graph is connected, then the graph is trivial or there is no point x
such that x is isolated”.
A different approach is explored in the Graph Theorist system of Epstein
[19, 20, 21]. This knowledge intensive, specific domain learning system uses
algorithmic description of classes of graphs such as connected, acyclic or bi-
partite. It mainly uses theory-driven discovery of concepts, conjectures and
theorems based upon search heuristics.
Neither approach was powerful enough to prove new properties. However, as
these systems were developed in the 80th, progress both in automated theo-
rem proving and in computers, suggest further work along such lines might
be fruitful.
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In the AutoGraphiX 2 system a different approach has been followed: instead
of formalizing each graph theory concept, one works at a more global level,
i.e., on the one hand recognizing classes of extremal graphs from values of
invariants and exploiting their properties and, on the other hand, combining
relations on graph invariants. Both approaches appear to be closer than the
previous ones to the usual way a graph theorist works, and have proved to be
successful: several hundred new conjectures could thus be proved. They are
usually easy, but may be useful, e.g. to enrich the database of relations for
further proofs.
The first approach implemented in AGX 2 is illustrated in the automated
report presented in Table 7 below. Two invariants are selected for compari-
son: the average degree d̄ of a graph G and the edge connectivity κe, i.e., the
smallest number of edges to remove in order to disconnect G. Then, the lower
and upper bounds for each invariant are introduced as an initial knowledge,
together with a characterization of the corresponding families of extremal
graphs. Note that while these results are easy to obtain, they could also be
derived in an assisted way with AGX 2.
Then the two invariants are compared using the four operations −,+, / and
×, and a rule-based approach is applied to check whether the intersection of
the relevant sets of families of extremal graphs is empty or not in each case.
For the first conjecture, on d−κe, this intersection is empty both for the lower
bound (trees and complete graphs) and for the upper bound (complete graphs
and graphs with a cut edge). However, the relation κe ≤ d is well-known and
recorded in the system. The extremal graphs are complete ones, among others.
For the upper bound, the numerical method of AGX [11] obtains automati-

cally the algebraic expression 4.0+n2−(4.0)n
n . The extremal graphs are cliques

on n − 1 vertices with an appended edge. AGX 2 does not mention this fact
in the automated report, as a routine for recognizing this class of graphs has
not yet been included (it is an elementary task: checking if if the minimum

degree δ = 1 and the size m = (n−1)(n−2)
2 +1). But these extremal graphs can

be displayed with AGX 2’s interactive function and recognized at a glance.
This provides the idea of an easy proof of the upper bound of Conjecture 1.

Proof:
For given κe,

m ≤ (n− 1)(n− 2)

2
+ κe,

d̄ =
2m

n
≤ n2 − 3n + 2 + 2κe

n
,

d̄− κe =
n2 − 3n + 2− (n− 2)κe

n
≤ n2 − 4n + 4

n

and the bound is attained if and only if G is a clique on n − 1 vertices with
an appended edge. �
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Invariants

This report contains conjectures obtained by AGX between the two follow-
ing graphical invariants : d (average degree) and κe (edge connectivity).
Suppose G is a connected graph with n ≥ 3 vertices, then selected invariants
have the following bounds :

2− 2/n ≤ d ≤ n− 1

The lower bound (resp. upper bound) is reached for the trees (resp. the com-
plete graphs).

1 ≤ κe ≤ n− 1

The lower bound (resp. upper bound) is reached for graphs with a cut edge
(resp. the complete graphs).

Conjectures

Suppose G is a connected graph with average degree d, and edge connectivity
κe. Let n denote the number of vertices of the graph.
Then AGX obtains the following results :

Conjecture 1
For all connected graphs G having at least 3 vertices, we have :

0 ≤ d− κe ≤
4.0 + n2 − (4.0)n

n

Proof :
No proof: the lower bound has been obtained automatically by AGX.

Proposition 2
For all connected graphs G having at least 3 vertices, we have :

3− 2
1

n
≤ d + κe ≤ −2 + 2n

The lower bound (resp. upper bound) is reached for the trees (resp. the com-
plete graphs).

Proof :
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For connected graphs having at least 3 vertices, we have 2 − 2/n ≤ d and
the bound is reached for the trees. For connected graphs having at least 3
vertices, on a 1 ≤ κe and the bound is reached for graphs with a cut edge.
The intersection of both families of graphs are the trees. By summing, we
obtain the lower bound.

For connected graphs having at least 3 vertices, we have d ≤ n − 1 and
the bound is reached for the complete graphs. For connected graphs having
at least 3 vertices, we have κe ≤ n − 1 and the bound is reached for the
complete graphs. Both families of graphs are the same, so extreme graphs
are the complete graphs. By summing, we obtain the upper bound.

Conjecture 3
For all connected graphs G having at least 3 vertices, we have :

1 ≤ d/κe ≤
4.0 + n2 − (3.0)n

n

Proof :
No proof, the lower bound has been obtained automatically by AGX.

Proposition 4
For all connected graphs G having at least 3 vertices, we have :

2− 2
1

n
≤ d · κe ≤ (−1 + n)

2

The lower bound (resp. upper bound) is reached for the trees (resp. the com-
plete graphs).
Proof :
The proof is the same than for Proposition 2, by multiplying and not sum-
ming.

Table 7: An AutoGraphiX automated report.

The next case, i.e., d̄ + κe is more favorable: AGX 2 finds that the sets of
families of extremal graphs have non empty intersection (trees for the lower
bound and complete graphs for the upper bound). Thus summing the expres-
sions of d̄ and κe for these classes of graphs automatically gets and proves the
two algebraic expressions for the bounds. So Proposition 2 gives all requested
informations in a fully automated way.
The cases of Conjecture 3 and Proposition 4 are similar to those of Conjec-
ture 1 (with the same extremal graphs) and Proposition 2.
A slightly more complicated argument, called the second value based approach
leeds to automated profs in some further cases. Let us illustrate it by a simple
case, i.e., the lower bound D + κe ≥ 3 where D denotes the diameter of the
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graph G , i.e., the largest distance between a pair of vertices of G. As D ≥ 1
and κe ≥ 1, one only gets D+κe ≥ 2 as a direct consequence. However D = 1
is only true for the complete graph Kn, for which κe = n−1. Considering the
next value of D, i.e., D = 2 one can have κe = 1 e.g. for a star. So D+κe ≥ 3.
The second approach implemented in AGX 2 consist in combining inequali-
ties. These are (i) lower and upper bounds on invariants; (ii) relations implied
by the definitions e.g. δ ≤ d̄ ≤ ∆ where δ and d̄ have been defined above and
∆ denotes the maximum degree of G or D ≤ 2r where D has been defined
and r denotes the radius of G, i.e., the minimum among all vertices of G of
its eccentricity; (iii) bounds derived from the previous ones by simple rules
e.g. if 0 < l1 ≤ i1 ≤ u1 and 0 < l2 ≤ i2 ≤ u2 then

l1 + l2 ≤ i1 + i2 ≤ u1 + u2 , l1 × l2 ≤ i1 × i2 ≤ u1 × u2,

l1 − l2 ≤ i1 − i2 ≤ u1 − u2 , l1/l2 ≤ i1/i2 ≤ u1/u2.

When applied to a set of 259 conjectures provided by the system HR [13],
AGX 2 could prove over 85% of them.

7 Some Examples

In this section, we illustrate by examples various uses of AGX 2 related to
finding conjectures.

Example 2: At the Computer and Discovery workshop, held in Montreal,
June 02-05 2004, M. Klin asked if the system AGX 2 could find the graph
with order n = 14, girth g = 6 and as many edges as possible. This was tried
immediately and AGX 2 provided a first graph with m = 18 edges, then a
second one with m = 19 and within one minute of computing time a third
graph with m = 21. This graph is represented in Figure 12 and is known to
be optimal and unique for the problem posed.

Example 3: This is a straightforward one. Let G be a connected graph with
at least n = 3 vertices, domination number β and maximum degree ∆. Then

β + ∆ ≤ n

and the bound is attained for complete graphs (among others).
The proof is easy: let a vertex v of maximum degree belong to a minimum
domination set. Then 1 + ∆ vertices, i.e., those of v and its neighbors are
covered. Adding the remaining vertices to the dominant set gives β ≤ 1+n−
∆ − 1 = n − ∆ and the bound follows. For complete graph Kn, β = 1 and
∆ = n− 1 so β + ∆ = n. �

Recall that the eccentricity of a vertex v in a graph G is the maximum distance
from that vertex to another one. The radius r of G is its minimum eccentricity.
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Fig. 12. Graph with n = 14, g = 6 and m = 21, the maximum number of edges

Example 4: Let G be a connected graph of order n ≥ 3 with domination
number β and radius r. Then

β + r ≤ b5n + 4

6
c

and the bound is attained by a tree of diameter n− 2 if n = 3mod [6] and by
a path otherwise
This conjecture is open. The structural part is obtained automatically and
the algebraic expression for the upper bound follows easily.

The clique number ω of G is the cardinality of its largest complete subgraph.

Example 5: Let G be a connected graph of order n ≥ 3 with domination
number β and clique number ω. Then

β + ω ≤ n + 1

and the bound is tight for complete graphs. Moreover

β · ω ≤ dn
2
e · bn

2
c

and the bound is tight for graphs composed of a clique with dn
2 e vertices and

bn
2 c pending edges each incident with a different vertex of the clique.

The first relation was obtained automatically, and the second one from the
structural result. Both conjectures are easily proved:
For the upper bound on the sum, if G is complete then β + ω = n + 1. If not,
due to connectedness of the graph, there exist a vertex v in a maximum clique
S of G that has at least a neighbor that does not belong to S. So the set of
vertices composed of v and all vertices that are neither in S nor neighbors of
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v is a dominant set of cardinality at most n− ω, i.e., β + ω ≤ n.
Thus β + ω ≤ n + 1 with equality if and only if the graph is complete.
For the upper bound on the product, if G is complete then β · ω = n. If not,
as it is shown above, β + ω ≤ n and then we can solve the problem as the
integer program of maximize β · ω subject to β + ω ≤ n. Thus the bound
follows and it is easy to see that the bound is reached for the graph described
in the statement. �
Some conjectures are of medium difficulty. Recall that Randić index of a graph
G = (V,E) is defined by Ra =

∑

ij∈E
1√
didj

, and the independence number

α of G is the cardinality of the largest set of vertices pairwise non adjacent.

Example 6: Let G be a connected graph of order n ≥ 5 with independence
number α and Randić index Ra. Then

Ra · α ≤ d3n− 2

4
e
√

d3n− 2

4
ebn + 2

4
c.

The bound is attained for complete bipartite graphs Kpq with p = α = d 3n−2
4 e

and q = bn+2
4 c.

Fig. 13. A fanned pineapple with n = 9 and m = 16

In some cases only a structural conjecture could be found.
Let us define a pineapple as a clique together with one or several pending edges
all incident with the same vertex of the clique (see Figure 10). A pineapple is
fanned if one or several edges are added to it between a pending vertex and
other vertices of the clique (see Figure 13).
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Example 7: For all connected graphs G of order n ≥ 5 and size m, the index
λ1 is maximum for a pineapple or a fanned pineapple (depending on the value
of m).
This structural conjecture is open.

8 Conclusion

The system AGX 2 is a new and enhanced version of AGX with an improved
optimization routine, better ways to find and prove conjectures and several
new interactive functions. It mimics the work of the graph theorist and helps
him in various ways: easy interactive manipulation of a graph, rapid compu-
tation of invariants and formulas involving several of them, display of results,
obtention of relation between invariants in several ways and finally automated
proof of easy relations. It is a useful tool, being currently applied to a series
of specialized problems, i.e., study of particular invariants and comparison
between invariants on various classes of graphs. There are also many avenues
for future research and development, in particular examining how the many
as yet unexplored forms of conjectures in graph theory listed in [28] could be
automated.
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7. G. Caporossi, D. Cvetković, I. Gutman, and P. Hansen. Variable neighborhood
search for extremal graphs 2: Finding graphs with extremal energy. Journal of
Chemical Information and Computer Sciences, 39:984–996, 1999.

8. G. Caporossi, I. Gutman, and P. Hansen. Variable neighborhood search for
extremal graphs 4: Chemical trees with extremal connectivity index. Computers
and Chemistry, 23:469–477, 1999.

9. G. Caporossi, I. Gutman, P. Hansen, and L. Pavlović. Graphs with maximum
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29. P. Hansen and H. Mélot. Variable neighborhood search for extremal graphs 9:
Bounding the irregularity of a graph. in [24].
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Summary. Metaheuristics are strategies to design heuristic procedures to find high
quality solutions to an optimization problem. This chapter focuses on the implemen-
tation aspects of heuristic algorithms based on metaheuristics, using an object ori-
ented approach. This programming paradigm takes advantage of the common parts
shared by codes that implement different metaheuristic procedures. We give a class
hierarchy for metaheuristics that permits quickly generate algorithms from existing
metaheuristic codes for specific problems by extending a few classes and adding the
problem functionality. It also allows the development of new metaheuristic algo-
rithms without programming from scratch the basis of the procedure. It consists of
selecting an appropriate class with the closest functionality, and extending it to add
the core of the algorithm. The purpose of this hierarchy is thus to provide an exten-
sible model for a quick implementation of metaheuristics and the problem structures
associated with them.

Key words: Metaheuristic, implementation, API, variable neighbourhood
search, genetic algorithms.

1 Introduction

Metaheuristics are strategies to design heuristic procedures. Since the first
time the word metaheuristic appeared in the seminal paper of Tabu Search
by Fred Glover in 1986 [8], there have been a lot of papers, reviews and
books on Metaheuristics [29, 37, 31, 2, 12]. The classification of metaheuris-
tics is usually based on the kind of procedures for which they are designed.
For example, there are constructive metaheuristics like GRASP [30], evolutive
metaheuristics like Genetic Algorithms [28] or neighborhood metaheuristics
like the classical greedy local search. However, other possible classifications of
metaheuristics are given by the computational tool or technique considered
fundamental for the procedure, like Neural Networks [27] or Ant Colony Sys-
tems [3]. Some of the proposed algorithms are designed following not only one
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metaheuristic, but several of them. Moreover, some proposed metaheuristics
are formed by mixed strategies that combine different kinds of tools, in such
a way that they are either hybrid metaheuristics obtained by a combination
of them, or they can be considered a simplified version of them obtained by
ignoring some of the tools applied. It is also usual for many metaheuristic
to have some modifications or adaptations to special circumstances that have
been proposed to provide different versions or extensions of the metaheuristics.
For these reasons the field of metaheuristics is continuously growing with new
proposals that are becoming efficient and effective for an increasing number
of difficult optimization problems.

However, the most relevant classification of them is to separate the meta-
heuristics based in populations of solutions from the metaheuristics based on
a single solution. Among the single solution based metaheuristics (or point-
based solutions, as we will refer to from now on), we should emphasize the
importance of some of them, like the Greedy Search, the Random Search,
the Local Search [38], the Guided Local Search [33], the Simulated Annealing
[22], the Tabu Search [13] or the Variable Neighborhood Search [21]. On the
other hand, among the population based metaheuristics, some of the most
important ones are the Ant Colony Systems [3], the Scatter Search [24], the
Estimation of Distribution Algorithms [25] or the Genetic Algorithms [28].
Other classifications appear in [32] and [39].

1.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [17, 18, 20, 19, 21] is a recent and effec-
tive metaheuristic for solving combinatorial and global optimization problems
that is capable of escaping from the local optima by systematically changing
the neighborhood structures within the search. VNS proceeds using a descent
method to reach a local minimum, then explores, either systematically or at
random, increasing neighborhoods of this solution. In each iteration, one or
several points within the current neighborhood are used as an initial solution
for a local descent. The procedure jumps from the current solution to a new
one if and only if a better solution has been found.

It has been empirically observed that, for many problems, local minima
with respect to one or several neighborhoods are relatively close to each other.
Therefore, a local optimum often provides some information about the global
one. This may for instance be several variables with the same value, but
usually it is unknown which ones are such. An organized study of the neigh-
borhood of this local optimum is applied, until a better one is found.

Variable Neighborhood Descent (VND) is a deterministic version of VNS
based on the fact that a local minimum with respect to one neighborhood
structure is not necessary so for another. Thus, each time the descent reaches
a local optimum for a set of moves, the method changes the set of moves;
it changes the neighborhood each time it is trapped by the neighborhood
structure. The method thus takes advantage from combining several descent
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heuristics and it stops at a local minimum with respect to all the neighborhood
structure. Since a global minimum is a local minimum with respect to all
possible neighborhood structures, the probability of reaching to the global
optimum increases.

Another simple application of the VNS principle is the Reduced Variable
Neighborhood Search (RVNS). From an initial solution, a point is chosen at
random in the first neighborhood. If its value is better than the current one,
the search is re-centered there. Otherwise, the search proceeds to the next
neighborhood. After all neighborhoods have been considered, it starts again
with the first, until a stopping condition is satisfied. Usual stopping criteria
are based on a maximum computing time since the last improvement, or a
maximum number of iterations.

In the previous two methods, we see how to use variable neighborhoods to
descent to a local optimum and to find promising regions for near-optimal so-
lutions. Merging the tools for both tasks leads to the General Variable Neigh-
borhood Search scheme that uses VND to improve each solution sampled by
RVNS. However, the basic VNS scheme (Figure 1) is obtained by combin-
ing a local search with systematic changes of neighborhoods around the local
optimum found.

BVNS method

1. Find an initial solution x; choose a stopping condition;
2. Repeat until the stopping condition is met:

(1) Set k ← 1;
(2) Repeat the following steps until k = kmax:
a) Shaking. Generate a point x′ at random from the kth neighborhood of x

(x′ ∈ Nk(x));
b) Local search. Apply some local search method with x′ as initial solution;

denote with x′′ the so obtained local optimum;
c) Move or not. If the local optimum x′′ is better than the incumbent x, move

there (x ← x′′), and continue the search with N1 (k ← 1); otherwise, set
k ← k + 1;

Fig. 1. Basic Variable Neighborhood Search Method

1.2 Scatter Search

Scatter Search (SS) [10, 11, 14, 15, 24] is an evolutionary algorithm that
combines good solutions from a reference set (RefSet) to construct new ones
exploiting the knowledge of the problem at hand. Genetic Algorithms [28]
are also evolutionary algorithms in which a population of solutions evolves by
using the mutation and crossover operators. These operators have a significant
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reliance on randomization to create new solutions. Unlike the population in
Genetic Algorithms, the RefSet of solutions in Scatter Search is relatively
small.

The principles of the Scatter Search metaheuristic were first introduced
in the 1970s as an extension of formulations for combining decision rules
and problem constraints. This initial proposal generates solutions considering
characteristics of several parts of the solution space [7]. Scatter Search has an
implicit form of memory, which can be considered as an inheritance memory,
since it keeps track of the best solutions found during the search, and selects
their good features to create new solutions. The Scatter Search Template,
proposed by Glover in 1998 [10], summarizes the general description of Scatter
Search given in [9].

Scatter Search consists of five components processes: Diversification Gen-
eration Method, that generates a set of diverse solutions, Improvement Method,
that improves a solution to reach a better solution, Reference Set Update
Method, which builds and updates the reference set consisting of RefSetSize
good solutions, Subset Generation Method, to produce subsets of solutions of
the reference set, and Solution Combination Method, that combines the solu-
tions in the produced subsets. A comprehensive description of the elements of
Scatter Search can be found in [10, 11, 14, 15, 24, 24].

The basic Scatter Search procedure (see Figure 2) starts generating a large
set of diverse solutions Pop, which is obtained using the Diversification Gen-
eration Method. This procedure creates the initial population (Pop),which
must be a wide set consisting of diverse and good solutions. Several strategies
can be applied to get a population with these properties. The solutions to be
included in the population can be created, for instance, by using a random
procedure to achieve a certain level of diversity. An Improvement Method is
applied to each solution obtained by the previous method reaching a better
solution, which is added to Pop.

A set of good representative solutions of the population is chosen to
generate the reference set (RefSet). The good solutions are not limited to
those with the best objective function values. The considered reference set
consists of RefSetSize1 solutions with the best objective function values
and RefSetSize2 diverse solutions. Then RefSetSize = RefSetSize1 +
RefSetSize2. The reference set is generated by selecting first the RefSetSize1
best solutions in the population and secondly adding RefSetSize2 times the
most diverse solution in the population.

Several subsets of solutions from the RefSet are then selected by the
Subset Generation Method. The Solution Combination Method combines the
solutions in each subset using their good features. Then, the Improvement
Method is applied to the result of the combination to get an improved solution.
Finally, the Reference Set Update Method uses the obtained solution to update
the reference set.
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procedure Scatter Search
begin

Create Population;
Generate Reference Set;
repeat

repeat
Subset Generation Method;
Solution Combination Method;
Improvement Method;

until (StoppingCriterion1);
Reference Set Update Method;

until (StoppingCriterion2);
end.

Fig. 2. Scatter Search Metaheuristic Pseudocode

1.3 From Theory to Practice

After this review of current state-of-the-art on metaheuristics, it is time to ask
the main question this chapter aims to answer. How can we implement these
metaheuristics? Moreover, is there a way of programming them such that we
could implement more metaheuristics than those seen here, without having
to code them all from the beginning? We believe that the answer is “yes”.
But before getting into the work, we need to comment first on some necessary
concepts, for instance, Object Oriented Programming (OOP).

Although it is not the purpose of this chapter to explain OOP paradigm
and all of its features, we shall provide a brief description of it to contextualize
the reading. Interested readers should refer to [1] for more information about
OOP standards and features.

The OOP paradigm is a relatively new one. Although the first programs
following its guidelines were developed in later 1960’s, it has not been until
1990’s that they had become widely spread. Traditional programming deals
with functions (code) and variables (data), emphasizing the difference between
them. We could say that traditional programming is a “code-based” approach,
as programmers should rely on the efficiency and correctness of the code to
resolve the task it was programmed to. OOP, on the other hand, focuses
on dealing with objects, which are functionality units containing both data
and code to manage it. This provides OOP with desirable properties such as
modularity, encapsulation, abstraction, polymorphism or inheritance. We can
say that OOP is a “design-based” paradigm, as it relies on the architecture
of the program and the objects that live and interact in it, considering the
code of the objects virtually irrelevant. The challenge in OOP therefore is of
designing a sane object system ([35]).
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316 Garćıa del Amo et al.

Considering the problem of designing methods to implement several meta-
heuristics and making them extensible and easy to code, we can naturally
think of OOP as an appropriate candidate for doing it.

• We want to code common parts just one time, so we do not have to program
all the metaheuristic again every time we want to use a new one. This can
be done by encapsulating common code into superclasses, and creating
subclasses which inherit from them for metaheuristic-dependent code. This
also has the advantage that if we detect an error in a part of the code of a
superclass, we only have to correct it once, and all the subclasses will be
updated.

• We want the code to be easily extensible. As we mentioned earlier, what
really matters in OOP is the way in which objects relate to each other (i.e.,
WHAT they do), and not the specific code they use to do it (i.e., HOW
they do it). For example, if we have a problem object, and a metaheuristic
object, we want the metaheuristic object to get the problem object and to
produce a solution object. We only care about what are the specifications
of the metaheuristic. If the requirements are met, we should not care about
how the metaheuristic object gets the solution. So, in theory, it does not
matter if the metaheuristic object uses the VNS search or the Scatter
Search, as long as it produces a valid solution for the problem. Thus, to
extend the classes to include a new metaheuristic, we only have to create a
subclass of the appropriate class and re-implement the necessary methods
to use the new algorithm. We are changing the insides, but for an external
viewer, it will still remain as a metaheuristic object.

2 Class Hierarchy

In this section we will explain in detail each of the classes that form the
hierarchy we propose (Figures 3, 4 and 5). We will start talking about the
classes that define the structure of a problem and a solution (classes Prob-
lem and Solution respectively). Next, we will explain the general properties
and methods we consider every metaheuristic should have (conforming the
base class Metaheuristic). Then, we will continue with an explanation of why
metaheuristics should be separated depending on if they are population-based
or point-based. Finally, we will end with the specific details of two examples
of metaheuristics already reviewed in the previous section: a point-based one
(VNS) and a population-based one (Scatter Search). After this, we will com-
ment the class StopCriterion and its relationship with metaheuristic classes.
Note that, although classes MhT VNS and MhT SS are represented in Fig-
ure 4, they inherit from classes PointBased and PopulationBased respectively,
which are represented in Figure 3.

The explanation of each class will be preceded by an enumeration of its
attributes and methods, along with a short, general description of it and some
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relevant comments that we think are useful to understand the purpose of the
class.

In the enumeration section, we will present firstly the attributes of the
class, and then, its methods. Every attribute and method is preceded by one
of these three symbols:

• “+”: expresses that the attribute/method is public.
• “−”: expresses that the attribute/method is private of the class.
• “#”: expresses that the attribute/method is protected (that is, only the

class or some subclass of it can access it).

Apart from these symbols, if a method or class has its name written in
italics, that means that the method or class is abstract, and therefore it has
to be redefined by a subclass (if it is an abstract method) or a subclass needs
to be created for an object to be instantiated (if it is an abstract class).

Every attribute/method will end by a colon followed by the type of the
attribute/method. For example, “ : bool” means that the attribute is of type
bool or that the method returns a bool value.

For convention, we will consider that the accessor methods of every class
(i.e., get and set) return copies of the attribute (if it is a getter) or make a copy
of the parameter before assigning it to the attribute (if it is a setter). This
assumption is for preserving data encapsulation and integrity, so that every
method can safely work with the object’s data without interfering with other
methods. Nevertheless, we understand that, in some cases, working with copies
can be simply unaffordable (for example, in problems in which a solution is
formed by a high number of elements). In these cases the reader is advised
to implement carefully these methods to avoid strange behavior (i.e., freeing
object’s attributes, modifying the current solution in a local search procedure,
etc).

2.1 Class Problem

Problem

− isMaxProblem : bool

+ isMaxProblem() : bool
+ setIsMaxProblem(isMax : bool) : void
+ areEqual(solution1 : Solution, solution2 : Solution) : bool
+ firstSolutionIsBetter(solution1 : Solution, solution2 : Solution) : bool
+ evaluate(solution : Solution) : double

The Problem class is probably the most important of all, but obviously, it
is also the most problem-dependent one. Of course, there is no doubt that as
class named Problem should be strongly problem-dependent. And that is why
it is so difficult to generalize: we cannot assume anything about the attributes
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it contains, because they depend on the type of problem we are talking about.
We can only assume that the problem should contain some kind of structure
which explicitly enumerates all the elements that can form the solution, or
at least, a way to obtain them. But that is all, we cannot know a priori if it
is a list of objects, a function to obtain them, if we need more attributes to
completely describe the problem... So, at most, we can define one attribute
and some methods, which are listed below:

Attributes:

• isMaxProblem. Attribute that determines if the problem is a maximiza-
tion or minimization problem.

Methods:

• isMaxProblem(). Method to get the value of the attribute isMaxProb-
lem.

• setIsMaxProblem(isMax : bool). Method to set the value of the at-
tribute isMaxProblem

• areEqual(solution1 : Solution, solution2 : Solution). Method to compare
if two solutions have the same score. If a solution has not been evaluated
yet, the method should call evaluate (explained below) and save the score
obtained into the solution, then compare. The method should return true
only if both solutions have the same score, and false in any other case.

• firstSolutionIsBetter(solution1 : Solution, solution2 : Solution). Similar
to the method areEqual described above, but it checks if the first solution
has a higher score than the second one. The method should return true
only if the first solution has an strictly higher score than the second one.

• evaluate(solution : Solution). Abstract method to evaluate (give a score)
to a solution. This method should be implemented by the subclass that
specifies the problem.

2.2 Class Solution

Solution

− score : double

+ getScore() : double
+ setScore(score : double) : void

The Solution class is as problem-dependent as the Problem one, because it
has to provide a correct arrangement for some elements of the problem in order
to conform a solution to it. And that is exactly why it cannot be generally
defined with much detail. We cannot know how this elements should be placed,
it could be linearly, in which case we would use a vector or an array, or maybe
it could need a more complex structure like a tree or a priority queue.
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So, the specific structure to handle the elements must be left to a subclass
that knows more about the problem. The only property that we think any
solution should have, at least, is a representative value of the fitness of the
solution.

Attributes:

• score. Attribute that reflects the fitness of the solution. This attribute is
intended as a variable to store the value returned by the method evaluate
of the class Problem. If the solution has not been yet evaluated, it should
contain a not a number (NaN) value.

Methods:

• getScore(). Method to get the value of the attribute score.
• setScore(score : double). Method to set the value of the attribute score.

2.3 Class Metaheuristic

Metaheuristic

− bestSolution : Solution
− problem : Problem
− iteration : int
− iterationOfBestSolution : int
− elapsedTime : double
− elapsedTimeOfBestSolution : double
− stopCriterion : StopCriterion

+ getBestSolution() : Solution
+ getProblem() : Problem
+ getIteration() : int
+ getIterationOfBestSolution() : int
+ getElapsedTime() : double
+ getElapsedTimeOfBestSolution() : double
+ getStopCriterion() : StopCriterion
+ setStopCriterion(stopCriterion : StopCriterion) : void
+ setBestSolution(solution : Solution) : void
+ setProblem(problem : Problem) : void
+ resetIteration() : void
+ resetElapsedTime() : void
+ runSearch() : void
# setIteration(iteration : int) : void
# increaseIteration() : void
# setIterationOfBestSolution(iteration : int) : void
# setElapsedTimeOfBestSolution(elapsedTime : double) : void
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This class is the base class from which every metaheuristic will inherit. It
has a few attributes to control the execution of the metaheuristic, and a main
method runSearch to look for a solution to a problem.

The sequence of use of this class in the general case should be as follows:

1. Inform the metaheuristic class of the problem we are considering by setting
the problem attribute to the appropriate value.

2. Set a stop criterion for the search.
3. Call the runSearch method.
4. When the search is finished, get the best solution found.

This sequence can be altered in special cases, for example, when we already
have a solution for the problem and we want the metaheuristic to improve it.
In that case, before calling runSearch, we would have to set the bestSolution
attribute to the solution object we have. The metaheuristic should then return
a solution which is, at least, as good as the one provided, if not better.

The class also has attributes for posterior statistical analysis, such as the
number of iterations run, the iteration in which the best solution was found,
or the elapsed time of search until that moment.

Attributes:

• bestSolution. Attribute to store the best solution found until the mo-
ment. Normally, this attribute will be unset before the beginning of the
search, but if a solution is provided, the metaheuristic should try to con-
tinue the search of the best solution from that point. In any case, the
search method should not update the solution unless the new solution
found has a higher score than the one provided.

• problem. This is an object containing the problem which we are searching
for a solution.

• iteration. The current iteration of the runSearch main loop. The meta-
heuristic should reset this value to 0 each time the method runSearch is
called.

• iterationOfBestSolution. Iteration in which the best solution was found.
• elapsedTime : A time-stamp for several usages. Normally, this attribute

would be reset before the beginning of the search and will be updated at
the finish of the search, containing the number of time units since the last
reset (search stop time− reset time).

• elapsedTimeOfBestSolution. A time-stamp for the moment in which
the best solution was found (best solution time− reset time).

• stopCriterion. Object to determine if the search should stop at a given
moment or should continue searching for a better solution.

Methods:

• getBestSolution(). Method to get the best solution found by the meta-
heuristic.

• getProblem(). Method to get the problem object.
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• getIteration(). Method to get the current iteration of the search.
• getIterationOfBestSolution(). Method to get the iteration of the best

solution. If a best solution hasn’t yet been found, it should return a non-
numeric value.

• getElapsedTime(). Method to get the elapsed time (in time units) since
the last reset.

• getElapsedTimeOfBestSolution(). Method to get the elapsed time (in
time units) since the las reset until the moment the best solution was
found.

• getStopCriterion(). Method to get the StopCriterion object of the meta-
heuristic.

• setStopCriterion(stopCriterion : StopCriterion). Method to set the StopCri-
terion object of the metaheuristic.

• setBestSolution(solution : Solution). Method to set the best solution
found until the moment (for example, to continue a search).

• setProblem(problem : Problem). Method to set the Problem object.
• resetIteration(). Method to reset the iterations for the search.
• resetElapsedTime(). Method to reset the time from which we will count.
• runSearch(). Abstract method to search for a solution. This method must

be implemented by a subclass. The implementation should also reset the
iterations and the elapsed time at the beginning of the method.

• setIteration(iteration : int). Method to set the current iteration. This
method can only be called by an object of class Metaheuristic or subclass
of it. An external object should never update this variable.

• increaseIteration(). Method to increase the current iterations.
• setIterationOfBestSolution(iteration : int). Method to set the iteration

in which the best solution was found.
• setElapsedTimeOfBestSolution(elapsedTime : double). Method to set

the time in which the best solution was found.

2.4 Class PointBased

PointBased

− currentSolution : Solution
− newSolution : Solution

+ getCurrentSolution() : Solution
+ getNewSolution() : Solution
+ runSearch() : void
# setCurrentSolution(solution : Solution) : void
# setNewSolution(solution : Solution) : void
# initializeParameters() : void
# generateInitialSolution() : void
# generateNewSolution() : void
# acceptNewSolution() : bool
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# acceptanceUpdateParameters() : void
# rejectionUpdateParameters() : void

The PointBased class is one of the two subclasses of Metaheuristic we
will implement. This class implements its methods taking in mind that a
point-based metaheuristic will only obtain one solution per iteration, and if
it is better than the best it has found, it updates this best one with the new
solution obtained.

This schema represents the core of this class, and it is shown mainly in the
runSearch method, that was abstract in the Metaheuristic class, and is now
defined in this class to follow the former guidelines. The runSearch method
calls several internal methods (see fig 6) that are declared abstract, in order
to permit a subclass to define them in a way that matches the metaheuristic
specific algorithm.

Attributes:

• currentSolution. Solution with which the metaheuristic is currently
working.

• newSolution. Temporary variable in which the newly created solution is
stored. If after generating a new solution it is accepted, then the current
solution is replaced by the new one.

Methods:

• getCurrentSolution(). Method to get the current solution of the meta-
heuristic.

• getNewSolution(). Method to get the newly created solution in each
iteration of the metaheuristic.

• runSearch(). Implementation of the method to search for a solution, spe-
cially adapted to point-based metaheuristics, in which some abstract meth-
ods are used.

• setCurrentSolution(solution : Solution). Method to set the current so-
lution.

• setNewSolution(solution : Solution). Method to set the newly created
solution in each iteration of the metaheuristic.

• initializeParameters(). Abstract method to initialize some parameters.
The method is declared abstract, as we cannot know a priori how the
metaheuristic needs to be initialized. A subclass that implements a specific
metaheuristic, should implement also this method.

• generateInitialSolution(). Abstract method to generate the initial so-
lution. It is declared abstract, because the way in which an initial solution
has to be generated depends not only on the metaheuristic, but also on
the problem. Anyway, when this method is implemented, it should store
the new solution in the bestSolution attribute. And also, if the bestSolution
attribute is already set (for example, when we want the metaheuristic to
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continue a search from a solution), the method should not modify this
value, but return immediately, leaving the attribute “as is”.

• generateNewSolution(). Abstract method to generate a new solution
when a previous solution exists. The method is abstract for the same reason
as the previous method generateInitialSolution. This method should store
the new solution in the attribute newSolution, and if it needs the previous
existing solution, it can access it through the currentSolution attribute.

• acceptNewSolution(). Abstract method to decide if the newly created
solution is accepted to become the current solution. This method is pro-
vided because some metaheuristics accept every new solution, but others
check the new solution for some properties, and do not accept it if it does
not conform to them.

• acceptanceUpdateParameters(). Abstract method to call when the
new solution is accepted.

• rejectionUpdateParameters(). Abstract method to call when the new
solution is rejected.

2.5 Class PopulationBased

PopulationBased

− initialPopulationSize : int
− maxPopulationSize : int
− currentPopulation : Population
− newPopulation : Population

+ getInitialPopulationSize() : int
+ getMaxPopulationSize() : int
+ getCurrentPopulation() : Population
+ getNewPopulation() : Population
+ getBestSolutionInPopulation(population : Population) : Solution
+ setInitialPopulationSize(size : int) : void
+ setMaxPopulationSize(size : int) : void
+ runSearch() : void
# setCurrentPopulation(population : Population) : void
# setNewPopulation(population : Population) : void
# initializeParameters() : void
# generateInitialPopulation() : void
# generateNewPopulation() : void
# acceptNewPopulation() : bool
# acceptanceUpdateParameters() : void
# rejectionUpdateParameters() : void

This class is the counterpart of the PointBased class, but for populations of
solutions. These classes (PointBased and PopulationBased) were specifically
designed to be as similar as possible, so that a parallelism between them
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could be naturally established. For example, if the class PointBased has a
method called generateNewSolution, the class PopulationBased should have
its equivalent called generateNewPopulation.

In Figure 7 we can see the code of the method runSearch for the Popula-
tionBased class, and there is shown clearly the strong similarities that exist
between this method and the respective one from PointBased class (6).

Just one more comment. In this class (and implicitly in all of its sub-
classes), there is an assumption for the object/type Population. For imple-
mentation purposes, we can simply consider it as an array, vector, list, etc.
of Solution objects. The only requirements are that it can handle a set of
solutions, granting the insertion, access and removal of each of them.

Attributes:

• initialPopulationSize. Number of elements (solutions) that should be
contained in the initial population. The method to generate it, though
abstract, should honor this value when implemented.

• maxPopulationSize. The maximum number of elements (solutions) that
any population should contain. This value has to be observed every time
a new population is created.

• currentPopulation. The population the metaheuristic is working on in
the current iteration.

• newPopulation. The new population generated in each iteration of the
metaheuristic. As with the PointBased class, if this method requires the
previous population, it can access it through the currentPopulation at-
tribute.

Methods:

• getInitialPopulationSize(). Method to get the size of the initial popu-
lation.

• getMaxPopulationSize(). Method to get the maximum size of any pop-
ulation.

• getCurrentPopulation(). Method to get the population the metaheuris-
tic is currently working on.

• getNewPopulation(). Method to get the new population created in each
iteration of the metaheuristic.

• getBestSolutionInPopulation(population : Population). Method that
looks for the solution with the highest score among all the population, and
then returns it.

• setInitialPopulationSize(size : int). Method to set the attribute ini-
tialPopulationSize.

• setMaxPopulationSize(size : int). Method to set the attribute maxPop-
ulationSize.

• runSearch(). Implementation of the method to search for a solution, spe-
cially adapted to population-based metaheuristics, in which in each iter-
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ation the metaheuristic explores a set of solutions. As in the PointBased
class, some abstract methods are used.

• setCurrentPopulation(population : Population). Method to set the at-
tribute currentPopulation.

• setNewPopulation(population : Population). Method to set the at-
tribute newPopulation.

• initializeParameters(). Abstract method to initialize some metaheu-
ristic-dependent parameters.

• generateInitialPopulation(). Abstract method to generate the initial
population. As its PointBased counterpart, it is declared abstract, because
the way in which an initial population has to be generated depends on the
problem. If the bestSolution attribute is already set (for example, when we
want the metaheuristic to continue a search from a solution), this solution
should be included, or at least used to generate, the initial population.

• generateNewPopulation(). Abstract method to generate a new popula-
tion when a previous population exists. As the method generateNewSolu-
tion of the PointBased class, this method should store the new population
in the attribute newPopulation, and if it needs the previous existing pop-
ulation, it can access it through the currentPopulation attribute.

• acceptNewPopulation() : bool. Method to determine if the new popula-
tion is accepted to substitute the current population. Usually, populations
must have some properties in order to avoid degeneration of the solutions,
and if it does not, the population is rejected.

• acceptanceUpdateParameters() : void. Abstract method to call when
the new population is accepted.

• rejectionUpdateParameters() : void. Abstract method to call when the
new population is rejected.

2.6 Class MhT VNS

MhT VNS

− k : int
− kMax : int

+ getK() : int
+ getKMax() : int
+ setKMax(kMax : int) : void
# setK(k : int) : void
# increaseK() : void
# generateNewSolution() : void
# acceptNewSolution() : bool
# acceptanceUpdateParameters() : void
# rejectionUpdateParameters() : void
# initializeParameters() : void
# generateInitialSolution() : void
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# shake() : void
# improveSolution(solution : Solution) : void

This class is the first one we will see that represents the implementation of a
specific metaheuristic. The MhT VNS class uses attributes and methods that
are exclusive of the VNS metaheuristic, although it is still declared abstract
because of problem-dependent issues and the existence of several variants of
the VNS general algorithm.

This class is intended to provide the general schema of the VNS meta-
heuristic, but at the same time, allow a subclass to customize some aspects of
the algorithm, like, for example, the local search (here called improveSolution)
or the shake procedure (see Figure 1). For example, a subclass of MhT VNS
could implement the improveSolution as a strictly local search, other could
use a global search, and other could even use another metaheuristic.

For implementing this class the key concepts are, as in every other meta-
heuristic, to identify firstly if it is a point based or a population based meta-
heuristic, and secondly, where do the algorithm fit in the methods provided
by the super-class (in this case, PointBased).

For example, the generateNewSolution method could consist in a shake and
a local search (see Figure 8). The method to test if a new solution is accepted
is simply a comparison between the new solution and the best solution found
until the moment, and if has a higher score, it is accepted (Figure 9). If a
solution is accepted, K is reset to 1 (Figure 10), and if it is rejected, K is
increased (Figure 11).

Attributes:

• k. This attribute controls the current size of the neighborhood of the so-
lution to explore in the improveSolution phase. This attribute varies from
1 to kMax.

• kMax. Maximum value for the k attribute.

Methods:

• getK(). Method to get the attribute k.
• getKMax(). Method to get the attribute kMax.
• setKMax(kMax : int). Method to set the attribute kMax.
• setK(k : int). Method to set the attribute k.
• increaseK(). Method to increase the value of the attribute k.
• generateNewSolution(). Method to generate the new solution from an

existing one. See Figure 8.
• acceptNewSolution(). Method to determine if a new solution is ac-

cepted. See Figure 9.
• acceptanceUpdateParameters(). Method to call in case a new solution

is accepted. See Figure 10.
• rejectionUpdateParameters(). Method to call in case a new solution

is rejected. See Figure 11.
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• initializeParameters(). Abstract method to initialize parameters. This
methods has to be implemented by a subclass that knows more details
about the problem.

• generateInitialSolution(). Abstract method to generate an initial solu-
tion. This methods has to be implemented by a subclass that knows more
details about the solution.

• shake(). Abstract method to provide the metaheuristic with a way to
escape from a local minimum solution. It is declared abstract to allow a
subclass to implement different ways of shaking, and also, because to be
able to shake a solution, the method needs to know more details about the
solution.

• improveSolution(solution : Solution). Abstract method to improve a so-
lution within a k-sized neighborhood. Like the shake method, this method
is defined abstract both for allowing several implementations and because
there is a need for more information on the problem and the solution. For
a possible implementation of a local search procedure, see Figure 13.

2.7 Class MhT SS

MhT SS

− refSetSize : int
− refSetSize1 : int
− refSetSize2 : int
− subsetSize : int
− refSet : Population
− newRefSet : Population
− stopCriterionRefSet : StopCriterion
− stopCriterionPopulation : StopCriterion

+ getRefSetSize() : int
+ getRefSetSize1() : int
+ getRefSetSize2() : int
+ getSubsetSize() : int
+ getRefSet() : Population
+ getNewRefSet() : Population
+ getStopCriterionRefSet() : StopCriterion
+ getStopCriterionPopulation() : StopCriterion
+ setRefSetSize(size : int) : void
+ setRefSetSize1(size : int) : void
+ setRefSetSize2(size : int) : void
+ setSubsetSize(size : int) : void
+ setStopCriterionRefSet(stopCriterion : StopCriterion) : void
+ setStopCriterionPopulation(stopCriterion : StopCriterion) : void
# setRefSet(refSet : Population) : void
# setNewRefSet(refSet : Population) : void
# generateNewPopulation() : void
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328 Garćıa del Amo et al.

# acceptNewPopulation() : bool
# acceptanceUpdateParameters() : void
# rejectionUpdateParameters() : void
# initializeParameters() : void
# generateInitialPopulation() : void
# generateRefSet() : void
# selectSubset() : void
# combineSolutions(subset : Population) : Population
# improveSolutions(subset : Population) : Population
# updateRefSet() : void

This class is the other example of an specific metaheuristic we will see,
but, as we mentioned earlier, instead of being point based, as was VNS, this
metaheuristic is classified as population based. It is also defined abstract be-
cause, to be able to create an instantiable class, we need more information
about the problem.

To implement this class, the first thing we have to do is find the methods of
the PopulationBased class in which to insert the Scatter Search specific code
(see Figure 2 for the pseudocode). We only have to take in mind that the main
loop for the runSearch method in PopulationBased consists in generating a
new population in each iteration. Remember that the Scatter Search is based
in the generation and update of a reference set in each iteration, not the
population itself. This means that we have to think a little how to split the
code of the algorithm in order to fit in the abstract methods used by runSearch.

An implementation of the classical Scatter Search will typically let the
reference set evolve, and when it is done, return the best solution in it. So, in
practice, it only uses one population. This fact has some implications, like, for
example, that most of the code of the algorithm has to be embedded in the
generateNewPopulation method. Another consequence is that other methods
and attributes are meaningless, like acceptNewPopulation (which shall always
return true), or the Metaheuristic attribute stopCriterion (which, as it refers
to the evolution of the population, we want it to stop in the first iteration,
so in fact, it has to return always true). More sophisticated implementations
may use other stop criteria that would allow also the evolution of populations.
For further reference on Scatter Search implementations, see [24].

Attributes:

• refSetSize. Attribute that determines the size of the complete reference
set (good solutions + diverse solutions).

• refSetSize1. Attribute that determines the number of good solutions that
will be in the reference set.

• refSetSize2. Attribute that determines the number of diverse solutions
that will be in the reference set.
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• subsetSize. Attribute to determine the number of solutions that will be
taken from the reference set to be combined. A typical value for this at-
tribute is 2.

• refSet. Object containing the reference set of solutions.
• newRefSet. Object containing the new reference set of solutions gener-

ated in each iteration.
• stopCriterionRefSet. Object representing the stop criterion for the loop

in which the new reference set is generated. When this stop criterion de-
termines that the loop should stop, it will have generated a new reference
set.

• stopCriterionPopulation. Object representing the stop criterion for the
loop in which new reference sets are being generated. When this stop
criterion determines that the loop should stop (usually because the new
reference sets generated lack of good solutions or diverse solutions), a new
reference set will have to be created from the population.

Methods:

• getRefSetSize(). Accessor method to get the value of the attribute ref-
SetSize.

• getRefSetSize1(). Accessor method to get the value of the attribute ref-
SetSize1.

• getRefSetSize2(). Accessor method to get the value of the attribute ref-
SetSize2.

• getSubsetSize(). Accessor method to get the value of the attribute sub-
setSize.

• getRefSet(). Accessor method to get the value of the attribute refSet.
• getNewRefSet(). Accessor method to get the value of the attribute

newRefSet.
• getStopCriterionRefSet(). Accessor method to get the value of the at-

tribute stopCriterionRefSet.
• getStopCriterionPopulation(). Accessor method to get the value of the

attribute stopCriterionPopulation.
• setRefSetSize(size : int). Accessor method to set the attribute refSetSize.
• setRefSet1Size(size : int). Accessor method to set the attribute ref-

Set1Size.
• setRefSet2Size(size : int). Accessor method to set the attribute ref-

Set2Size.
• setSubsetSize(size : int). Accessor method to set the attribute subsetSize.
• setStopCriterionRefSet(stopCriterion : StopCriterion). Accessor method

to set the attribute stopCriterionRefSet.
• setStopCriterionPopulation(stopCriterion : StopCriterion).

Accessor method to set the attribute stopCriterionPopulation.
• setRefSet(refSet : Population). Accessor method to set the attribute ref-

Set.
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330 Garćıa del Amo et al.

• setNewRefSet(refSet : Population). Accessor method to set the attribute
newRefSet.

• generateNewPopulation(). Method to generate a new population for
the search. This method contains most of the code of the algorithm, be-
cause Scatter Search is based more in the evolution of the reference set than
the evolution of the population. So, this method also uses other methods
that will be explained bellow, like combineSolutions, or updateRefSet. See
Figure 12 for the code of this method.

• acceptNewPopulation(). This method decides if a new population is
accepted or not. In the classical implementation of Scatter Search, the
process of finding a solution is based on the evolution of the reference set,
not the population. So, in the practice, this method does not really has
to check if the new population is better than the older, it should always
accept the new one.

• acceptanceUpdateParameters(). Method to perform the needed oper-
ations when a population is accepted. As no new population is intended
to be created, this method should contain no code.

• rejectionUpdateParameters(). This method is like the acceptanceUp-
dateParameters above, so it should contain no code.

• initializeParameters(). Abstract method to initialize different variables
that may be needed by a subclass, depending on the specific problem.

• generateInitialPopulation(). Abstract method to generate the initial
population that has to be defined by a subclass, as it may need problem-
specific data.

• generateRefSet(). Abstract method to generate a reference set from a
population of solutions. This method should generate a set of size ref-
SetSize, composed of refSetSize1 good solutions and refSetSize2 diverse
solutions. A way to measure the diversity of a solution will also have to be
implemented by a subclass.

• selectSubset(). Abstract method to get the next subset of solutions from
the reference set to be combined and improved. The subset selected should
contain subsetSize solutions.

• combineSolutions(subset : Population). Abstract method to combine the
subset of solutions selected by the previous method. This method should
produce a new solution from the subset.

• improveSolutions(subset : Population). Abstract method to improve the
new subset of solutions obtained by the method combineSolutions.

• updateRefSet(). Abstract method that has to decide which of the solu-
tions of the new reference set created should replace some of the solutions
of the old reference set.

2.8 Class StopCriterion

StopCriterion
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+ stop(mh : Metaheuristic) : bool

The StopCriterion class is one of the most remarkable features of this
implementation. When talking about a stop criterion from the traditional
point of view, we should expect a method of a subclass of Metaheuristic to
handle this stop condition, having knowledge of the specific metaheuristic and
problem used.

In the context of OOP, we have used a class approach instead. The expla-
nation is simple: think for example of a test in which we wanted to compare the
effectiveness of different metaheuristics, and we wanted to stop their search af-
ter 1 second. Why do we have to implement a subclass for every metaheuristic
evaluated, repeating the same code for the stop criterion in each of them? This
rises the risk of introducing errors, and at the same time, we are duplicating
code, breaking the principles of encapsulation and modularity. All of this can
be avoided by using a unique object stop criterion that will return true if the
metaheuristic has been running for a second. This has several advantages:

• The StopCriterion class reduces drastically the number of subclasses that
need to be created. If it were not for the StopCriterion class, we would
have to create a subclass of each metaheuristic only to produce a different
stopping condition of each of the loops in its search method. Think, for
example, of the MhT SS class, which uses at least, three different stop
criteria. If we wanted to test just two stop criteria (for example, one based
in the elapsed time, and another based in the number of iterations), that
would imply, from the traditional approach, eight different subclasses of
that metaheuristic to combine all the possibilities for the stop criteria.
With the use of a StopCriterion class, there is no need for subclasses of
the metaheuristic, this could be done simply by instantiating an object of
each of the stop criteria and combining them in all the possible ways.

• The use of this class also increases the versatility of a metaheuristic, be-
cause with a sole implementation of this metaheuristic, its functionality
can be fine-tuned in execution time, simply by changing its stopCriterion
object. With the example of the MhT SS class, is obvious that not only
eliminates the necessity for subclasses of the metaheuristic, but also allows
the MhT SS class to exhibit different behaviors or “flavors” in execution
time.

Of course, the use of the StopCriterion class is not exempt of disadvan-
tages. For example, as the StopCriterion is an external class to Metaheuristic
(i.e., it does not inherits from Metaheuristic), all the accessor methods to get
the value of an attribute (the getters) need to be declared public in order to
allow StopCriterion to check the values of the attributes. Moreover, we need
to enable public accessors to variables that in other cases would normally not
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even exist, because the StopCriterion class may need access to some internal
variables in order to determine if the stop condition is met. Anyway, despite
this disadvantages, we recommend the use of this class for its benefits.

The StopCriterion class is defined abstract, with only one method, stop(),
that has to be implemented by an specific subclass.

Methods:

• stop(mh : Metaheuristic). Method to call when is needed to know if a
metaheuristic should stop searching. This method receives a parameter,
a Metaheuristic object, to which the StopCriterion will ask for some at-
tributes in order to know if the stop condition is met.

2.9 Class GeneralStopCriterion

GeneralStopCriterion

− maxTime : double
− maxIterations : int

+ stop(mh : Metaheuristic) : bool
+ getMaxTime() :double
+ getMaxIterations() : int
+ setMaxTime(maxTime : double) : void
+ setMaxIterations(maxIterations : int) : void

This class inherits from StopCriterion, and is aimed to determine a meta-
heuristic’s stopping condition without depending on the problem nor the spe-
cific metaheuristic considered.

Before we continue, it is convenient to explain in more detail the differences
among possible stopping criteria:

• Problem-dependent stop criteria. The stop criterion uses information
that is specific of the problem, usually concerning the quality of the best
solution obtained by the metaheuristic. For example, if we are dealing with
a minimization problem, and we know which is the theoretical minimum
value a solution can reach, we could stop searching when a solution is
within a certain range above that minimum.

• Metaheuristic-dependent stop criteria. In this case, the stop criterion
uses information about the metaheuristic itself. For example, in the Scatter
Search, we need to stop some loops if the metaheuristic has reviewed all
the specified combinations of solutions of the reference set, or when the
quality of the solutions of the reference set lowers from a certain point.

• Problem-Metaheuristic-dependent stop criteria. This case is a mix-
ture of the two previous cases, when the stop criterion uses both problem-
dependent and metaheuristic-dependent information. An example of this
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could be to stop the search of a VNS metaheuristic either when the qual-
ity of the solution is above a certain level, or when the value of K has
reached the top (KMax) and has not been reseted to 1 for a long time
(which could indicate that the solution is good, as we are always moving
the maximum distance between neighborhoods without finding a better
solution).

• Independent stop criteria. This is a generic case in which the stop
criterion accesses information that do not depend on the problem nor the
metaheuristic used. The typical information used here is the number of
iterations of the metaheuristic or the elapsed time since the beginning of
the search.

This class is an implementation of an independent stop criterion, that can
be configured to use the iterations, the elapsed time, or both.

Attributes:

• maxTime. Attribute that determines the maximum time a metaheuristic
is allowed to run. If this attribute is not going to be used, it should contain
a NaN value.

• maxIterations. Similar to the attribute above, but it determines instead
the maximum number of iterations a metaheuristic is allowed to run.

Methods:

• stop(mh : Metaheuristic). Method that returns true if the metaheuristic
has been running for more than maxTime or has looped through more
than maxIterations iterations.

• getMaxTime(). Method to get the attribute maxTime.
• getMaxIterations(). Method to get the attribute maxIterations.
• setMaxTime(maxTime : double). Method to set the attribute maxTime.
• setMaxIterations(maxIterations : int). Method to set the attribute max-

Iterations.

3 Implementation: The p-Median Problem

The p-selection problems constitute a wide class of hard combinatorial opti-
mization problems whose solutions consist of p items from a universe U . The
standard moves for this class of problems are the interchange moves. An in-
terchange move consists of replacing an item in the solution by another one
out of the solution. A very representative p-selection problem is the p-median
location problem whose standard version is explained below. The p-median
problem is a well known location problem (see [26] or [4]) that have been
proved NP-hard [23]. This problem has often been used to test metaheuris-
tics, among them parallel VNS [5] and Scatter Search [6].
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Let U = {u1, u2, ..., un} be the set of the locations of a finite set of users
that are also potential locations for p facilities. Let D be the n × n matrix
whose entries contain the distances dij = D(ui, uj) between the points ui and
uj , for i, j = 1, ..., n. The distance between a set of points X ⊂ U and a point
ui ∈ U is stated as follows:

D(X,ui) = min
uj∈X

D(uj , ui).

The cost function for a set of points X is the sum of the distances to all the
points in U ; i.e.,

f(X) =
∑

ui∈U

min
uj∈X

D(uj , ui) =
∑

ui∈U

D(X,ui).

The p medians selected from U constitute the set that minimizes this cost
function. The optimization problem is then stated as follows:

minimize
∑

ui∈U

min
uj∈X

D(ui, uj)

where X ⊆ U and |X| = p.
Using a solution coding that provides an efficient way of implementing the

moves and evaluating the solutions is essential for the success of any search
method. A solution X can be represented by an array x = [ui : i = 1, ..., n]
where ui is the i-th element of the solution for i = 1, 2, ..., p, and the (i−p)-th
element outside the solution for i = p + 1, ..., n. Let Xij denote the solution
obtained from X by interchanging ui and uj , for i = 1, ..., p and j = p+1, ..., n.

For the p-selection problems, as the p-median problem, the local search
procedure is based on the explained interchange moves. The usual greedy
local search is implemented by choosing iteratively the best possible move
among all interchange moves. The code of a local search that can be used
in the improveSolution method of the MhT VNS class is given in Figure 13.
Here, the function improved tests if the new solution improves the current one
or not. The exchange method is defined in Figure 14

In order to use the class hierarchy explained above to solve the p-median
problem, we define the problem and solution objects for this problem. These
classes inherit from their respective superclasses Problem and Solution, defined
previously.

We call the problem class PMedian Problem that is declared as follows:

PMedian Problem

− locations : List
− n : int
− p : int

+ getLocations() : List
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+ getN() : int
+ getP() : int
+ setLocations(List : locations) : void
+ setN(n : int) : void
+ setP(p : int) : void
+ evaluate(solution : Solution) : double

where locations is a list (vector, array, etc) of points, n is the size of that
list, i.e., the number of possible locations, and p is the number of facilities we
want to allocate. The methods are simply accessors to the attributes, except
for the evaluate method, which calculates the sum of the distances of every
point in the locations list to its nearest facility.

The solution class will be called PMedian Solution, and will be defined as
follows:

PMedian Solution

− facilities : List

+ getFacilities() : List
+ setFacilities(List : facilities) : void

where the list facilities denotes the points where the facilities will be allocated.
In this case, where the facility points are only allocated in the given location
points, it is easier for all the functions to deal with the PMedian Solution
class if the facilities attribute contains all the possible locations, ordered in
the way we mentioned above. That is, the first p elements of the list are the
points selected for the facilities, and the final n− p points are the discarded.
The methods are simply accessors to the attributes.

3.1 VNS for the p-median

PMedian VNS

# initializeParameters() : void
# generateInitialSolution() : void
# shake() : void
# improveSolution() : void

The basic VNS pseudocode 1 can be applied to any problem by providing
the implementation of the initialization procedure, the shaking method, the
local search and the function to test whether the solution is improved or not.

The shake procedure consists of, given the size k for the shake, choosing
k times two points, ui in the solution and uj outside the solution at random,
and performing the corresponding interchange move (see Figure 15).
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The improveSolution method is implemented using the Local Search de-
fined previously using the basic Exchange movement.

The initializeParameters method is void, although some initialization can
be done here (for example, initializing a seed for a random number generation
routine).

The generateInitialSolution method simply selects random points to be
included in a solution, unless an initial solution is provided, in which case the
initialization does nothing.

3.2 Scatter Search for the p-median

PMedian SS

− subsetI : int
− subsetJ : int

+ getSubsetI() : int
+ getSubsetJ() : int
# setSubsetI(i : int) : void
# setSubsetJ(j : int) : void
# initializeParameters() : void
# generateInitialPopulation() : void
# generateRefSet() : void
# selectSubset() : void
# combineSolutions(subset : Population) : Population
# improveSolutions(subset : Population) : Population
# updateRefSet() : void

The Scatter Search for the p-median problem uses the standard parameter
setting and rules explained above. The key idea to apply the scatter search
principles to an optimization problem is the distance between solutions used to
evaluate the dispersion among them. This distance for the p-median problem is
defined using the same objective function. Let fY (X) be the objective function
for the set of users in Y :

fY (X) =
∑

v∈Y

min
u∈X

Dist(u, v)

The distance between two solutions X and Y is given by Dist(X,Y ) =
fY (X) + fX(Y ).

We now summarize an implementation of the components of the Scat-
ter Search for the p-median problem, explaining the key methods mentioned
above.

1. generateInitialPopulation. A simple way to generate a population con-
sists in randomly creating solutions. We select p times a new point from U
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that is successively included in the set X. Given the previously fixed size
PopSize of random solutions, the population Pop is obtained by applying
the local search to each random solution as the improvement method. See
Figure 16.

2. generateRefSet. To generate a reference set from the population we first
include in RefSet the RefSetSize1 best solutions. Then we iteratively
include in the RefSet the farthest solution from the solutions already
in RefSet, repeating this procedure RefSetSize2 times. We then ob-
tain the reference set RefSet with size RefSetSize = RefSetSize1 +
RefSetSize2. The code of this method is given in Figure 17. The getFur-
thermostSolution method used in the code should return the furthermost
solution of a given population from those in the reference set, using the
distance concept defined above.

3. selectSubset. The selection of a subset to apply the combination consists
in considering all the subsets of fixed size r (usually r = 2). Figure 18
contains the code of this method. This method maintains its main indexes
as class attributes for allowing a StopCriterion class to determine if the
subset generation loop has finished.

4. combineSolutions. The combination of each two solutions consists in
the following. In the first place this method selects the points common to
both solutions. Let X be the set of these points. For every point u ∈ U \X
let

L(u) = {v ∈ U : Dist(u, v) ≤ βDistmax}
where

Distmax = max
u,v∈U

Dist(u, v).

Choose the point u∗ ∈ U such that

Dist(X,u∗) = max
u∈U

Dist(X,u)

and select at random a point v ∈ L(u∗) that is included in X. This step is
iteratively applied until |X| = p. The code of this method is shown in Fig-
ure 19. There, the method calls several procedures like getCommonPoints,
that should return a solution with the points that are part of all the solu-
tions; getDiffPoints, that does exactly the opposite, returning the points
that do not appear in all the solutions; getFurthermostPoint, that returns
the point with the largest distance to a set of points, selected from a set
of possibles; finally, selectNearNeighbour returns a random point from a
set of possibles that are considered “near” a given one (here, the limit of
“near” is controlled by the parameter β).

5. improveSolutions. Given a solution, the improveSolutions performs
the local search on a population of solutions using the interchange moves.

6. updateRefSet. Let ImpSolSet be the set of all the solutions reached
by the improveSolutions. Apply generateRefSet to the set RefSet∪
ImpSolSet.
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4 Conclusions

The ability of OOP to develop encapsulated, extensible software makes this
paradigm one of the most suitable for programming metaheuristics. Most
metaheuristics appearing in the literature share some common aspects in their
design (a main loop, attributes like the number of iterations, etc), which makes
them good candidates for establishing a class hierarchy.

The hierarchy we have proposed tries to differentiate between point-based
and population-based metaheuristics, but maintaining at the same time an in-
tuitive parallelism between their respective methods, which makes them easier
to understand. We have also proposed an implementation of a metaheuristic
of each class, VNS for point-based, and Scatter Search for population-based.
Although it is a very reduced set of examples, having in mind the number of
metaheuristics currently created, we hope that they give a significant insight
of how other metaheuristics could be implemented with this approach. The
purpose is to make the reader able to program new metaheuristics without
getting stuck in programming details, just caring of coding the relevant parts
of the algorithm.

Another property of OOP is the encapsulation and mobility it provides
to objects. For example, as we mentioned in the MhT VNS class, we can
produce an object to perform a local search in the improveSolution method,
but we could perfectly use a metaheuristic object to do that task. This ex-
ample illustrates how objects may help improving versatility and usability in
metaheuristic’s software design.

The reader may have also noted that, although the code provided has a
C + +-like style, we have tried not to stick to a specific programming lan-
guage, since our purpose was the design of the class hierarchy, which is code-
independent. The classes and their respective attributes and methods where
designed to use commonly extended features and data types, in order to allow
portability between languages.

As an additional comment the hierarchy proposed in this work has been
successfully implemented in practice in the context of the Weka Project ([34],
[36]). Weka is a collection of machine learning algorithms oriented to data
mining tasks, that is implemented in Java, and that provides a graphical
interface for dealing with the algorithms it contains. The project defines the
interface any Data Mining class should have to be able to interoperate with
the Weka environment, and all the classes included in the project conforming
to the interface are accessible to the final user. This environment allows a user
to graphically interact with these algorithms, including metaheuristics. This
illustrates the power of encapsulated, top-down design, allowing a problem-
oriented group of classes (like Metaheuristic) to be transparently integrated
in a graphical environment.
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Metaheuristic
− bestSolution : Solution
− problem : Problem

− iteration : int
− iterationOfBestSolution : int
− elapsedTime : double

− elapsedTimeOfBestSolution : double

− stopCriterion : StopCriterion

+ getBestSolution() : Solution

+ getProblem() : Problem

+ getIteration() : int

+ getIterationOfBestSolution() : int

+ getElapsedTime() : double

+ getElapsedTimeOfBestSolution() : double

+ getStopCriterion() : StopCriterion

+ setStopCriterion(stopCriterion : StopCriterion) : void

+ setBestSolution(solution : Solution) : void

+ setProblem(problem : Problem) : void

+ resetIteration() : void

+ resetElapsedTime() : void

+ runSearch() : void

# setIteration(iteration : int) : void

# increaseIteration() : void

# setIterationOfBestSolution(iteration : int) : void

# setElapsedTimeOfBestSolution(elapsedTime : double) : void

�
�

�
�
��

PointBased
− currentSolution : Solution
− newSolution : Solution

+ getCurrentSolution() : Solution

+ getNewSolution() : Solution

+ runSearch() : void

# setCurrentSolution(solution :

Solution) : void

# setNewSolution(solution :

Solution) : void

# initializeParameters() : void

# generateInitialSolution() : void

# generateNewSolution() : void

# acceptNewSolution() : bool

# acceptanceUpdateParameters() : void

# rejectionUpdateParameters() : void

@
@

@
@

@I

PopulationBased

− initialPopulationSize : int

− maxPopulationSize : int

− currentPopulation : Population

− newPopulation : Population

+ getInitialPopulationSize() : int

+ getMaxPopulationSize() : int

+ getCurrentPopulation() : Population

+ getNewPopulation() : Population

+ getBestSolutionInPopulation(population :

Population) : Solution

+ setInitialPopulationSize(size : int) : void

+ setMaxPopulationSize(size : int) : void

+ runSearch() : void

# setCurrentPopulation(population :

Population) : void

# setNewPopulation(population :

Population) : void

# initializeParameters() : void

# generateInitialPopulation() : void

# generateNewPopulation() : void

# acceptNewPopulation() : bool

# acceptanceUpdateParameters() : void

# rejectionUpdateParameters() : void

Fig. 3. Class Hierarchy for the proposed metaheuristics
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PointBased PopulationBased

6

MhT VNS
− K : int
− KMax : int

+ getK() : int

+ getKMax() : int

+ setKMax(KMax : int) : void

# setK(K : int) : void

# increaseK() : void

# generateNewSolution() : void

# acceptNewSolution() : bool

# acceptanceUpdateParameters() :

void
# rejectionUpdateParameters() :

void
# initializeParameters() : void

# generateInitialSolution() : void

# shake() : void

# improveSolution(solution : Solution) :

Solution

6

MhT SS
− RefSetSize : int
− RefSet1Size : int
− RefSet2Size : int
− subsetSize : int
− refSet : Population

− newRefSet : Population

− stopCriterionRefSet : StopCriterion

− stopCriterionPopulation : StopCriterion

+ getRefSetSize() : int

+ getRefSet1Size() : int

+ getRefSet2Size() : int

+ getSubsetSize() : int

+ getRefSet() : Population

+ getNewRefSet() : Population

+ getStopCriterionRefSet() : StopCriterion

+ getStopCriterionPopulation() :

StopCriterion

+ setRefSetSize(size : int) : void

+ setRefSet1Size(size : int) : void

+ setRefSet2Size(size : int) : void

+ setSubsetSize(size : int) : void

+ setStopCriterionRefSet(stopCriterion :

StopCriterion) : void

+ setStopCriterionPopulation(stopCriterion :

StopCriterion) : void

# setRefSet(refSet : Population) : void

# setNewRefSet(refSet : Population) : void

# generateNewPopulation() : void

# acceptNewPopulation() : bool

# acceptanceUpdateParameters() : void

# rejectionUpdateParameters() : void

# initializeParameters() : void

# generateInitialPopulation() : void

# generateRefSet() : void

# selectSubset() : void

# combineSolutions(subset :

Population) : Population

# improveSolutions(subset :

Population) : Population

# updateRefSet() : void

Fig. 4. Class Hierarchy for the proposed metaheuristics (cont.)
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Problem
− isMaxProblem : bool

+ isMaxProblem() : bool

+ setIsMaxProblem(isMax : bool) : void

+ areEqual(solution1 : Solution, solution2 : Solution) : bool

+ firstSolutionIsBetter(solution1 : Solution, solution2 : Solution) : bool

+ evaluate(solution : Solution) : double

Solution
− score : double

+ getScore() : double

+ setScore(score : double) : void

StopCriterion

+ stop(mh : Metaheuristic) : bool

6

GeneralStopCriterion

− maxTime : double
− maxIterations : int

+ stop(mh : Metaheuristic) : bool

+ getMaxTime() :double

+ getMaxIterations() : int

+ setMaxTime(maxTime : double) : void

+ setMaxIterations(maxIterations : int) : void

Fig. 5. Class Hierarchy for the proposed metaheuristics (cont.)
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PointBased::runSearch
void PointBased::runSearch()

{
resetEllapsedTime();

resetIterations();

generateInitialSolution();

do {
generateNewSolution();

if (acceptNewSolution()) {
acceptanceUpdateParameters();

setCurrentSolution (getNewSolution());

if (getProblem().firstSolutionIsBetter

(getCurrentSolution(),getBestSolution()))

{
setTimeOfBestSolution(time());

setIterationOfBestSolution(getIteration());

setBestSolution(getCurrentSolution());

}
} else {

rejectionUpdateParameters();

}
increaseIteration();

} while (!this.getStopCriterion().stop());

}

Fig. 6. PointBased::runSearch code
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PopulationBased::runSearch
void PopulationBased::runSearch()

{
Solution bestInPopulation;

resetEllapsedTime();

resetIterations();

generateInitialPopulation();

do {
generateNewPopulation();

if (acceptNewPopulation()) {
acceptanceUpdateParameters();

setCurrentPopulation (getNewPopulation());

bestInPopulation = getBestSolutionInPopulation

(getCurrentPopulation());

if (getProblem().firstSolutionIsBetter

(bestInPopulation, getBestSolution()))

{
setTimeOfBestSolution(time());

setIterationOfBestSolution(getIteration());

setBestSolution(bestInPopulation);

}
} else {

rejectionUpdateParameters();

}
increaseIteration();

} while (!this.getStopCriterion().stop());

}

Fig. 7. PopulationBased::runSearch code

MhT VNS::generateNewSolution
void MhT VNS::generateNewSolution()

{
shake();

improveSolution();

}

Fig. 8. MhT VNS::generateNewSolution code
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MhT VNS::acceptNewSolution
void MhT VNS::acceptNewSolution()

{
return getProblem().firstSolutionIsBetter

(getNewSolution(), getCurrentSolution());

}

Fig. 9. MhT VNS::acceptNewSolution code

MhT VNS::acceptanceUpdateParameters
void MhT VNS::acceptanceUpdateParameters()

{
setK( 1 );

}

Fig. 10. MhT VNS::acceptanceUpdateParameters code

MhT VNS::rejectionUpdateParameters
void MhT VNS::rejectionUpdateParameters()

{
increaseK();

}

Fig. 11. MhT VNS::rejectionUpdateParameters code
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MhT SS::generateNewPopulation
void MhT SS::generateNewPopulation()

{
Population subset;

do {
setNewRefSet(new Population());

do {
subset = selectSubset();

subset = combineSolutions(subset);

subset = improveSolutions(subset);

setNewRefSet(getNewRefSet().add(subset));

} while(!getStopCriterionRefSet().stop());

updateRefSet();

} while(!getStopCriterionPopulation().stop());

}

Fig. 12. MhT SS::generateNewPopulation code

Local Search
void local search(sol cur sol)

{
init sol = cur sol ;

while improved(cur sol,init sol))) {
for (i=p;i<n;i++)

for (j=0;j<p;j++) {
exchange(new sol,cur sol,i,j) ;

if improved(new sol,cur sol)

cur sol = new sol

} /* for */

} /* while */

} /* local search */

Fig. 13. Local Search Pseudocode

Exchange
void exchange(Solution new sol, Solution cur sol,

int i, int j)

{
facilities = cur sol.getFacilities();

aux = facilities[i] = facilities[j];

facilities[i] = facilities[j];

facilities[j] = aux;

new sol.setFacilities(facilities);

}

Fig. 14. Exchange Pseudocode
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PMedian VNS::shake
void PMedian VNS::shake(sol cur sol)

{
init sol = cur sol ;

for (r=0;r<k;r++) {
i = rnd % p ;

j = p + rnd % (n-p) ;

exchange(cur sol,new sol,i,j) ;

cur sol = new sol ;

} /* for */

} /* shake */

Fig. 15. Shake Pseudocode

PMedian SS::generateInitialPopulation
void PMedian SS::generateInitialPopulation()

{
for (i=0;i<getInitialPopulationSize();i++) {
cur sol = generateRndSolution();

cur sol = improveSolution(curr sol);

getCurrentPopulation().add(cur sol);

}
}

Fig. 16. generateInitialPopulation code
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PMedian SS::generateRefSet
void PMedian SS::generateRefSet()

{
// evaluate the solutions

for (i=0;i<getCurrentPopulation().size();i++) {
cur sol = (curr sol);

getProblem().evaluate(getCurrentPopulation().get(i));

}

// order the solutions by their score

sort(getCurrentPopulation());

// add refSetSize1 best solutions to the refSet

for (i=0;i<getRefSetSize1();i++) {
getRefSet().add(getCurrentPopulation().get(i));

}

// add refSetSize2 distant solutions to the refSet

for (i=0;i<getRefSetSize2();i++) {
cur sol = getFurthermostSol(population,refSet);

refSet.add(cur sol);

}
}

Fig. 17. generateRefSet code

PMedian SS::selectSubset
Population PMedian SS::selectSubset()

{
i = getSubsetI();

j = getSubsetJ();

if (NaN(i) || NaN(j)) {
i = 0;

j = 1;

} else if (j == getRefSetSize()-1) {
i++;

j = i + 1;

}
setSubsetI(i);

setSubsetJ(j);

return list(getCurrentPopulation.get(i),

(getCurrentPopulation.get(j));

}

Fig. 18. selectSubset code
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PMedian SS::combineSolutions
Population PMedian SS::combineSolutions(Population solutions)

{
newSolution = getCommonPoints(solutions);

possibleSolutions = getDiffPoints(solutions);

while (newSolution.getFacilities().size() <

problem.getP()) {
point = getFurthermostPoint(newSolution,

possibleSolutions);

point = selectNearNeighbour(possibleSolutions,

point,beta);

newSolution.getFacilities().add(point);

}
return list(newSolution);

}

Fig. 19. combineSolutions code
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Summary. Process systems engineering is one of the many areas in which mixed
integer optimisation formulations have been successfully applied. The nature of the
problems requires specialised solution strategies and computer packages or callable
libraries able to be extended and modified in order to accommodate new solution
techniques. Object-oriented programming languages have been identified to offer
these features. Process system applications are usually of large scale, and require
modelling and solution techniques with high level of customisation. ooMILP is a
library of C++ callable procedures for the definition, manipulation and solution of
large, sparse mixed integer linear programming (MILP) problems without the disad-
vantages of many existing modelling languages. We first present a general approach
to the packaging of numerical solvers as software components, derived from mate-
rial developed for the CAPE-OPEN project. The presentation is in the context of
construction and solution of Mixed Integer Linear Programming (MILP) problems.
We then demonstrate how this package, based on the use of CORBA interfaces for
synchronous execution within a single process, can be adapted with a minimum of
problem-specific changes to provide a distributed solution.

Key words: Object-oriented programming, callable library, optimization,
parallel computing, interface, branch-and-bound

1 Introduction

A wide variety of engineering, industrial, and business applications are for-
mulated as Mixed Integer Linear Programming (MILP) problems. The high
utilisation of MILPs in all these areas requires flexible integer optimisation
techniques and supporting software, able to be customised for different ap-
plications. These features are provided by object-oriented languages. These
languages are suitable for creating reusable software in an error-free manner.

A modelling language is expected to provide the ability to write a model of
the formulation in a manner that can be manipulated in many ways. Currently,
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given the model written in the modelling language as input, the output is
typically a standard format representation, readable by any system. A mixed
integer programming system is defined a program that reads in a mixed integer
standard form, creates an internal representation of the problem, and then
typically attempts to solve it using one of the techniques available to the
system. An optimisation technique is required to have three main properties:

1. to be applicable to a wide range of problems,
2. to have efficient implementation in order to handle large-scale problems

in reasonable small times,
3. easy formulation of a model.

Available in the market at the moment there are four well-known lan-
guages, namely AMPL, GAMS, LINGO and MP-XPRESS, and three major
MILP systems-solvers, which are CPLEX, OSL and XPRESS. The latter also
have optimisation subroutine libraries. Additionally to the commercial solvers
there is a number of available optimisation subroutine libraries but with lim-
ited capabilities regarding the size of the problem they can handle.

These modelling languages have the advantages of being generic, inter-
faced to most of the well-known solvers and are extensively used in industry
and academia. But they have their own disadvantages such as limited abil-
ity to implement new solution algorithms, difficulty to embed within other
applications since they have file-based communication, plus they do not offer
the generation of MILPs “on the fly”, or they cannot handle more than one
MILP simultaneously either in sequence or in parallel while they are within a
solving routine. On the other hand, callable libraries can be embedded within
other software but are difficult to use for building complex formulations, and
most likely they cannot support the solution of more than one MILP.

The lack of computer packages or callable libraries that support more than
one solution technique and allow the modification of an existing code or the
implementation of a new solution technique, and can handle more than one
MILP simultaneously, provided one of the motives for the development of this
optimisation package. Another prohibiting factor to the use of these systems
is the cost of purchasing and maintaining.

Over recent years parallel-distributed computing environments are devel-
oping very rapidly to tackle large problem instances such as occur in real
industrial use. With the application of optimization becoming more common
within the industry the need for powerful numerical packages has increased.
However the use of the optimisation routines (contained in those packages)
within their own modelling environments has been very restricted by the lack
of standardised interfaces and monolithic view of the current modelling pack-
ages.

In addition, parallel distributed computing applications require flexible
software tools that allow easy implementation of complex formulations and
algorithms.
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Identifying the need for common interfaces between software vendors and
the necessity of open architecture systems, the CAPE-OPEN MINLP inter-
faces were proposed, making it possible to access seamlessly, from a process
modelling environment, the latest optimisation algorithms available. This will
provide more robust and more efficient numerical tools to the end-users. For
optimisation algorithm developers, implementing the CAPE-OPEN MINLP
interface specification will give them access to a larger market where their
tools will be put to use immediately [6].

Global CAPE-OPEN (GCO) has developed a standard and unified soft-
ware interface for numerical solvers for both Mixed Integer Linear Programs
(MILPs) and Mixed Integer Nonlinear Programs (MINLPs). The interfaces
proposed take into account matters such as:

1. easy definition of complex MILP formulations
2. unified access to variety of commercial MILP solvers
3. implementation and testing of new MILP solution algorithms on both

serial and parallel computer architectures.
4. building software components within larger software systems (e.g. for pro-

cess scheduling, supply chain design, etc.)
5. allowing multiple instances of MILP solver simultaneously within the same

application.

Prior to the specification of Global CAPE-OPEN standards, a number
of integer optimisation tools were developed using various implementation
techniques and employing different solution methods. MINTO [9] is a soft-
ware system for the implementation and solution of mixed integer linear pro-
gramming problems using a branch-and-price algorithm. ABACUS [7] uses an
object-oriented framework for the construction and solution of MILP prob-
lems using branch-and-cut and branch-and-price algorithms. bc-opt [1] uses
branch-and-cut as the main method to optimise MILP problems.

The remainder of this chapter is organized into sections leading to the
final implementation of a parallel algorithm. Section 2 gives an overview of
the package developed. Our initial effort was focused on producing a system
that would allow capitalising on the architecture benefits as they were defined
by Global CAPE-OPEN, and build a callable library that can be easy used
within complex solution schemes. Section 3 describes the C++ objects as they
were developed to provide a modeling environment to mathematically describe
MILP problems and its serial pre-CORBA implementation. The implementa-
tion of CORBA interfaces in order to provide transparency and remote access
to the routines dynamically under any operating system and use distributed
computing power is described in Section 4. Section 5 presents a decomposition
algorithm suitable for almost any category of MILP problems making use of
solving in parallel many smaller problem instances. Section 6 continues with
the parallel architecture of the system as it was applied to incorporate the
above algorithm. Conclusions and ideas for further work are summarized in
Section 7.
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2 ooMILP Overview

MILPs are optimisation problems with a linear objective function and linear
equality and inequality constraints. The variables appearing in the objective
function and constraints are generally restricted to lie between specified lower
and upper bounds. Furthermore, some of these variables may be restricted to
integer values only. The aim of the optimisation is to determine values of the
variables that minimise or maximise the objective function while satisfying
the constraints and all other restrictions imposed on them.

Many important process engineering problems can be formulated directly
as MILPs. These problems include:

1. supply chain optimisation;
2. process planning and scheduling;
3. distribution and transportation planning and scheduling;
4. heat exchanger network synthesis.

Moreover, MILPs appear as important sub-problems in the solution of
mixed integer nonlinear programming problems (MINLPs), i.e. optimisation
problems with nonlinear objective functions and/or constraints, and both con-
tinuous and integer variables.

A simple and fairly standard mathematical description of an MILP can be
written as:

φ = min a>x + b>y
Ax + By ≤ c
xl ≤ x ≤ xu

y ∈ Zn,















where x, xl, xu, a, b ∈ Rn, c ∈ Rm, and A,B are an m× n real matrices. The
vectors x, y represent the unknowns; all other vectors and the matrices A, B
are known constants.

We note that:

1. the variables x are characterised by an index i = 1, . . . n and are bounded
between given lower and upper bounds xl and xu respectively;

2. the variables y are restricted to take integer values;
3. all constraints are expressed as inequalities of the form≤ c and are indexed

over the discrete domain 1, . . . ,m.

Albeit quite general, the above MILP form is not necessarily easy to con-
struct and/or manipulate. A major reason for this is that the variables and
constraints are maintained as unstructured lists or arrays which may contain
thousands of elements. On the other hand, most mathematical formulations
of practical problems in terms of MILPs are expressed in terms of a relatively
small number of distinct sets of variables and constraints.

ooMILP is a library of C++ callable procedures for the definition, ma-
nipulation and solution of large, sparse mixed integer linear programming
(MILP) problems. In particular, ooMILP:
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1. facilitates the definition of complex sets of constraints, reducing the re-
quired programming effort to a minimum;

2. allows its client programs to create and manipulate simultaneously more
than one MILP;

3. decouples the problem to be solved from the solver to be used;
4. provides a common interface to diverse MILP solvers which allows the

latter to be used without any changes to client programs (cf. CAPE-
OPEN standards for numerical solvers).

3 C++ objects and pre-CORBA serial implementation

The nature of MILP problems forces the use or the combination of more
than one technique in solving a problem. The object oriented programming
approach offers two major advantages over conventional languages:

1. The functionality of a code can be extended without the availability of
the source code.

2. Even if the source code is available for use in conventional languages, it
is usually very difficult to extend.

Based on the CAPE-OPEN standards as they were proposed [6] for the
interface of Mixed Integer Linear Programming problems our initial imple-
mentation involved four C++ objects, namely the MILP, the FlatMILP, the
MILPSolverManager and MILPSystem.

1. MILP provides methods for construction of MILP problems using multi-
dimensional variables and constraints. A separate interface is provided for
access to the problem by the solver, which treats the problem in a ‘flat’
manner (conversion between these two views is the main challenge in im-
plementing the construction tool). For this reason an object hierarchy is
used, as shown in Fig. 1.

To illustrate the ease of use of this system, the mathematical form of a typ-
ical multidimensional constraint will be as follows. For example, in a process
scheduling problem we can use the Resource Task Network (RTN) formulation
proposed by Pantelides (1994). The formulation seeks to optimise a process
involving NR resources (r = 1, . . . , NR) and NK tasks (k = 1, . . . , NK) over
a time horizon discretised into NT time intervals (t = 1, . . . , NT ).

[RTN ] : max
∑

CF
r (Rr,NT −Rr0)

subject to:

Rrt = Rr,t−1 +
∑

k∈Kr

τk
∑

θ=0

(µkrθNk,t−θ + vkrθξk,t−θ) ∀r, t = 1, . . . , NT + 1

0 ≤ Rrt ≤ Rmax
r ∀r, t = 1, . . . , NT + 1

V min
kr Nkt ≤ ξkt ≤ V max

kr Nkt ∀k, t = 1, . . . , NT + 1.
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FlatMILP

GetMILPSize()
GetFlatMILPVariables()
GetFlatMILPConstraints()

↑

MILP

NewIntegerVariable()
NewContinuousVariable()
NewConstraint()
AddVariableToConstraint()

Fig. 1. MILP inheritance structure.

The corresponding calls to set up the first constraint in ooMILP are given
in Figure 2.

for(int r=1 ; r<=NR ; r++) {

for(int t=1 ; t<=NT ; t++) {

RTNMilp->AddVariableSliceToConstraintSlice("R",

Intseq(r,t), IntSeq(r,t), "ResourceBalance",

IntSeq(r,t),IntSeq(r,t), -1.0);

RTNMilp->AddVariableSliceToConstraintSlice("R",

Intseq(r,t-1),IntSeq(r,t-1),"ResourceBalance",

IntSeq(r,t),IntSeq(r,t), 1.0);

for(int k=1 ; k<=NK ; k++){

for(int theta=0 ; theta<=min(tau(k),t-1) ; theta++) {

RTNMilp->AddVariableSliceToConstraintSlice("N",

Intseq(k,t-theta), IntSeq(k,t-theta),

"ResourceBalance",IntSeq(r,t),IntSeq(r,t),

mu(k,r,theta));

RTNMilp->AddVariableSliceToConstraintSlice("Xi",

Intseq(r,t-theta), IntSeq(r,t-theta),

"ResourceBalance",IntSeq(r,t),IntSeq(r,t),

nu(k,r,theta));

}

}

}

}

Fig. 2. Setting up the first constraint in the RTN example.

1. The base class FlatMILP is the only view of the object required by a
normal MILP solver. However, we will later present a parallel solver that
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requires the ability to construct MILP subproblems, and will thus act as
a client of the MILP interface.

2. The main role of the MILPSolverManager object is as a ‘factory’ which
produces the MILPSystem objects given FlatMILP objects.

3. The MILPSystem object thus represents the association of a particular
solver and a given MILP. It has a single method, Solve, which returns a
success condition and, if successful, leaves the solution to the problem in
the MILP object itself.

An initial implementation of this approach was carried out by implement-
ing the interfaces outlined above as abstract base classes, with implementation
classes derived from them. This has the advantage of simplifying (and remov-
ing possibly proprietary information) from the C++ header file required by
a client of the software.1 The resulting inheritance hierarchy is illustrated in
Figure 3.

Fig. 3. Total inheritance and structure of the ooMILP objects.

1 We assume here that the software is to be used by implementing C++ client soft-
ware rather than through a more high level tool such as one requiring a declarative
language, although such tools could clearly be constructed as clients.
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Thus if the abstract versions of the MILP and FlatMILP are defined in
milp.h, and MILPSolverManager and MILPSystem in milpsolver.h, these will
be the only headers required by client software using the package.

3.1 Creation of MILP and MILPSolverManager objects

The MILP and the MILPSolverManager as the main objects require to be
defined using the global functions,

MILP* newMILP();

and

MILPSolverManager* newMILPSolverManager(string name);

respectively.
Declarations of these functions occur in milp.h and milpsolver.h respec-

tively, but their definitions are implementation specific.
The implementations then simply create the implementation object and

return the base class pointer to be used:

#include "milp_impl.h"

MILP* newMILP() {

return new MILP_i();

}

Note that the newMILPSolverManager function takes a string argument, in-
tended to specify the required solver implementation.

#include "milpsolver.h"

MILPSolverManager* newMILPSolverManager(string name) {

return new milpsolvermanager_i(name);

}

For our non-CORBA version this had no effect because the solvers had
to be loaded in advance and made available — however, we will see that our
CORBA-based approach provides a quite natural way of using this name to
identify certain solver properties.

3.2 Associated methods and auxiliary objects

As we mentioned in section 2 a MILP comprises a set of linear constraints and
a linear objective function, consisting of variable and constraint occurrences.
Additionally, the problem data needs to be accessed in various manners, with
the problem in structured or flat form, therefore different sets of methods are
provided. Variables, constraints and objective function have their own char-
acteristics in this MILP object which are described below and their creation
is part of the MILP definition problem.
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Methods

Each MILP object offers a number of methods allowing its construction and
modification.

1. MILP instantiation method that creates an empty object.
2. MILP construction methods allowing the creation of variables, constraints,

objective function and their instances.
3. MILP modification methods allowing to modify existing instances.
4. Structured MILP information access methods allowing to receive infor-

mation from the structured problem.
5. MILP flat information access and update methods allowing to access the

matrix form of the problem and update it.

Variables and Constraints

An MILP is characterised by a number of distinct sets of variables and con-
straints objects. Each of these sets is either a scalar or an array of an arbitrary
number of dimensions.

A variable set (object) is characterised by the following information:

1. the name of the variable set;
2. the type of all variables in this set (continuous or integer);
3. the number of dimensions (may be zero for a scalar variable);
4. the size of each dimension of the array;
5. the upper and lower bounds of each element of the set;
6. the current value of each element of the set.

A constraint set (object) is characterised by the following information:

1. the name of the constraint set;
2. the type of all constraints in this set (equality or inequality);
3. the number of dimensions (may be zero for a scalar constraint);
4. the size of each dimension of the array;
5. the right hand side constant;
6. the variables occurring in these constraints and the corresponding coeffi-

cients.

4 Initial CORBA Version

In this section, we will explain the steps taken to package the preceding design
into a set of CORBA interfaces. Accomplishing this offers two advantages:

1. Local/remote transparency — as we shall see, the ability to use our
interfaces either within a single process or across networks is highly valu-
able.



DRAFT

362 Panagiotis Tsiakis and Benjamin Keeping

2. Componentisation — provided the same ORB is used for both, a solver
component can be provided very cleanly in the form of a dynamically
loaded software element (i.e. DLL in a windows context, or shared object
in Unix) for execution within the same process as its client.

We will first explore this question of packaging further, before considering
how to minimise the impact of CORBA on our code.

4.1 The package object

Additionally to wrapping the original objects discussed in the first section, it
proves convenient to provide a package object, so that the service of MILP
construction and solution can be provided through a single object reference.
The interface is simply:

interface IMILPPackage {

IMILPFactory GetMILPFactory();

IMILPSolver GetSolver(string name);

};

with a corresponding IMILPFactory interface:

interface IMILPFactory {

IMILP CreateMILP();

};

Note the string argument to GetSolver, which specifies the implementa-
tion to be used. This is likely to imply an attempt to dynamically load the
solver software based on this name. For example, if the IMILPPackage is im-
plemented by a server on a UNIX machine, the effect of a call with the string
“CPLEX” might be:

1. Load a shared object CPLEX.so into the same process as the server.
2. Call a routine with a standard name within that shared object, which:
• Creates a CORBA object with the IMILPSolverManager interface
• Returns its object reference

3. Return the object reference thus created to the client of IMILPPackage.

Since no corresponding need to dynamically select MILP construction tools
has yet been identified, there is no such argument to GetMILPFactory.

The overall implementation of the package might be:

1. in the form of a standalone executable, which upon execution generates
an object reference which can be given to the client software, e.g. through
the CORBA name service.

2. another dynamically loadable object, designed to execute in the client’s
own process, used through the same mechanism described previously for
the individual solvers.
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3. directly linked into the client code, since, as with the MILPFactory, there
is not currently a need to permit selection between multiple package im-
plementations.

It should be noted that the choice between these three approaches requires
only the most minimal differences in implementation code. Essentially, the
first requires a main program that creates the object and then serves it in
a blocking way, while the other two require an ‘init’ function which creates
the object in the same way but serves it in a non-blocking way and returns
its reference. The implementation of both of these is very simple and generic
– to the extent that templates can be used to remove the necessity of re-
implementing them for every interface.

The first approach listed, i.e. the standalone server, is the most applicable
for parallel execution on conventional networked machines, and is discussed
further in section 6 of this document.

4.2 Localising CORBA usage

This approach described would give a workable system: however, it is desirable
to localise the use of CORBA itself as much as possible within the code for
two main reasons:

1. considerable work was done in implementing both MILP construction and
solution prior to the introduction of the CORBA approach,

2. this is generally a good principle – the opposite extreme would be to
permeate the code with types specific to the CORBA interfaces.

In this section, we will explain in more detail how it was possible for both:

1. client software written to use the original milp.h/milpsolver.h approach,
and

2. the implementation side of the interface based on milp impl.h to remain
essentially unchanged.

The first of these was achieved by defining an alternative implementation
of our original abstract MILP interface which passes each call to its CORBA
equivalent. In particular, new MILP objects are created from an object ref-
erence to an existing CORBA MILP (possibly served by a remote process).
Thus the newMILP method is implemented by:

1. Obtaining an IMILPPackage reference (e.g. from a file)
2. Calling its GetMILPFactory method
3. Calling the resulting interface’s CreateMILP method.
4. Creating a new MILP c (for CORBA) object from the reference, and

returning a pointer to this local object.

Similarly, newMILPSolverManager is implemented by:

1. Obtaining the IMILPPackage reference in the same way,
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2. Passing the string argument – which thus now has a definite meaning –
to the GetSolver method

3. Creating a local MILPSolverManager object.

The interactions and the philosophy are illustrated in Fig. 4. Here we
show a MILPSolverManager component (1) wrapping the CPLEX subroutine
libraries being used by a client (2) which was written to work with the original
(non-CORBA) ooMILP interface.

Fig. 4. CORBA wrapping of the initial C++ implementation.
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Implementation of the MILPSolverManager’s CreateMILPSystem method
involves a little subtlety.

The method’s argument is a pointer to an abstract MILP object, but in or-
der to use the underlying IMILPSolverManager’s CreateMILPSystem method
we require an IFlatMILP CORBA object reference. This can be obtained
by dynamically down-casting the abstract MILP pointer to the underlying
MILP c object, and thence obtaining the CORBA reference with which this
was created. (The MILP c must therefore make this available through a public
method).

The header defining this mapping (for both MILP etc and MILPSolver-
Manager etc.) was named milp2corba.h.

The second part of the mapping process, ensuring that the implementa-
tion of MILP construction and solution can remain unchanged, was achieved
straightforwardly by wrapping the ‘native’ interface with a CORBA one: that
is, the interfaces were first re-specified in standard CORBA IDL, e.g.:

interface IFlatMILP {

...

};

These IDL files were then compiled into headers and skeleton code. The former
is included into both the client and server code, and is used as a base class
implementing the server, in much the same way that the original MILP etc
were used.

The wrapping can be carried out either through membership:

class IFlatMILP_i: public IFlatMILP {

...

private:

FlatMILP* origflatMILP;

};

or implementation inheritance:

class IFlatMILP_i: public IFlatMILP, private FlatMILP {

...

};

For consistency with the other wrapping style described earlier, we adopted a
membership approach. Note that in either case only the abstract FlatMILP
interface is needed. The header file defining this wrapping was designated
corba2milp.h.

4.3 Summary

To recap, our initial CORBA implementation provides the capability for client
software, given an object reference to an IMILPPackage object, to:
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1. Create a MILP object and populate it with variables (both continuous
and integer) and constraints involving occurrences of these variables.

2. Get a MILPSolverManager object reference for its choice of solver.
3. Create a MILPSystem object representing the conjunction of this solver

with the given problem.
4. Solve the problem — or ask the system to ‘solve itself’.
5. Extract and display/analyse the given solution through the original MILP’s

interface.
6. Make changes — including structural changes — to the MILP if desired,

and repeat from step 4.

In the next section we will briefly explain why the need for solver objects
to themselves create a number of MILP objects in parallel can arise, before
concluding with a demonstration of how cleanly this can be accomplished with
our CORBA-based approach.

5 Partially decomposable MILPs

MILPs belong to the category of combinatorial optimisation problems since
they include decision variables of a discrete nature, in the objective function
and/or in some of the problem constraints.

Solution techniques for such problems can be distinguished between heuris-
tic and complete enumeration. Heuristic techniques seek good solutions at a
reasonable computational time but they cannot guarantee either feasibility or
optimality; in many cases, they do not even provide a measure of how close
to optimality a feasible solution is [10].On the other hand, there are other
methods of combinatorial optimisation which are exact. These are techniques
based on theories of linear programming or graphs, or else use an implicit
enumeration approach such a branch-and-bound. Despite recent advances and
successes in computational power there are problem instances that cannot be
tackled with current solution methods.

In the decomposition methods, the mathematical structure of the models
is exploited via variable partitioning, duality theory, and relaxation methods.

Decomposition techniques are applied to cases where strong upper or lower
bounds are required in order to accelerate the solution procedure. Such de-
composition techniques are:

• Benders Decomposition [4]
• Lagrangian Relaxation [5, 3]
• Cross Decomposition [14]

All methods have extensively been used to solve mixed integer linear pro-
gramming problems in many disciplines and especially engineering. A draw-
back of the methods is that their application is problem dependent prohibiting
their generalization.
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It is not our purpose here to present the theory of decomposable MILPs
and the decomposition theory in detail [12, 2]. For our purposes, it is sufficient
to note that most (if not all) MILP problems can potentially be decomposed
into a number of sub-problems, such that only variables xp and yp and con-
straints Cp occur in sub-problem p (p = 1, . . . , NP ), together with the so-
called “key” variables x0, y0, which occur in all the sub-problems. This struc-
ture appears in problems with block diagonal or diagonal constraint structure
(see Fig. 5).

Fig. 5. Constraint structure for decomposable MILPs.

This structure allows one to divide the variables and constraints into dis-
joint sets (with any finiteNP ) and they involve variables xp, ypoccurring in
constraintsCp and belong to partitionp. Taking advantage of this property
and the existence of the variables x0, y0 and constraints C0 that belong to all
partitions we develop a branch-and-bound method which needs less time to
find a solution. However, for the decomposition to be of practical use in prob-
lem solution, we must identify a small number of (probably integer) variables
x0, y0which permit the remaining variables to be partitioned into NP sets, the
largest of which is significantly smaller than the original problem. Fortunately,
this proves possible for a large class of problems. Of particular significance for
this paper is the fact that the selection of key variables must currently be
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explicitly specified to the solver, although in principle its determination could
be automated using a partitioning algorithm.

Thus we envisage a specialised solver which will receive additional infor-
mation from the client software identifying the key variables before attempt-
ing the solution. The algorithm [12] then involves construction of NP sub-
problems corresponding to xp, yp and Cp. These can then be solved in parallel
– potentially a number of times during the solution of the original MILP –
with different right hand sides (these arise from trying different values of the
key variables).

6 Parallel solution software architecture

We will now see how a MILPSolverManager component can be written to
implement the approach described in the last section, building on the serial
architecture described earlier.

Firstly, a mechanism for specification of key variables is needed. This can
readily be handled through the very general parameter specification mecha-
nism used for our solvers. Specifically, after creating a MILPSystem with the
calls

MILPSolverManager *msol = new MILPSolverManager("PDMILP");

MILPSystem *msys = msol->CreateSystem(mymilp);

We will thus supply the key variable indices to the system object before asking
it to “solve itself”.

As mentioned at the end of section 4, the semantics of the MILPSystem
are that structural changes can be made to its MILP between calls to its Solve
method. This means that relatively little can be done by the constructor of the
MILPSystem, as the structure of the MILP cannot be relied upon to remain
fixed during its lifetime. In particular, the fairly routine graph-theoretical
analysis required to partition the MILP given its key variables can only be
carried out when Solve is called. The problem is decomposed automatically
using a partitioning algorithm which takes as input the “key” variables. The
decomposition branch-and-bound method is employed to solve the mixed in-
teger linear programming problem, taking advantage of the properties of the
decomposable problem (see Fig. 6).

The following is a simple structure for the Solve routine as it applies:

1. Perform partitioning analysis, producing NP pMILPs.
2. Create a MILP object for each partial pMILP.
3. Populate it with variables and constraints.
4. Create a MILPSystem object for each pMILP object.
5. Begin solution of original MILP.
6. When certain conditions apply, solve the pMILPs –

a) Set RHSs of the pMILPs.
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Fig. 6. Parallelised solution algorithm called within the Solve method.

b) Create NP threads – in each, call the Solve method of a MILPSystem,
and terminate on return.

c) Wait until all threads have completed.
d) Gather overall answer from these solutions, and continue solution of

original MILP using this as an upper bound, if we have a solution.
7. Repeat step 6 when next appropriate.

In the next section, we will present the infrastructure used to ensure that
steps 2 and 4 of the above algorithm create problem/solver pairs on NP
distinct processors (where available).

6.1 Providing the infrastructure for parallel computation

One possible drawback of basing the solution architecture on CORBA is the
fact that CORBA provides no built-in mechanisms for allocation of work to
available parallel processors. In fact, a solution based on combining CORBA
with MPI was considered. MPI [8] does provide the concept of a “virtual
machine”, where every node is identified by an integer index between 0 and
NN-1, where NN is the total number of nodes. Each node can determine
both the total number of nodes and its own identity: it can then use such
identifiers to transmit messages to other nodes, either singly or in groups. MPI
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implementations then provide their own mechanisms for defining the mapping
between node numbers and processes running on physical processors.

However, this approach was rejected for a number of reasons:

1. The complexity of combining the two technologies
2. The considerable overlap in their functionality
3. The need for MPI processes to be run in a ‘special’ way, with both client

and servers being launched simultaneously

CORBA does in fact provide a “name service”, which for our purposes
may be regarded as a directory-style hierarchy of object references accessible
to all machines on a network, permitting clients to locate servers by name:
these servers will either have been manually initiated or created automated
from a list of the available processors. Thereafter client-server communication
is initiated through the object reference, requiring no further contribution
from the name service.

A mechanism based on this service was devised, which requires a minimum
of problem-specific coding, and which fits better with the envisaged usage of
our code: i.e.:

1. servers being left running, one-per-machine, on a network, at any given
time processing work for zero or more clients.

2. clients being run normally, making use of the existing servers.

This mechanism simply consists of a special server executable, MILPPack-
ageServer, being started on each of the chosen processors. Its implementation
will be:

1. Create a single IMILPPackage object (see section 4.1).
2. Register the reference of this object with the CORBA name service under

the category “MILPPackage”.
3. Block indefinitely, waiting for CORBA interactions or an interrupt signal.
4. When such a signal is received:
• Remove the package reference from the name service
• Complete processing of current object interactions if possible
• Terminate

In its simplest form, the client code for steps 2-4 of the algorithm of the
previous section will then be:

1. Obtain list of all IMILPPackage servers from name service, and create NP
MILP objects in a ‘round-robin’ manner.

2. Populate the MILPs. Note that this involves network communication –
through the local/remote-transparent CORBA mechanism – with each of
the servers involved.

3. For each pMILP, use the same package object that yielded its IMILPFac-
tory reference to obtain an IMILPSolver reference, and create a MILP-
System by passing the pMILP to this solver. This will mean that the
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communication carried out between MILPSystem and MILP during solu-
tion of the pMILP will be intra-process.

The mechanisms for creation of MILPs at step 2, and of MILPSystems at
step 4, will be as outlined in section 4.2.

As a refinement on this simple approach, a separate interface such as the
following can be defined:

interface IRateProcessor {

double GetSpeed();

double GetLoad();

};

which provides indications of both the speed of this particular processor (of
use for a heterogeneous network) and a dynamic measure of the existing load
on that processor.

This interface can then be “mixed in” to the IMILPPackage interface
through inheritance. A general routine can then be written with the following
signature:

list<Object> GetBestNServers(string type, int N);

which given a type (in this case “MILPPackage”) and the number of required
servers (in this case NP , the number of partitions) does the following:

1. Obtains the list of object references to all available servers of the appro-
priate type.

2. Applies the CORBA “narrow” mechanism to each object reference in order
to interact with the underlying remote object through its IRateProcessor
interface (this is the mechanism by which genericity is ensured).

3. Determines the speed sand load lof each processor and computes an esti-
mate of the relative solution rate it would achieve if given a MILP to solve:
the formula (neglecting priority effects) will be approximately: r = s

l+1 .
4. Returns the object references of the N servers deemed likely to give the

best performance (including repeat values if fewer than Nare available,
or if there are sufficient disparities in the rates computed by the previous
step (it may be difficult to estimate the effect of giving more than one job
to a given server which currently has none, particularly as the processes
creating the existing load may be running at different priorities from the
server process).

The client code can then free its existing server objects each time solution
is completed, and call this routine whenever pMILP solution commences, in
order to ensure that resources are allocated as efficiently as possible.

We have implemented a solver component based on the above algorithm,
which we refer to as “dBB” (for decomposition Branch-and-Bound).

Fig. 7 (an extended version of Fig. 4) presents the interactions involved
when using this MILPSolverManager (1). The dBB software’s milpsystem (3)
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makes use of the Server (4) to create the additional MILPs for each partition.
These are then solved using the CPLEX MILPSolverManager (1).

Fig. 7. Interactions involved in using the parallel solver.

6.2 Notes on multithreading

It is worthwhile to record decisions taken in the design of the client-side mech-
anism to achieve parallelism. CORBA provides a mechanism for “one-way”
calling, which at first appeared attractive. This would mean that a single-
threaded client could initiate solution of each MILPSystem with non-blocking
calls, collecting results through a call-back mechanism. However, the CORBA
standard makes it clear that the semantics of one-way calling are “best ef-
fort” only, meaning that there is no certainty that a particular call will be
received by the server concerned. A particular CORBA implementation, or
“ORB”, might offer a better guarantee in this respect, but reliance on this
would be a loss in terms of portability. Another concern with the use of the
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mechanism is that an unnecessary difference between the serial and parallel
client implementations might arise.

Thus all CORBA calls used in our implementation are of the blocking
kind, that is control is only returned to the calling thread when the receiving
process has completed execution of each method.

It will be noted that the initialisation stage (steps 2, 3 and 4 of the algo-
rithm presented at the beginning of this section) were carried out from a single
thread, where as multiple threads were created for the solution stage (step 6).
This is not because the time taken for initialisation is expected to be trivial
compared with solution, but rather because the initialisation stage inevitably
requires a high proportion of client CPU input. Indeed, it might be considered
that knowledge of the characteristics of the MILPSystem implementation was
relied on in this design – i.e. the fact that only the Solve method is com-
putationally intensive, with only information storage being performed in the
construction stages.

The actual mechanism used at step 6 to create the distinct threads is a
very straightforward one based on “omni thread”, a library class supplied as a
‘bonus’ part of our preferred CORBA implementation, omniORB from AT&T
Laboratories. We use a single method of this class, create, which takes two
arguments: a call-back routine and a pointer to be passed as an argument to
that routine. It then creates a thread which calls this routine, and terminates
when it returns.

Using this, the thread creation process at substep b of step 6 has the form:

omni_thread::create(SolveAMILP, (void*) &(thesystems[i]));

where SolveAMILP is a function which calls the Solve routine of its MILP-
System argument, and decrements a counter on completion in order to carry
out substep c, i.e. suspending the main thread of execution until all the Solve
calls have returned.

6.3 An example from supply chain design problems

An example of the application of the dBB algorithm to the solution of a supply
chain design problem under product demand uncertainty [13] is presented.

The problem considers the design of a mutli-echelon, multiproduct produc-
tion and distribution network operating under a number of possible demand
scenarios. The network consists of a number of existing multiproduct, mul-
tipurpose plants at fixed locations, a number of warehouses and distribution
centres of unknown locations (to be selected by a set of candidatelocations
, determined by the optimisation) and a number of customer zones at fixed
locations. Except the network structure the optimisation has to determine op-
erational issues, such as production amounts, material flows, warehouse and
distribution centres capacities, together with transportation modes through
the network.
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The formulation for modelling the supply chain for the steady-state design
under uncertainty [13] and for the case of dynamic modelling with or without
uncertainty fall directly in this category of problems. More specifically, the
network design variables and some continuous variables form the set of key
variables which can decompose the original problem in as many partial MILPs
as the number of demand scenarios. Similarly, the dynamic formulation can be
decomposed into partial problems corresponding to individual time periods.

We use two instances of the problem with the size presented in Table 1.
The problems are for the steady-state case under demand uncertainty. In the
first case we consider a three demand scenarios case while in the second a four
demand scenarios case.

Demand scenarios 3 4

Constraints 54228 72159

Continuous variables 34176 45561

Binary variables 13989 18525

Continuous key variables 21 21

Binary key variables 381 381

Non-zero elements 192996 257152

Partitions 3 4

Table 1. Problem size statistics.

The results obtained attempting to solve the problem using the two meth-
ods are presented in Table 2.

Demand scenarios 3 4

Method dBB CPLEX dBB CPLEX

Solution found 1,959,630 1,967,552 2,656,980 2,779,952

Nodes Examined 563 1,381 670 121,000

CPU time (s) 3,716 5,423 2,844 244,321

Table 2. Solution statistics.

The advantage of the decomposition algorithm is obvious comparing with
standard branch-and-bound as used within CPLEX. Overall, dBB examines
fewer nodes and in less time thus reducing the computational effort. Moreover
in the case of four scenarios our solution approach finds the optimal solution
where CPLEX only finds a sub-optimal. Although CPLEX was used for this
example, the system can use any MILP solver with a callable library and
standard interface. The competitive advantage of the method against standard
branch-and-bound approaches will be maintained because of the concept of
exploiting the structure of the problem and generating better bounds.
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7 CONCLUSIONS

ooMILP is a general object-orientated interface for MILP definition, con-
struction and solution. It provides a number of methods for this reason re-
quiring minimal programming effort for the construction of the MILP problem
formulation by the client, offering at the same time high flexibility.

In addition, it provides other applications (“clients”) with unified access
to all solvers. Solvers are independent of the milp problem. This adds the
advantage of being a convenient platform for implementation and testing of
solution algorithms.

This work presented a general approach of packaging numerical solvers
for mixed integer linear programming problems based on the CAPE-OPEN
standards. The advantages of tools based on open-architecture are clear and
the ease of implementation state-of-the-art solution algorithms is inherent.

Also utilising CORBA we provided solution in implementing a parallel
algorithm that can use either multi-processor or network computers to re-
duce the solution time required to a general type of problem widely found in
many applications. Additionally, the decomposition Branch-and-Bound (dBB)
is generally implemented to be applied to any type of problem that has the
properties described.
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Summary. The OVO (Order-Value Optimization) problem consists in the min-
imization of the Order-Value function f(x), defined by f(x) = fip(x)(x), where
fi1(x)(x) ≤ . . . ≤ fim(x)(x). The functions f1, . . . , fm are defined on Ω ⊂ Rn and p

is an integer between 1 and m. When x is a vector of portfolio positions and fi(x)
is the predicted loss under the scenario i, the Order-Value function is the discrete
Value-at-Risk (VaR) function, which is largely used in risk evaluations. The OVO
problem is continuous but nonsmooth and, usually, has many local minimizers. A
local method with guaranteed convergence to points that satisfy an optimality condi-
tion was recently introduced by Andreani, Dunder and Mart́ınez. The local method
must be complemented with a global minimization strategy in order to be effective
when m is large. A global optimization method is defined where local minimizations
are improved by a tunneling strategy based on the harmonic oscillator initial value
problem. It will be proved that the solution of this initial value problem is a smooth
and dense trajectory if Ω is a box. An application of OVO to the problem of find-
ing hidden patterns in data sets that contain many errors is described. Challenging
numerical experiments are presented.

Key words: Order-Value optimization, local methods, harmonic oscillator,
tunneling, hidden patterns.

1 Introduction

Given m continuous functions f1, . . . , fm, defined in a domain Ω ⊂ Rn and
an integer p ∈ {1, . . . ,m}, the p−Order-Value (OVO) function f is given by

f(x) = fip(x)(x)

for all x ∈ Ω, where ip(x) is an index function such that

fi1(x)(x) ≤ fi2(x)(x) ≤ . . . ≤ fip(x)(x) ≤ . . . ≤ fim(x)(x).



DRAFT

380 R. Andreani, J.M. Martinez, M. Salvatierra, and F. Yano

The OVO function is continuous [2]. However, even if the functions fi are
differentiable, the function f may not be smooth. The OVO problem consists
in the minimization of the Order-Value function:

Minimize f(x) subject to x ∈ Ω. (1)

The definition of the OVO problem was motivated by two main applica-
tions.

1. Assume that Ω is a space of decisions and, for each x ∈ Ω, fi(x) repre-
sents the cost of decision x under the scenario i. The Minimax decision
corresponds to choose x in such a way that the maximum possible cost
is minimized. This is a very pessimistic alternative and decision-makers
may prefer to discard the worst possibilities in order to proceed in a more
realistic way. For example, the decision maker may want to discard the 10
% more pessimistic scenarios. This corresponds to minimize the p−Order-
Value function with p ≈ 0.9 × m. When fi(x) represents the predicted
loss for the set x of portfolio positions under the scenario i, the function
f(x) is the Value-at-Risk function, which is largely used in the finance
industry. See [15].

2. Assume that we have a parameter-estimation problem where the space
of parameters is Ω and fi(x) is the error corresponding to the observa-
tion i when the parameter x is adopted. The Minimax estimation problem
corresponds to minimize the maximum error. As it is well-known this es-
timate is very sensitive to the presence of outliers [14]. Sometimes, we
want to eliminate (say) the 15% larger errors because they can represent
wrong observations. This leads to minimize the p−Order-Value function
with p ≈ 0.85×m. The OVO strategy is adequate to avoid the influence
of systematic errors.

In [2] the continuity and differentiability properties of the Order-Value
function was proved, nonsmoothness was discussed, local optimality condi-
tions were introduced and, according to them, a local algorithm was defined.
This algorithm is guaranteed to converge only to points that satisfy the op-
timality conditions, which are not necessarily global minimizers. A different
approach was used in [1]. In this paper a nonlinear-programming reformula-
tion of the OVO problem was defined. So, a general nonlinear programming
solver can be used for solving it but, again, global solutions may be very dif-
ficult to find. Nonlinear programming methods that take advantage of the
structure of the OVO reformulation were presented in [22, 23] but it is too
soon for an evaluation of the effectiveness of these reformulations for solving
practical problems.

The objective of the present work is to insert the local algorithm in a global
heuristic and to apply the resulting method to the problem of finding hidden
patterns. It is interesting to observe that, both in the application to decision
problems and in the application to robust estimation of parameters, the OVO
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problem used corresponds to large values of p (generally close to m) whereas
in the hidden-pattern problem the small values of p are the interesting ones.
This is because we assume, in the latter problems, that all except a small
number of data are corrupted.

This paper is organized as follows. The local algorithm is presented in Sec-
tion 2. In Section 3 we introduce Lissajous motions, which are the basis of the
global heuristic. In Section 4 we describe the global optimization algorithm.
The hidden-pattern problem is discussed in Section 5. Numerical experiments
are shown in Section 6 and in Section 7 we give some conclusions and discuss
the lines for future research.

2 Local Algorithm

In this section we present the local algorithm which will be used in the calcu-
lations. Before, let us define for all ε > 0 and x ∈ Ω:

Iε(x) = {j ∈ {1, . . . ,m} | f(x)− ε ≤ fj(x) ≤ f(x) + ε}.

Algorithm 2.1
Let x0 ∈ Ω be an arbitrary initial point. Let θ ∈ (0, 1), ∆ > 0, ε > 0,

0 < σmin < σmax < 1, η ∈ (0, 1].
Given xk ∈ Ω the steps of the k-th iteration are:

Step 1. (Solving the subproblem)
Define

Mk(d) = max
j∈Iε(xk)

∇fj(xk)T d.

Consider the subproblem

Minimize Mk(d) subject to xk + d ∈ Ω, ‖d‖∞ ≤ ∆. (2)

Let d̄k be a solution of (2). Let dk be such that xk + dk ∈ Ω, ‖dk‖ ≤ ∆
and

Mk(dk) ≤ ηMk(d̄k). (3)

If Mk(dk) = 0 stop.
Step 2. (Steplength calculation)

Set α← 1.
If

f(xk + αdk) ≤ f(xk) + θαMk(dk) (4)

set αk = α, xk+1 = xk + αkdk and finish the iteration. Otherwise, choose
αnew ∈ [σminα, σmaxα], set α← αnew and repeat the test (4).

Observe that, when Ω is convex, (2) is equivalent to the convex optimiza-
tion problem

Minimize w
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∇fj(xk)T d ≤ w, ∀ j ∈ Iε(xk),

xk + d ∈ Ω, ‖d‖∞ ≤ ∆.

Assume that Ω ⊂ Rn is closed and convex, and f1, . . . , fm have continuous
partial derivatives in an open set that contains Ω.

For all x, y ∈ Ω, j = 1, . . . ,m, we assume that

‖∇fj(x)‖∞ ≤ c,

and
‖∇fj(y)−∇fj(x)‖∞ ≤ L‖y − x‖∞.

Definition. We say that x is ε-optimal (or critical) if

D ≡ {d ∈ Rn | x + d ∈ Ω and ∇fj(x)T d < 0, ∀ j ∈ Iε(x)} = ∅.

The following theorem was proved in [2].
Theorem 2.1. Assume that xk ∈ Ω is the k−th iterate of Algorithm 2.1.
Then:

1. The algorithm stops at xk if, and only if, xk is a critical point. If the
algorithm does not stop at xk, then the k−th iteration is well-defined and
finishes at Step 2 with the computation of xk+1.

2. Suppose that x∗ ∈ Ω is a limit point of a sequence generated by Algo-
rithm 2.1. Then x∗ is critical.

3 Lissajous motions

Assume that Ω ⊂ Rn is a bounded box with nonempty interior. That is:

Ω = {x ∈ Rn | ` ≤ x ≤ u}.

The Harmonic Oscillator Initial-Value problem is the system of n indepen-
dent harmonic oscillators given by:

d2

dt2
xi(t) + θ2

i xi(t) = 0, i = 1, . . . , n (5)

where θ2
i = [ke]i

g , g is the mass of the body and the [ke]i’s are the elasticity
constants.

The solutions of (5) are:

α(t) = (cos(θ1t + ϕ1), . . . , cos(θnt + ϕn)), (6)

where ϕ1, . . . , ϕn are constants. The trajectory defined by each solution (6) is
called a Lissajous curve. See [12] p. 36. In Figures 1 and 2 we show examples
of these curves for n = 2 and n = 3, respectively.
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Given x0 ∈ Ω and choosing appropriately ϕ1, . . . , ϕn we can find a Lis-
sajous curve such that x(0) = x0. Clearly, Lissajous curves are smooth. In this
section we give a simple proof that the image of a Lissajous curve is dense in
[−1, 1]n.
Definition. We say that θ1, . . . , θn ∈ R are linearly independent over Q if

n
∑

i=1

riθi = 0 and r1, . . . , rn ∈ Q

only if r1 = · · · = rn = 0.
Theorem 3.1. (Kronecker’s Approximation Theorem)
Let h1, h2, . . . , hn ∈ R be linearly independent over Q, ξ1, . . . , ξn ∈ R and
ε > 0. Then, there exists t ∈ R and ki ∈ Z such that

|hit− ξi − ki| < ε, ∀ i = 1, . . . , n.

Proof. See [13] pp. 431-437.
Theorem 3.2. Let α : R −→ [−1, 1]n be the Lissajous curve given by (6),
where θ1, . . . , θn are linearly independent over Q. Then, the image of α(t) is
dense in [−1, 1]n.
Proof. Let ε > 0 be arbitrarily small and x ∈ [−1, 1]n.

Let λ ∈ Rn be such that

cos(λi) = xi, ∀ i = 1, . . . , n. (7)

By the uniform continuity of the cosine function, there exists δ > 0 such
that

|t1 − t2| ≤ δ ⇒ | cos(t1)− cos(t2)| ≤ ε, ∀ t1, t2 ∈ R. (8)

Define

hi =
θi

2π
, ξi =

λi − ϕi

2π
, i = 1, . . . , n.
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Since θ1, . . . , θn are linearly independent, h1, . . . , hn are also linearly inde-
pendent. By Theorem 3.1 there exists t ∈ R and ki ∈ Z such that

∣

∣

∣

∣

θi

2π
t− λi − ϕi

2π
− ki

∣

∣

∣

∣

<
δ

2π
, i = 1, . . . , n.

So,
|θit + ϕi − (λi + 2kiπ)| < δ, i = 1, . . . , n.

Then, by (8) and the periodicity of the cosine function,

| cos(θit + ϕi)− cos(λi)| ≤ ε.

From (7), the desired result follows.
Let Φ be the obvious linear diffeomorphism between [−1, 1]n and Ω. By

Theorem 3.2, {Φ(α(t)), t ∈ R} is dense in Ω. Moreover, if β : (−1, 1) → R is
one-to-one and continuous, we have that the set

{Φ[α(β(t))] | t ∈ (−1, 1)}

is also dense in Ω. Let us define F : (−1, 1)→ R by

F (t) = f [Φ[α(β(t))]]. (9)

The problem of minimizing f on Ω is equivalent to the problem of minimizing
F on (−1, 1) in the sense given by the following theorem.
Theorem 3.3. Let x∗ be a global minimizer of f on Ω and ε > 0. Then, there
exists t ∈ (−1, 1) such that

F (t) < f(x∗) + ε.

Proof. By the continuity of f , there exists δ > 0 such that f(x) < f(x∗) + ε
whenever ‖x − x∗‖ < δ. Since {Φ[α(β(t))] | t ∈ (−1, 1)} is dense in Ω, there
exists t ∈ (−1, 1) such that ‖Φ[α(β(t))] − x∗‖ < δ. Then, f [Φ[α(β(t))] <
f(x∗) + ε as we wanted to prove.

4 Global algorithm

The local Algorithm 2.1 can be very effective in many cases for finding global
minimizers of the OVO problem. However, when m is large, the number of
local minimizers increases dramatically. Moreover, critical points are not nec-
essarily local minimizers and, therefore, the number of possible limit points
of Algorithm 2.1 that are not global solutions is enormous.

Our strategy for solving the OVO problem consists of using the lo-
cal algorithm for finding a critical point x∗ and, then, trying to “escape”
from this critical point using a Lissajous curve that passes through it.
The linearly independent parameters θ1, . . . , θn that define the Lissajous
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curves are chosen to be the square roots of the n first prime numbers. So,
{θ1, θ2, θ3, . . .} = {

√
2,
√

3,
√

5, . . .}. Therefore, the escaping strategy is re-
duced to a one-dimensional tunneling procedure. See [19, 25, 26, 28], among
others.

After many trials and errors, we defined the global algorithm described
below. Besides the local minimization and the tunneling phases we introduced
a multistart procedure for generating different initial points, defining criteria
for discarding poor initial points and establishing an upper limit of one second
for each call to the tunneling phase.
Algorithm 4.1

Let kmax > 0 be an algorithmic parameter. Initialize k ← 1, fmin ← ∞,
C ← ∅, A ← ∅, δ = 0.1× min

1≤i≤n
{ui − li}.

Step 1. Random choice
Choose a random (uniformly distributed) initial point xIk

∈ Ω. If k = 1
update

A ← A∪ {xIk
},

and go to Step 5.
Step 2. Functional discarding test

Define
fmax = max{f(x) | x ∈ A}.

The probability Prob of discarding xIk
, is defined in the following way:

• If f(xIk
) ≤ fmin, Prob← 0.

• If f(xIk
) ≥ fmax, Prob← 0.8.

• If fmin < f(xIk
) < fmax, Prob← 0.8

(

f(xIk
)− fmin

fmax − fmin

)

.

Discard the initial point xIk
with probability Prob. If xIk

was discarded,
return to Step 1.
Step 3. Neighborhood discarding test

Define
dmin = min{‖x− xIk

‖∞ | x ∈ C}
Update Prob, the new probability of discarding xIk

, in the following way:

• If dmin ≤ δ, Prob← 0.8.
• If dmin > δ, Prob← 0.

Discard the initial point xIk
with probability Prob. If xIk

was discarded,
return to Step 1.
Step 4. 10-Iterations discarding test

Perform 10 iterations of the local method (Algorithm 2.1) obtaining the
iterate x10,k. Define

f10 = f(x10,k)

and
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faux = f(xIk
)− 0.1(f(xIk

)− fmin).

Update the probability Prob in the following way:

• If f10 ≤ fmin, Prob← 0.
• If f10 ≥ faux, Prob← 0.8.

• If fmin < f10 < faux, Prob← 0.8

(

f10 − fmin

faux − fmin

)

.

Discard xIk
with probability Prob. If xIk

was discarded, return to Step 1.
Otherwise, update

A ← A∪ {xIk
},

and go to Step 5.
Step 5. Local minimization

Taking xIk
as initial point, execute Algorithm 2.1 obtaining a critical point

x∗,k. Update the set of critical points:

C ← C ∪ {x∗,k}.

Update the best functional value:

fmin ← min{fmin, f(x∗,k)},

xmin ← x∗,k if fmin = f(x∗,k).

Set time← 0 and go to Step 6.
Step 6. Tunneling

Using the Lissajous curve that passes through x∗,k and the definition (9),
try to obtain t ∈ (−1, 1) such that F (t) < f(x∗,k). If such a point is obtained,
update

xIk
← Φ[α(β(t))]

and go to Step 5. At each step of the tunneling process, update the computer
time parameter time. If time exceeds one second and k < kmax set k ← k +1
and go to Step 1.

The random choice at Step 1 of Algorithm 4.1 trivially guarantees that a
global minimizer is found with probability 1. This is stated, for completeness,
in the following theorem.
Theorem 4.1 Let x∗ be a global minimizer of (1) and let ε > 0 be arbitrarily
small. Assume that kmax = ∞. Then, with probability 1, there exists k ∈
{1, 2, . . .} such that the point xmin computed at Step 5 of the algorithm satisfies
f(xmin) ≤ f(x∗) + ε.
Proof. Since f is continuous there exists a ball B centered in x∗ such that

f(x) ≤ f(x∗) + ε ∀ x ∈ B.

Since the initial point at Step 1 is chosen randomly and according to
the uniform distribution, the probability of choosing xIk

∈ B at a particular
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iteration k is strictly positive. By the structure of Steps 2–4, the probability
of discarding xIk

is strictly smaller than 1.
Therefore, at a fixed iteration k, a point belonging to the ball B is chosen

as the initial point for Algorithm 2.1 with positive probability. Since Algo-
rithm 2.1 does not increase the objective function value, it follows that, given
k, a point xmin ∈ B is computed at Step 5 with positive probability. The
desired result follows since kmax =∞.

5 Hidden patterns

The search of hidden patterns is one of the most challenging issues in modern
data mining. Many papers address the problem of hidden-patterns discovery
in different areas, as Ecology [9, 24], Web-log Analysis [16], Public Health
Administration [17], Spatio-temporal Dynamics of Wave Modes [8], Art [35],
Psychoanalytic Literary Criticism [27], Psychiatry [11], Social History [29],
Demography [6, 7], City Systems [18] and many others.

Consider the clouds of points given in Figures 3a and 3b. At a first sight,
the two clouds of points look qualitatively similar. However, in Figure 3a there
are exactly five points that lie on the same parabola whereas in Figure 3b such
set of points does not exist.
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In Figure 4 we show again the points of Figure 3a together with the
parabola that fits those special points. In situations like this, we say that Fig-
ure 3a hides the pattern of a parabola (or, simply, hides a parabola), whereas
Figure 3b does not.
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In the following section we show how the OVO problem and Algorithm 4.1
may be used to find hidden patterns of this type. Several examples presented
in the following section are simple and small enough to be solved by exhaus-
tive enumerative methods. However, if the number of data or the number of
unknown parameters is moderately increased the use of combinatorial proce-
dures is prohibitive. This is the reason why we did not consider enumerative
algorithms in our analysis.

It must be mentioned that in many data-mining papers and applications,
patterns are hidden in the sense that they are difficult to find, at least using
standard fitting procedures. In our case patterns are hidden because they are
revealed only taking into account a small amount of data, the reason being
that most available information is severely corrupted.

6 Numerical experiments

Some practical features concerning the implementation of the algorithm are
given below:

• As mentioned before, problem (2) is a convex optimization problem. More-
over, in our applications the constraints Ω will be linear, therefore (2) is
a Linear Programming problem. For solving it we use the IMSL Library
routine DDLPRS.

• The subproblems were solved exactly. This means that we used η = 0.
• The algorithmic parameters used were:

θ = 0.5, ∆ = 1, ε = 10−3, σmin = 0.1, σmax = 0.9.

• In the backtracking process (4) we took αnew = 0.5α.
• All the numerical experiments were run on a Pentium 4, 2.4 Ghz, 1Gb

RAM in double precision FORTRAN.
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6.1 Finding hidden polynomials

Assume that {(t1, y1), . . . , (tm, ym)} ⊂ R2 is a set of data and we know that
“most of them are wrong”. Nevertheless, a few of these points contain valuable
uncorrupted information, represented by a low-degree polynomial x1t

n−1 +
· · ·+xn−1t+xn. Least-squares fitting of the form yi ≈ x1t

n−1
i +. . .+xn−1ti+xn

leads to disastrous results due to the overwhelming influence of outliers.
Number of

Best solution obtained
minimizations

Successful Calls to Successfulp kmax x f(x)
Tunnelings Algorithm 2.1 Step

3 10 2 -0.34 1.65 3.97 1.40E-16 4 step 1
4 150 190 1.00 -5.00 2.00 2.68E-13 233 step 1
5 250 395 1.00 -5.00 2.00 2.94E-13 590 step 1
6 200 284 1.51 0.90 6.23 0.2687 307 step 6
7 200 397 1.66 1.39 2.59 1.3313 431 step 6
8 200 376 1.54 0.84 5.14 2.3728 384 step 6
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150

−10 −5 0 5 10
0

50

100

150

· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 5

Table 1: m = 50, “correct p”= 5, x∗ = (1,−5, 2)
The OVO approach for finding the hidden polynomial consists in defining,

for each i = 1, . . . ,m, the error function

fi(x) = (

n
∑

j=1

xjt
n−j
i − yi)

2.

Given p ∈ {1, . . . ,m}, this set of functions defines an OVO problem (1) for
which Algorithm 4.1 may be employed. The idea is to solve this problem for
different values of p. If p is close to m we expect a large value of the OVO
function at the solution found, showing that there are wrong data among the
points that correspond to fi1 , . . . , fip

. When p is decreased, the OVO function
at the solution tends to decrease as well. We expect that, when we take “the
correct p”, the OVO function would decrease abruptly, taking a value close to
zero.
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The results are summarized in Tables 1 to 6 and the corresponding pic-
tures.

Number of
Best solution obtained

minimizations

Successful Calls to Successfulp kmax x f(x)
Tunnelings Algorithm 2.1 Step

8 50 99 -1.00 -6.00 4.00 7.65E-13 66 step 6
9 50 102 -1.00 -6.00 4.00 2.28E-12 72 step 6
10 50 93 -1.00 -6.00 4.00 4.94E-12 45 step 6
11 200 397 -0.95 -6.94 8.08 1.00 406 step 6
12 200 368 -1.04 -5.90 5.45 1.42 75 step 6
13 200 371 -0.94 -6.19 1.95 3.14 133 step 1
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 10

Table 2: m = 100, “correct p”= 10, x∗ = (−1,−6, 4)
In all cases we generated m random data. Ten per cent of them are “cor-

rect” in the sense that they fit exactly a previously chosen polynomial. We
defined Ω = [−10, 10]n. The parameter kmax is reported under the second
column of each table. Under the third column we report the total number
of “better points” obtained by the tunneling Lissajous procedure. The last
column indicates the step of Algorithm 4.1 that gave rise to the initial point
that produced the solution. The penultimate column indicates the number of
calls to Algorithm 2.1 that were necessary to find the best point obtained.

6.2 Finding hidden circles

The experiments are entirely analogous to the ones reported for polynomials.
In this case we need to estimate three parameters x1, x2, x3 ∈ Ω where

Ω = {x ∈ R3 | − 10 ≤ x1, x2 ≤ 10, 0 ≤ x3 ≤ 10}.
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Number of
Best solution obtained

minimizations

Successful Calls to Successfulp kmax x f(x)
Tunnelings Algorithm 2.1 Step

13 50 91 -1.00 1.00 -6.00 9.92E-14 33 step 6
14 50 95 -1.00 1.00 -6.00 5.18E-14 36 step 6
15 100 177 -1.00 1.00 -6.00 2.45E-14 221 step 6
16 200 350 -1.00 1.00 -5.96 0.0272 14 step 6
17 200 358 -1.00 1.00 -6.18 0.0339 179 step 6
18 200 332 -1.00 0.97 -6.19 0.0865 288 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . .“correct p” - best solution for p = 15

Table 3: m = 150, “correct p”= 15, x∗ = (−1, 1,−6)
The center of the unknown circle is (x1, x2) and its radius is x3. The

functions fi are:

fi(x) = [(ti − x1)
2 + (yi − x2)

2 − x2
3]

2.

The results, following the same conventions as before, are summarized in
Tables 7, 8 and 9 and the corresponding pictures.

6.3 Finding hidden “bananas”

The hidden pattern is a curve in the ty-plane, of the form

(y − x2 − (t− x1)
2)2 + (1− (t− x1))

2 = x3,

where x1, x2 and x3 are the parameters that we need to estimate. We defined

Ω = {x ∈ R3 | − 10 ≤ x1, x2 ≤ 10, 0 ≤ x3 ≤ 20}.
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Number of
Best solution obtained

minimizations

Successful Calls to Successfulp kmax x f(x)
Tunnelings Algorithm 2.1 Step

3 10 4 1.21 3.34 -5.84 1.36 8.41E-20 4 step 6
4 50 74 1.24 3.55 -5.90 -0.58 1.14E-16 84 step 1
5 50 85 1.00 5.00 3.00 -7.00 1.26E-14 101 step 6
6 200 466 1.05 5.10 -0.95 -10.0 140.50 309 step 6
7 200 397 0.97 4.76 5.77 -10.0 679.53 119 step 6
8 200 450 0.48 -0.52 -7.83 -10.0 3655.75 627 step 6

−10 −5 0 5 10
−500

0

500

1000

1500

−10 −5 0 5 10
−500

0

500

1000

1500

· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 5

Table 4: m = 50, “correct p”= 5, x∗ = (1, 5, 3,−7)
And, for each i = 1, . . . ,m the error function is:

fi(x) = [(yi − x2 − (ti − x1)
2)2 + (1− (ti − x1))

2 − x3]
2.

The results, following the same conventions as before, are summarized in
Tables 10, 11 and 12 and the corresponding pictures.

6.4 Finding hidden ellipses

In this section the hidden patterns are ellipses:

(ti − x1)
2

x2
3

+
(yi − x2)

2

x2
4

= 1.

In this case we need to estimate four parameters x1, x2, x3 and x4 ∈ Ω where

Ω = {x ∈ R4 | − 10 ≤ x1, x2 ≤ 10, 0 ≤ x3, x4 ≤ 10}.
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Number of
Best solution obtained

minimizations

Successful Calls to Successfulp kmax x f(x)
Tunnelings Algorithm 2.1 Step

8 100 181 -1.00 3.00 3.00 9.00 3.46E-17 144 step 6
9 50 100 -1.00 3.00 3.00 9.00 9.15E-15 93 step 6
10 50 80 -1.00 3.00 3.00 9.00 4.51E-14 23 step 6
11 200 407 -1.00 3.00 2.97 8.86 0.0272 369 step 6
12 200 414 -0.98 3.21 0.80 1.73 118.89 115 step 6
13 200 429 -0.98 3.46 2.17 -5.14 207.12 527 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 10

Table 5: m = 100, “correct p”= 10, x∗ = (−1, 3, 3, 9)
Therefore, the error functions are:

fi(x) =

[

(ti − x1)
2

x2
3

+
(yi − x2)

2

x2
4

− 1

]2

.

The results, following the same conventions as before, are summarized in
Tables 13, 14 and 15 and the corresponding pictures.

We used the third problem of Table 15 for comparing the efficiency of
Algorithm 4.1 with respect to a straightforward multistart strategy. The result
reported in Table 15 was obtained using 25 minutes of CPU time. However,
the pure random multistart method, which uses the local algorithm without
discarding and tunneling, did not obtain a solution of similar quality after 12
hours of computation.

6.5 Finding a hidden polynomial-trigonometric function

Consider the points in Figure 5a. We wish to fit a polynomial-trigonometric
function of the form

y(x, t) = x1 + x2t + x3t
2 + x4t

3 + x5 cos(x6t + x7) + x8 sin(x9t + x10).

Consequently, the error functions are:
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fi(x) = [yi − y(x, ti)]
2.

Taking p = 50 we obtained using Algorithm 4.1 and after 2 hours of CPU
time the function given in Figure 5b. Observe that since we need at least
10 points to fit this function and C100

10
∼= 1.7 × 1013, the use of enumerative

schemes is completely impossible.
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 50

Figure 5: m = 100, “correct p”= 50

7 Conclusions

Order-Value Optimization is a serious global minimization problem with im-
portant applications, many of which remain to be discovered. In this paper
we emphasized the application to finding hidden patterns in the presence of
massive corrupted data. The local algorithm introduced in [2] is not efficient
enough to cope the problem of multiple critical points, therefore the definition
of a globalization strategy was necessary. In order to preserve the local effi-
ciency of Algorithm 2.1, our global strategy incorporates multiple starts with
discarding strategies and a one-dimensional tunneling procedure for escaping
from critical points, based on Lissajous harmonic oscillator dense curves.

Although we do not have rigorous theoretical arguments to support the
point of view that this strategy is the best possible for the global OVO prob-
lem (and probably it is not) a rather extensive numerical experimentation
(some of which is reported here) suggests that we are not far from discov-
ering a satisfactory methodology for many practical problems. In particular,
the use of Lissajous curves has been a pleasant experience. The idea of trans-
forming n-dimensional minimization problems into one-dimensional ones by
means of dense curves is not new but the theoretical question about which is
“the best” curve to fill the n-dimensional box does not seem to be explicitly
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

13 50 80 -1.00 3.00 7.00 0.00 3.24E-16 914 step 6
14 50 82 -1.00 3.00 7.00 0.00 8.30E-12 69 step 6
15 100 210 -1.00 3.00 7.00 0.00 1.45E-12 213 step 6
16 200 413 -1.01 3.06 7.79 -1.75 12.04 34 step 6
17 200 447 -1.01 2.96 8.57 0.66 37.10 61 step 6
18 200 409 -0.98 3.10 4.89 -2.21 55.24 225 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 15

Table 6: m = 150, “correct p”= 15, x∗ = (−1, 3, 7, 0)

formulated. Even the criteria that should define “the best” filling curve are
not completely clear. Although we feel that Lissajous curves satisfy many of
these (non-formulated) criteria, we would like to point out the relevance of
future theoretical research on this subject.

Valuable research on solving multi-dimensional multi-extremal optimiza-
tion problem employing Peano-space-filling curves [4, 5, 10, 21, 30, 31, 32,
33, 34] may complement our Lissajous-based approach. A common drawback
of space-filling algorithms is that closeness of points in the multidimensional
space does not correspond to closeness in the corresponding one-dimensional
interval. Strongin [33] introduced an attractive scheme which allows one to
reflect, in the reduced one-dimensional problem, some information on the near-
ness of points in the multidimensional domain. His ideas should be adapted
to our scheme in future research. We also need to improve the escaping pro-
cedure, which in the present implementation is rather naive.

Finally, we would like to mention that the application of the hidden-
pattern technology introduced in this paper to the Common Reflection Surface
(CRS) problem [3, 20] has been suggested by Lúcio T. Santos and other mem-
bers of the Computational Geophysics Group at the University of Campinas.
Advances on this research will be reported in the near future.
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

3 50 3 -4.99 -4.81 5.68 3.48E-19 4 step 1
4 2800 3002 5.00 -3.00 7.00 8.77E-18 5670 step 6
5 200 263 5.00 -3.00 7.00 2.93E-16 378 step 1
6 200 302 5.66 3.04 4.32 0.01 363 step 6
7 200 288 5.71 3.09 4.29 0.08 341 step 6
8 200 315 0.01 1.50 5.63 0.18 366 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . .“correct p” - best solution for p = 5

Table 7: m = 50, “correct p”= 5, x∗ = (5,−3, 7)

A particularly interesting field of future research concerns the use of Order-
Value Optimization for training neural networks in the presence of a large
number of corrupted data.
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

8 50 89 1.00 -2.00 5.00 1.21E-15 78 step 6
9 300 543 1.00 -2.00 5.00 1.35E-17 781 step 6
10 50 88 1.00 -2.00 5.00 5.11E-17 109 step 6
11 200 382 0.92 -1.99 5.00 0.6348 355 step 6
12 200 407 1.00 -2.00 4.88 1.4563 527 step 6
13 200 371 1.00 -2.00 4.87 1.6275 185 step 6

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 10

Table 8: m = 100, “correct p”= 10, x∗ = (1,−2, 5)
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

13 100 216 0.00 -6.00 15.0 1.45E-15 107 step 6
14 100 207 -0.00 -6.00 15.0 1.31E-16 41 step 6
15 100 221 0.00 -6.00 15.0 2.49E-16 70 step 6
16 200 427 -0.00 -6.00 14.7 0.0675 169 step 6
17 200 481 -0.01 -6.01 15.5 0.6014 458 step 6
18 200 450 -0.02 -6.07 15.2 0.8290 515 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 15

Table 12: m = 150, “correct p”= 15 x∗ = (0,−6, 15)

35. J. W. Weaver. Hidden patterns in Joyce ‘Portrait of the artist as a young man’.
South Atlantic Bulletin, 41:63–63, 1976.
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

8 1819 4181 0.00 4.00 9.00 5.00 1.73E-13 5063 step 6
9 500 1151 0.00 4.00 9.00 5.00 3.18E-13 1587 step 6
10 500 1091 0.00 4.00 9.00 5.00 2.39E-13 993 step 6
11 500 1218 -0.02 4.01 9.12 4.94 0.0006 1601 step 6
12 500 1226 -0.08 4.03 9.12 4.93 0.0008 1229 step 6
13 500 1183 0.31 4.22 8.14 6.06 0.0033 303 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 10

Table 13: m = 50, “correct p”= 10, x∗ = (0, 4, 9, 5)
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

18 1000 3008 0.01 -2.00 9.00 6.99 7.07E-6 1085 step 6
19 1000 2954 0.00 -2.00 8.99 7.00 6.00E-6 3057 step 1
20 6000 17667 -0.00 -2.00 9.00 7.00 2.58E-6 23201 step 6
21 1000 2966 0.01 -1.98 8.98 6.99 7.76E-5 3914 step 6
22 1000 2950 0.03 -1.99 8.93 7.04 0.0002 229 step 6
23 1000 2859 0.00 -1.99 8.90 7.04 0.0004 1728 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 20

Table 14: m = 100, “correct p”= 20, x∗ = (0,−2, 9, 7)
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Number of Best solution obtainedminimizations

Successful Calls to Successfulp kmax x f(x)Tunnelings Algorithm 2.1 Step

28 1000 3494 0.97 -0.00 7.99 9.00 7.43E-5 1660 step 6
29 1000 3428 1.00 -0.02 8.00 9.00 2.35E-5 1959 step 6
30 1000 3311 1.00 -0.00 8.00 8.99 3.85E-6 1492 step 6
31 1000 3388 1.02 0.01 7.96 8.99 0.0002 333 step 6
32 1000 3376 1.04 0.01 8.01 9.00 0.0003 4149 step 6
33 1000 3338 1.00 0.02 8.03 9.02 0.0004 1761 step 6
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· set of data (ti, yi) * correct data (ti, yi), i = 1, . . . ,“correct p” - best solution for p = 30

Table 15: m = 150, “correct p”= 30, x∗ = (1, 0, 8, 9)
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Summary. The molecular distance geometry problem can be stated as the deter-
mination of the three-dimensional structure of a molecule using a set of distances
between pairs of atoms. It can be formulated as a global minimization problem,
where the main difficulty is the exponential increasing of local minimizers with the
size of the molecule. The aim of this study is to generate new instances for the
molecular distance geometry problem that can be used in order to test algorithms
designed to solve it.

Key words: Molecular distance geometry problem, instance generation,
NMR spectroscopy.

1 Introduction

The molecular distance geometry problem (MDGP) can be defined as the
problem of finding Cartesian coordinates x1, ..., xN ∈ R3 of the atoms of a
molecule such that

||xi − xj || = di,j ([i, j] ∈ S), (1)

where S is the set of pairs of atoms [i, j] whose Euclidean distances di,j are
known. If all distances are given, the problem can be solved in linear time [3].
Otherwise, the problem is NP-hard [8].

The distances di,j , in (1), can be obtained, for example, with nuclear mag-
netic resonance (NMR) data and with knowledge on bond lengths and bond
angles of a molecule. Usually, NMR data only provide distances between cer-
tain close-range hydrogen atoms [1].

The MDGP can be formulated as a global minimization problem, where
the objective function can be given by

f(x1, ..., xN ) =
∑

[i,j]∈S

(

||xi − xj ||2 − d2
i,j

)2
. (2)
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It may easily be seen that x1, ..., xN ∈ R3 solve the problem if and only if
f(x1, ..., xN ) = 0. For more details and other approaches for the MDGP see,
for example, [3, 2, 4, 5, 6].

In [5], Moré and Wu consider the MDGP by applying the global contin-
uation approach to obtain a global minimizer of the function (2). To test
the method, they used instances based on a molecule positioned in a three-
dimensional lattice.

The aim of this study is to generate new instances for the MDGP which
are based on the parameters of a molecular potential energy function defined
in [7].

In Section 2, we briefly describe Moré-Wu instances. Section 3 gives the
model in which the new instances are based, explains how the instances are
generated and presents some examples of the new instances. Section 4 ends
with some conclusions.

2 Moré-Wu instances

The instances used in [5] are based on a molecule with s3 atoms (s = 1, 2, 3, ...)
positioned in the three-dimensional lattice defined by

{(i1, i2, i3) ∈ R3 : 0 ≤ ik ≤ s− 1, k = 1, 2, 3}.

There are two sets of instances. The first one has distances for both near
and relatively distant atoms, while the second one only has distances for near
atoms.

In the first set of instances, an order is defined for the atoms of the lattice
by letting atom i be the atom at position (i1, i2, i3), where

i = 1 + i1 + si2 + s2i3,

and the set S, in (1), is defined by

S = {[i, j] : |i− j| ≤ s2}.

For example, for a molecule with 8 atoms (s = 2), the sequence of atoms is

x1 = (0, 0, 0),

x2 = (1, 0, 0),

x3 = (0, 1, 0),

x4 = (1, 1, 0),

x5 = (0, 0, 1),

x6 = (1, 0, 1),

x7 = (0, 1, 1),

x8 = (1, 1, 1),
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and the set S is given by

S = {[1, 2], [1, 3], [1, 4], [1, 5],

[2, 1], [2, 3], [2, 4], [2, 5], [2, 6],

[3, 1], [3, 2], [3, 4], [3, 5], [3, 6], [3, 7],

[4, 1], [4, 2], [4, 3], [4, 5], [4, 6], [4, 7], [4, 8],

[5, 1], [5, 2], [5, 3], [5, 4], [5, 6], [5, 7], [5, 8],

[6, 2], [6, 3], [6, 4], [6, 5], [6, 7], [6, 8],

[7, 3], [7, 4], [7, 5], [7, 6], [7, 8]}.

In the second set of instances, the set S is defined by

S = {[i, j] : ||xi − xj || ≤
√

r},

where r is a parameter that defines the cutoff value. For example, for r = 16,
we have

S = {[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8],

[2, 1], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8],

[3, 1], [3, 2], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8],

[4, 1], [4, 2], [4, 3], [4, 5], [4, 6], [4, 7], [4, 8],

[5, 1], [5, 2], [5, 3], [5, 4], [5, 6], [5, 7], [5, 8],

[6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 7], [6, 8],

[7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 8]}.

3 New instances

3.1 The background model

The new instances for the MDGP are based on the model proposed by Philips
et al. [7]. This model considers a molecule as being a chain of N atoms with
Cartesian coordinates given by x1, ..., xN ∈ R3. For every pair of consecu-
tive atoms i, j, let rij be the bond length which is the Euclidean distance
between them. For every three consecutive atoms i, j, k, let θik be the bond
angle corresponding to the relative position of the third atom with respect
to the line containing the previous two. Likewise, for every four consecutive
atoms i, j, k, l, let ωil be the angle, called the torsion angle, between the nor-
mals through the planes determined by the atoms i, j, k and j, k, l. The three-
dimensional structure of a molecule is determined by minimizing the sum of
the following terms:



DRAFT

408 Carlile Lavor

fd =
∑

[i,j]∈M1

cr
ij(rij − r0

ij)
2,

fa =
∑

[i,j]∈M2

cθ
ij(θij − θ0

ij)
2, (3)

fω =
∑

[i,j]∈M3

cω
ij(1 + cos(nijωij − ω0

ij)),

fv =
∑

[i,j]∈M4

(

Aij

r12
ij

− Bij

r6
ij

)

.

The terms fd, fa, fω are the potentials corresponding to bond lengths, bond
angles, and torsion angles, respectively. The factor cr

ij is the bond stretching

force constant, cθ
ij is the angle bending force constant, and cω

ij is the torsion

force constant. The factors r0
ij and θ0

ij represent the equilibrium values for
bond length and bond angle, respectively. The constant nij defines the number
of minima involved and the constant ω0

ij is the phase angle that defines the
position of the minima. The term fv is the Lennard-Jones potential, where
Aij and Bij are constants defined by each pair [i, j] and rij is the Euclidean
distance between atoms i and j. The sets M1,M2,M3,M4 are the sets of pairs
of atoms separated by one covalent bond, two covalent bonds, three covalent
bonds, and more than two covalent bonds, respectively.

In most conformation calculations, all bond lengths and bond angles are
assumed to be fixed at their equilibrium values r0

ij and θ0
ij , respectively. Thus,

the first three atoms in the chain can be fixed: the first one is fixed at x1 =
(0, 0, 0), the second one is positioned at x2 = (−r12, 0, 0), and the third one is
fixed at x3 = (r23 cos(θ13)−r12, r23 sin(θ13), 0). The fourth atom is determined
by the torsion angle ω14; the fifth atom is determined by the torsion angles
ω14 and ω25; the sixth atom is determined by the torsion angles ω14, ω25, and
ω36; and so on.

In that model, the bond lengths and bond angles are set to rij = 1.526 Å
(for all [i, j] ∈ M1) and θij = 109.5◦ (for all [i, j] ∈ M2), respectively. Also,
cω
ij = 1, nij = 3, and ω0

ij = 0, providing three “preferred” torsion angles
at 60◦, 180◦, and 300◦. Using these parameters, we can generate distances
between pairs of atoms and obtain instances for the MDGP.

3.2 Generation of instances

Considering bond lengths rij and bond angles θij fixed (rij = 1.526 Å, ∀
[i, j] ∈ M1; θij = 109.5◦, ∀ [i, j] ∈ M2), the three-dimensional structure of
a molecule can be completely determined by its torsion angles. In [7], the
computational results were obtained for problems with 4 through 30 atoms.
For a molecule with 18 atoms, for example, 15 torsion angles were obtained:

181◦, 176◦, 293◦, 292◦, 165◦, 294◦, 193◦,
166◦, 61◦, 197◦, 65◦, 66◦, 193◦, 67◦, 181◦.

(4)
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Note that these values can be viewed as perturbations of the “preferred”
torsion angles 60◦, 180◦, and 300◦, cited above. Thus, based on the model
described in the previous subsection, we can generate torsion angles for a
molecule, for example, selecting one value ω from the set

{60◦, 180◦, 300◦} (5)

and another one from the set

{ω + i : i = −15◦, ..., 15◦}. (6)

Both of these selections are random.
To generate distances in order to define the set S, in (1), we first obtain

Cartesian coordinates for each atom of the chain (xn1
, xn2

, xn3
), using the

following matrices [7] (note that the first three atoms of the chain are fixed):









xn1

xn2

xn3

1









= B1B2...Bn









0
0
0
1









(n = 1, ..., N),

where

B1 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, B2 =









−1 0 0 −r12

0 1 0 0
0 0 −1 0
0 0 0 1









,

B3 =









− cos θ13 − sin θ13 0 −r23 cos θ13

sin θ13 − cos θ13 0 r23 sin θ13

0 0 1 0
0 0 0 1









,

and Bi =









− cos θ(i−2)i − sin θ(i−2)i 0 −r(i−1)i cos θ(i−2)i

sin θ(i−2)i cos ω(i−3)i − cos θ(i−2)i cos ω(i−3)i − sin ω(i−3)i r(i−1)i sin θ(i−2)i cos ω(i−3)i

sin θ(i−2)i sin ω(i−3)i − cos θ(i−2)i sin ω(i−3)i cos ω(i−3)i r(i−1)i sin θ(i−2)i sin ω(i−3)i

0 0 0 1









,

for i = 4, ..., N (rij = 1.526 Å, ∀ [i, j] ∈ M1; θij = 109.5◦, ∀ [i, j] ∈ M2;
and ωij , ∀ [i, j] ∈M3, is obtained according to the rule explained above).

Recall that the problem is to determine the Cartesian coordinates for
atoms of a molecule using only a subset of all distances between them. With a
prescribed cutoff value d, we can generate an instance for the MDGP defining
the set S by

S = {[i, j] : ||xi − xj || ≤ d}.
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3.3 Examples

Usually, the distance data obtained from NMR experiments are less than or
equal to 5 Å [1]. For each example in this subsection, we will select distances
with a cutoff value equal to 4 Å.

Using torsion angles defined by (4), from a total of 153 pairs of atoms, 67
pairs were selected (to represent the set S, we consider [i, j] and [j, i] associated
to the same pair of atoms):

S = { [1, 2], [1, 3], [1, 4], [1, 14], [1, 15], [1, 16], [1, 17], [1, 18],

[2, 1], [2, 3], [2, 4], [2, 5], [2, 15], [2, 16], [2, 17], [2, 18],

[3, 1], [3, 2], [3, 4], [3, 5], [3, 6], [3, 7], [3, 15], [3, 16], [3, 17], [3, 18],

[4, 1], [4, 2], [4, 3], [4, 5], [4, 6], [4, 7], [4, 17], [4, 18],

[5, 2], [5, 3], [5, 4], [5, 6], [5, 7], [5, 8],

[6, 3], [6, 4], [6, 5], [6, 7], [6, 8], [6, 9],

[7, 3], [7, 4], [7, 5], [7, 6], [7, 8], [7, 9], [7, 10],

[8, 5], [8, 6], [8, 7], [8, 9], [8, 10], [8, 11],

[9, 6], [9, 7], [9, 8], [9, 10], [9, 11], [9, 12], [9, 15], [9, 17],

[10, 7], [10, 8], [10, 9], [10, 11], [10, 12], [10, 13],

[11, 8], [11, 9], [11, 10], [11, 12], [11, 13], [11, 14], [11, 15],

[12, 9], [12, 10], [12, 11], [12, 13], [12, 14], [12, 15],

[13, 10], [13, 11], [13, 12], [13, 14], [13, 15], [13, 16],

[14, 1], [14, 11], [14, 12], [14, 13], [14, 15], [14, 16], [14, 17],

[15, 1], [15, 2], [15, 3], [15, 9], [15, 11], [15, 12], [15, 13], [15, 14], [15, 16], [15, 17], [15, 18],

[16, 1], [16, 2], [16, 3], [16, 13], [16, 14], [16, 15], [16, 17], [16, 18],

[17, 1], [17, 2], [17, 3], [17, 4], [17, 9], [17, 14], [17, 15], [17, 16], [17, 18],

[18, 1], [18, 2], [18, 3], [18, 4], [18, 15], [18, 16], [18, 17] }.

We can obtain a better representation of selected pairs of atoms by defining
a matrix A ∈ {0, 1}N×N such that

Aij =

{

1, if [i, j] ∈ S
0, if [i, j] /∈ S

.

We define Aii = i to indicate, at the i-th row, which atoms are close to atom i
according to the prescribed cutoff value. For example, the matrix A associated
to the set S above is:
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1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 2 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 3 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
1 1 1 4 1 1 1 0 0 0 0 0 0 0 0 0 1 1
0 1 1 1 5 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 6 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 7 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 8 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 9 1 1 1 0 0 1 0 1 0
0 0 0 0 0 0 1 1 1 10 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 11 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 12 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 13 1 1 1 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 14 1 1 1 0
1 1 1 0 0 0 0 0 1 0 1 1 1 1 15 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 16 1 1
1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 17 1
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 18

































































Note that, using this matrix, it is easy to see that in addition to the 4-th
atom being close to the atoms 1, 2, 3 and 5, 6, 7, it is also close to the last two
atoms of the chain. The three-dimensional structure of the molecule defined
by the torsion angles (4) is given in Figure 1.

Fig. 1. Molecule associated to the matrix A.

Now we briefly describe three new examples, also with 18 atoms. Using
the schema given in subsection 3.2, 10 instances were randomly generated.
We consider one with 78 selected pairs of atoms (intermediate number of 10
runs), another with 56 selected pairs of atoms (minimum number of 10 runs),
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and the last one with 113 selected pairs of atoms (maximum number of 10
runs). Below, we present the matrix representations Aint, Amin, and Amax,
for these three cases. For the first example, we also give the three-dimensional
structure of the corresponding molecule (Figure 2).

Fig. 2. Molecule associated to the matrix Aint.

Instance with 78 selected pairs: Aint =

































































1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0
1 2 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0
1 1 3 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0
1 1 1 4 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 1 1 1 5 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 6 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 7 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 8 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 9 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 10 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 1 1 1 11 1 1 1 0 1 0 0
1 1 1 1 0 0 0 0 1 1 1 12 1 1 1 1 0 0
1 1 1 0 0 0 0 0 0 1 1 1 13 1 1 1 0 0
1 1 0 0 0 0 0 0 0 0 1 1 1 14 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 1 1 1 15 1 1 1
1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 16 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 17 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 18

































































Instance with 56 selected pairs: Amin =
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1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 5 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 6 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 7 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 8 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 9 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 10 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 11 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 1 1 12 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 13 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 14 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 15 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 16 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 17 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 18

































































Instance with 113 selected pairs: Amax =

































































1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1 2 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
1 1 3 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1
1 1 1 4 1 1 1 0 0 0 0 0 1 0 1 1 1 1
1 1 1 1 5 1 1 1 1 0 0 1 1 1 1 1 1 1
1 1 1 1 1 6 1 1 1 0 0 0 1 1 1 1 1 1
1 1 0 1 1 1 7 1 1 1 0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 8 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 9 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 10 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 11 1 1 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1 1 12 1 1 1 0 1 0
1 0 1 1 1 1 1 1 1 1 1 1 13 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 1 14 1 1 1 1
1 1 0 1 1 1 1 1 1 1 0 1 1 1 15 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 16 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 17 1
1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 18

































































4 Conclusion

This study presented a new way to generate instances for the molecular dis-
tance geometry problem which is based on the parameters of a molecular
potential energy function given in [7].
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In [5], Moré and Wu consider the molecular distance geometry problem by
applying the global continuation approach where they used instances based
on a molecule positioned in a three-dimensional lattice.

The instances generated by the method proposed here have a more flexible
geometric conformation, making the corresponding molecules more “realistic”.
In the examples of subsection 3.3, we have seen that we can obtain sets of
instances with a distinct number of selected pairs of atoms, trying to capture
different features in distance data from real problems.

Based on the idea presented here, we can generate many other instances
for the molecular distance geometry problem. For example, we can use a po-
tential energy function different from the function (3) and, manipulating its
parameters, we can adjust the values of sets (5) and (6) in order to generate
instances with distinct characteristics.
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