
Solving Feature Subset Selection Problem by

a Parallel Scatter Search ?

Félix Garćıa López , Miguel Garćıa Torres 1

Belén Melián Batista José A. Moreno Pérez ∗
J. Marcos Moreno-Vega

Dpto. de Estad́ıstica, Investigación Operativa y Computación
Escuela Técnica Superior de Ingenieŕıa Informática.
Universidad de La Laguna. 38271 La Laguna. Spain.

Abstract

The aim of this paper is to develop a parallel Scatter Search metaheuristic for solving
the Feature Subset Selection Problem in classification. Given a set of instances
characterized by several features, the classification problem consists of assigning a
class to each instance. Feature Subset Selection Problem selects a relevant subset
of features from the initial set in order to classify future instances. We propose
two methods for combining solutions in the Scatter Search metaheuristic. These
methods provide two sequential algorithms that are compared with a recent Genetic
Algorithm and with a parallelization of the Scatter Search. This parallelization is
obtained by running simultaneously the two combination methods. Parallel Scatter
Search presents better performance than the sequential algorithms.

Key words: Scatter Search, Feature Subset Selection, Parallelization,
Metaheuristics

? This research has been partially supported by the projects TIC2002-04242-C03-01
(70% of which are FEDER founds) and TIC2002-10886E.∗ Corresponding author. Tel.: +34-922-318186; fax: +34-922-318170

Email addresses: fcgarcia@ull.es (Félix Garćıa López), mgarciat@ull.es
(Miguel Garćıa Torres), mbmelian@ull.es (Belén Melián Batista),
jamoreno@ull.es (José A. Moreno Pérez), jmmoreno@ull.es (J. Marcos
Moreno-Vega).
1 The research of this author has been partially supported by a CajaCanarias grant

Preprint submitted to Elsevier Science 14 April 2004

1 Introduction

In a classification problem, the goal is to classify instances that are charac-
terized by a set of features. Then, the class to which each instance belongs is
determined. In supervised machine learning, an induction algorithm is typi-
cally presented with a set of training instances (examples, cases), where each
instance is defined by a vector of features and a class label. The task of the
induction algorithm is to induce a classifier that will be used to classify fu-
ture cases. The classifier is a mapping from the space of feature values to the
set of class labels. Since, in practical applications, the set of features can be
very large, in order to classify future instances, it is important to select a
smaller subset of these features. As pointed in [10], this dimensionality reduc-
tion has several advantages: a reduction in the cost of acquisition of the data,
improvement of the comprehensibility of the final classification model, a faster
induction of the final classification model and an improvement in classification
accuracy.

The feature subset selection problem consists of finding a subset of the origi-
nal set of features, such that an induction algorithm using only these features
is able to generate a classifier with the best performance. Selecting the opti-
mal feature subset is an NP -hard optimization problem [12]. Therefore exact
algorithms should not be used due to the complexity of the problem. For ex-
ample, determining the optimal binary decision tree is an NP -hard problem
[9]. Several heuristic algorithms have been proposed for solving the feature
subset selection problem. One of the most widely used metaheuristics are the
Genetic Algorithms. These algorithms have been proposed and analysed for
the feature subset selection problem in [7], [17], [18] and [21]. The obtained
results show that Genetic Algorithms are appropriate methods for this prob-
lem. We propose the use of another evolutive metaheuristic (Scatter Search
[13]) to solve this problem and compare one of our proposed Scatter Search
procedures with a recent Genetic Algorithms. We have not found any reference
about the application of Scatter Search to the feature selection.

Two different approaches for selecting the subset of features can be considered:
the wrapper and filter approaches. The filter approach selects the features
using a preprocessing step that ignores the induction algorithm. The main
disadvantage of this procedure is that it ignores the effect of the subset of
features in the induction algorithm. Two filter-based algorithms are RELIEF
[11] and FOCUS [3]. The first one assigns a weight to each feature according
to its relevance for classifying. To do so it samples several examples randomly
and compares the example with the two nearest examples of the same and
opposite class. The later algorithm examines all subsets of features by selecting
the minimal subset of features that is sufficient to classify the examples.

2

In the wrapper approach, the induction algorithm selects the optimal subset
of features by itself. Two well known wrapper approaches are forward subset
selection (FSS) and backward subset selection (BSS) [5]. FSS starts with an
empty subset of features and, at each step, it adds to the subset the feature
that most improves the classification. This process is iterated until no im-
provement is possible. In BSS the initial subset consists of all the available
features and, at each step, the worst feature is eliminated from the subset. As
in FSS, this process is repeated until no improvement is possible. The Parallel
Scatter Search proposed in this paper is based on the wrapper approach.

We consider three paradigms of learning: the Instance-Based Learning ap-
proach, the Bayesian Learning procedures, and the Decision Tree methods
[14]. The first approach uses the nearest examples to predict the label of the
instance, given a set of examples and an instance to be classified. In partic-
ular, we use the instance-based algorithm called IB1 [2], that classifies each
instance with the label of the nearest example. For the purpose of classify-
ing each instance with the label of the nearest example, IB1 considers all the
features, although, in general, only a few of them are highly relevant. The
Bayesian Learning algorithms use probability as an approach for classifica-
tion. The Naive Bayes classifier consists in using Bayes theorem to estimate
“a posteriori” probabilities of all possible classifications. For each instance,
the classification with the highest “a posteriori” probability is chosen. Deci-
sion trees classify instances by testing the instance at each node it reaches.
The procedure starts at the root and, at each node, moving down the trees
branch according to the result of the test. Leaf nodes give the classification of
all instances that reach the leaf. We use the top-down induction decision tree
algorithm C4.5 devised by Quinlan [16]. The C4.5 algorithm is an improve-
ment of the classical ID3 (Interactive Dichotomer 3) algorithm for constructing
decision trees.

Scatter Search [13] is an evolutionary algorithm in which a set of solutions
evolves due to mechanisms of combination between solutions. Unlike other
strategies of combination of existing rules like genetic algorithms, the search
for a local optimum is a guided task. In order to carry out this strategy, given
a population of solutions, a reference set (RefSet) is considered. This RefSet
is generated attempting to intensify and diversify the population of solutions.
After combining the solutions in the reference set, a local search procedure
is applied to the resulting solution, and the RefSet is updated to incorporate
both good and disperse solutions. These steps are repeated until a stopping
condition is met.

Parallel implementations of metaheuristics appear quite naturally as an ef-
fective alternative to speed up the search for approximated solutions of com-
binatorial optimization problems. We show that they not only allow solving
larger problems or finding improved solutions with respect to their sequential

3

counterparts, but also lead to more precise random algorithms. We say that
a random algorithm AlgA is more precise than a random algorithm AlgB if,
after running both algorithms the same number of times, AlgA reaches ob-
jective function values with less standard deviation. In addition, we analyse
the effect of running simultaneously several combination strategies by using
different processors.

Next section describes the feature subset selection problem. The proposed
sequential Scatter Search is described in section 3 and its parallelization in
section 4. Finally, the computational experience and conclusions are shown in
sections 5 and 6, respectively.

2 The Feature Subset Selection Problem

Let A be a set of given instances, which are characterized by d features
X = {Xj : j = 1, . . . , d}. Each feature is either a nominal or a linear at-
tribute. An attribute is linear if the evaluation of the difference between two
of its values has sense (being discrete or continuous); otherwise it is nomi-
nal. Furthermore, each instance has a label that indicates the class to which
it belongs. In order to carry out the task of classifying by means of super-
vised learning, we consider the subset of instances T ⊂ A in which labels
are known and can be used as training examples, and the subset V = A \ T
of instances to be classified (validation instances). The labels of V will only
be used to measure the performance of the classifier. In the feature subset
selection problem, the set of features with the best performance must be ob-
tained. The accuracy percentage is often used to measure the performance of
a classifier. Then, the optimization problem associated consists of finding the
subset S ⊆ {Xj : j = 1, . . . , d} with higher accuracy percentage. However,
this percentage can only be estimated using the validation instances, since V
is only a subset of the set of instances to be classified.

The k-fold cross-validation method is widely used to estimate the accuracy
percentages of a subset of features S on a given set of instances B. The method
proceeds in the following way. The set of instances B is randomly divided into
k disjoint subsets of equal size B1, B2, . . . , Bk and k trials are carried out. In
the trial i, Bi is considered the test set and the training set is the union of the
other subsets Ti = B \Bi. In each trial, the test instances are classified using
the learning algorithm. The estimated accuracy percentage of the classifier
is the average of the accuracy percentages over all the trials. The estimated
accuracy percentage of a subset of features S on a given set of instances B

4

using cross-validation is stated as follows:

fB(S) = 100
|a ∈ B : c̃a = ca|

|B| (1)

where ca is the class of each instance a and c̃a is the class assigned by the
classifier.

In the computational experience we consider, as inductive classifiers, the in-
duction algorithm IB1, the Naive Bayes algorithm, and the C4.5 Decision Tree
algorithm provided by the Weka Machine Learning Project [20].

If IB1 is used, for each instance v in the test set, we calculate its nearest
example t in the training set and then we consider that both of them belong
to the same class and have the same label (i.e., c̃v = ct with ct the label of t
and c̃v the label of the class assigned to v). The distance function considered
was the heterogeneous euclidean overlap metric (HEOM), which can handle
both nominal and linear attributes [19]. The overlap metric was applied to
nominal attributes, and the normalized Euclidean distance was considered for
linear attributes. Let t = (t1, t2, . . . , td, ct) be an example with value ti for the
i-th feature and label ct, and let v = (v1, v2, . . . , vd, cv) be an instance, with
similar notation. Let S ⊆ {Xj : j = 1, . . . , d} be the feature subset considered.
The distance between t and v is defined as

distHEOM(t, v) =
∑

Xj∈S

dist2(tj, vj)

with

dist(tj, vj) =





1 if tj or vj is unknown

dists(tj, vj) if Xj is nominal

distr(tj, vj) if Xj is linear

where dists is the overlap metric and distr is the normalized Euclidean dis-
tance. That is

dists(tj, vj) =





0 if tj = vj

1 otherwise

and

distr(tj, vj) =
|tj − vj|

maxj −minj

,

5

where maxj and minj are respectively the maximum and minimum values of
the feature Xj in the training set. Note that, since the validation set is assumed
unknown, the normalized distance can be greater than 1 for instances out of
the training set.

The Naive Bayes Classifier is a practical method very appropriated when the
attributes that describe the instances are conditionally independent given the
classification. Given the attributes t = (t1, t2, . . . , td) that describe an instance,
the most probable class is:

ct = arg max
c∈C

P (c|X1 = t1, X2 = t2, . . . , Xd = td).

By Bayes theorem

ct = arg max
c∈C

P (X1 = t1, X2 = t2, . . . , Xd = td|c)P (c).

Then, assuming the conditional independence, the Naive Bayes classifier is
stated as:

ct = arg max
c∈C

P (c)
d∏

j=1

P (Xj = tj|c).

In practical applications the theoretical probabilities are replaced by their
estimations. Each probability is estimated by the corresponding frequencies
in the training set. One of the two major objections to this method is the case
where none of the training instances in a given class have an attribute value.
If P̂ r(Xj = tj|c) = 0 then every instance with this value can not be classified
in class c. Therefore, modified estimations of these probabilities are used. The
other major objection is that the conditional independence assumption is often
violated in real applications. However, it works well even in that case because
it is only needed that

arg max
c∈C

P (X1 = t1, . . . , Xd = td|c)P (c) = arg max
c∈C

P (c)
d∏

j=1

P (Xj = tj|c),

and the feature selection procedure helps to choose those attributes that are
conditionally independent given the classification.

The C4.5 algorithm is an improvement of the classical ID3 (Interactive Di-
chotomer 3) method for constructing a decision tree. The improvement in-
cludes a method for dealing with numeric attributes, missing values, noisy
data, and generating rules for trees. The basic ID3 is a “divide and conquer”
method that works as follows. Firstly, it selects an attribute test to place at

6

the root node and make a branch for each possible result of the test. Usually,
each test involves only an attribute and one branch is made for each possible
value of the attribute. This splits up the training set into subsets and the pro-
cess is repeated recursively with each branch, using only those instances that
actually reach the branch. When all the instances at a node have the same
classification, stop developing that part of the tree.

The algorithms determine the test to place at each node. The ID3 uses the
information gain criterion to construct the decision tree. The information gain
is measured by the purity of the set of instances corresponding to each branch.
The purity of a set of instances is measured by the amount of information
required to specify the class of one instance that reaches the branch. The use
of the gain ratio is one of the improvements that were made to ID3 to obtain
the C4.5 algorithm. The gain ratio is a modification of the information gain
measure to compensate that it tends to prefer attributes with large number
of possible values. The gain ratio takes into account the number and size of
the daughter nodes into which a test splits the training set.

For the purpose of guiding the search for the best subset of features (training)
and measuring the effectiveness of a particular subset of features after the
search algorithm has chosen it as solution of the problem (validation), the
function (1) for 2-fold cross-validation is used. To guide the search, fT (·) is
considered and to measure the effectiveness, fV (·) is used. In validation, we
consider 5 × 2 cross-validation (5 × 2cv) [6] that consists of dividing the set
V into 2 folds and then conducting two trials. This is done for 5 random
arrangements of V . However, in training, we use 1 × 2cv, where only one
arrangement is done.

3 Application of SS to the Feature Subset Selection Problem

The aim of this section is to describe the characteristics of the proposed Scat-
ter Search. Scatter Search (SS) [13] is a population-based metaheuristic that
uses a reference set to combine its solutions and construct others. The method
generates an initial reference set from a population of solutions. Then, several
subsets are selected from this reference set. The solutions of each selected sub-
set are combined to get starting solutions to run an improvement procedure.
The result of the improvement can motivate the updating of the reference set
and even the updating of the population of solutions. The process is iterated
until a stopping condition is met.

The pseudocode of the Sequential Scatter Search is described in Fig. 1. The
high level procedures used for developing the Scatter Search are the following.

7

procedure Sequential Scatter Search
begin

CreatePopulation(Pop,PopSize);
GenerateReferenceSet(RefSet, RefSetSize);
repeat

repeat
SelectSubset(Subset, SubSetSize);
CombineSolutions(SubSet, CurSol);
ImproveSolutions(CurSol, ImpSol);

until (StoppingCriterion1);
UpdateReferenceSet(RefSet);

until (StoppingCriterion2);
end.

Fig. 1. Sequential Scatter Search Metaheuristic Pseudocode

3.1 CreatePopulation

This procedure creates the initial population (Pop), which must be a wide set
consisting of disperse and good solutions. Several strategies can be applied
to get a population with these properties. The solutions to be included in
the population can be created, for instance, by using a random procedure to
achieve a certain level of diversity. For the feature subset selection problem,
the solution space size depends on the number of features of the problem.
Therefore, the size of the initial population is fixed depending on the number
of features. We consider |Pop| = d2, where d is the number of features.

In order to build a solution, we use the vector of weights of the features
P (X) = (P (X1), . . . , P (Xd)), given by P (Xj) = fT ({Xj}). These weights
indicate the quality of the feature for classifying by itself. Let L be the set of
features Xj with the highest weights P (Xj). The proposed strategy consists in
iteratively selecting at random one of the |L| best possible features (according
to P) while its inclusion improves the set. The algorithm is stated in Fig. 2.

(1) Set S = ∅.
(2) Repeat

(a) Select at random a feature from L. Let Xj∗ be the selected feature.
(b) If fT ({Xj∗} ∪ S) ≥ fT (S) then

S ← S ∪ {Xj∗} and
Let Xj /∈ L be the feature with the highest P (Xj), then

L ← (L \ {Xj∗}) ∪ {Xj}.
until no improvement is reached.

Fig. 2. Building strategy

8

3.2 GenerateReferenceSet

A set of good representative solutions of the population is chosen to generate
the reference set (RefSet). The good solutions are not limited to those with
the best objective function values. The considered reference set consists of
RefSetSize1 solutions with the best values of f and RefSetSize2 diverse so-
lutions. Then RefSetSize = RefSetSize1 + RefSetSize2. The reference set
is generated by selecting first the RefSetSize1 best solutions in the popula-
tion and secondly adding RefSetSize2 times the most diverse solution in the
population. Let C be the set of features that belong to any solution already
in the reference set; i. e.,

C =
⋃

S∈RefSet

S.

The diversity of each solution S is given by the symmetric difference between
S and C defined as follows:

Div(S) = Diff(S, C) = |(S ∪ C) \ (S ∩ C)|.

The algorithm proposed to generate the reference set is described in Fig. 3.

(1) Initialize:
(a) Let RefSet be the empty set.
(b) Add to RefSet the RefSetSize1 best solutions in Pop.
(c) Obtain the initial set of features: C = ∪S∈RefSetS.

(2) Repeat:
(a) For each S /∈ RefSet, calculate Div(S, C).
(b) Set S∗ = arg max Div(S,C) : S /∈ RefSet.
(c) RefSet ← RefSet ∪ S∗.
(d) RefSetSize ← RefSetSize + 1.
(e) Update C.
until RefSetSize = RefSetSize1 + RefSetSize2.

Fig. 3. Generating the reference set

3.3 SelectSubset

We consider, as usually in the applications of Scatter Search, all the subsets
of two solutions in the current reference set of solutions. The solutions in the
subsets are then combined to construct other solutions.

9

3.4 CombineSolutions

The combination procedure tries to combine good characteristics of the se-
lected solutions to get new current solutions. The aim is to get good solutions,
which are not similar to those already in the reference set.

We consider two combination methods, which are both greedy strategies. Let
S1 and S2 be the solutions in the subset. Each combination method generates
two new solutions, S

′
1 and S

′
2. We will refer to the first strategy as greedy

combination (GC) and to the second as reduced greedy combination (RGC).
They both start by adding to the new solutions S

′
1 and S

′
2 the features common

to S1 and S2. Then at each iteration one of the remaining features in S1 or
S2 is added to S

′
1 or S

′
2. The reduced version only considers those features

that have appeared in good solutions found during the search procedure. The
description of the greedy combination (GC) is stated in Fig. 4.

The reduced greedy combination strategy (RGC) differs from the first one in
that, instead of considering the whole set of features in C = (S1∪S2)\(S1∩S2),
it only uses the features with the highest accuracy percentages. The initial set
C is reduced by applying the following procedure. Let Q be a weights vector
defined in the following way. For each feature Xj ∈ C, Q(Xj) is the average
estimated accuracy percentage of all the solutions containing the feature Xj.
Then, Q(Xj) is stated as follows:

Q(Xj) =
1

|{i : Xj ∈ Si}|
∑

{i:Xj∈Si}
f(Si).

Let Q be the average of the values Q(Xj) such that Xj ∈ C,

Q =
1

|C|
|C|∑

j=0

Q(Xj)

The strategy RGC uses the features Xj ∈ C such that Q(Xj) ≥ Q.

3.5 ImproveSolutions

The ImproveSolutions method is applied every solution, S, generated by the
combination method explained above. Let CA be the set of features that
do not belong to the solution S. Then, the features Xj ∈ CA are ordered
according to their weights P (Xj). The improving method is described in Fig.
5.

10

(1) Initialize new solutions:
S
′
1 ← S1 ∩ S2.

S
′
2 ← S1 ∩ S2.

Let C = (S1 ∪ S2) \ (S1 ∩ S2).
(2) Repeat

(a) For each feature Xj ∈ C evaluate fT (S
′
1 ∪ {Xj}) and fT (S

′
2 ∪ {Xj}).

(b) Let j∗1 and j∗2 be the features such that

fT (S
′
1 ∪ {Xj∗1}) = max

j
{fT (S

′
1 ∪ {Xj})}

and
fT (S

′
2 ∪ {Xj∗2}) = max

j
{fT (S

′
2 ∪ {Xj})}

respectively.
(c) If fT (S

′
1 ∪ {Xj∗1}) > fT (S

′
1) or fT (S

′
2 ∪ {Xj∗2}) > fT (S

′
2) then

(i) If fT (S
′
1 ∪ {Xj∗1}) > fT (S

′
1) and fT (S

′
2 ∪ {Xj∗2}) ≤ fT (S

′
2), then

set k = 1.
(ii) If fT (S

′
1 ∪ {Xj∗1}) ≤ fT (S

′
1) and fT (S

′
2 ∪ {Xj∗2}) > fT (S

′
2), then

set k = 2.
(iii) If fT (S

′
1 ∪ {Xj∗1}) > fT (S

′
1) and fT (S

′
2 ∪ {Xj∗2}) > fT (S

′
2),

then set k = arg max{ fT (S
′
1 ∪ {Xj∗1}), fT (S

′
2 ∪ {Xj∗2})}. If

fT (S
′
1 ∪ {Xj∗1}) = fT (S

′
2 ∪ {Xj∗2}) then k is the index (1 or

2) corresponding to the solution with the smaller number of fea-
tures. If both solutions have the same number of features then
choose k randomly.

Add Xj∗
k

to the solution S
′
k, set C = C \Xj∗

k
and go to 2.

until there is no improvement; i.e., fT (S
′
1 ∪{Xj∗1}) ≤ fT (S

′
1) and fT (S

′
2 ∪

{Xj∗2}) ≤ fT (S
′
2)

Fig. 4. The GC combination

(1) Let X(1), . . . , X(|CA|) be the features ordered such that

P (X(j)) ≥ P (X(j+1)).

(2) j ← 0.
(3) Repeat:

(a) j ← j + 1.
(b) If fT (S ∪ {X(j)}) ≥ fT (S), then S ← S ∪ {X(j)}.
until (j = |CA|)

Fig. 5. The Improving Method

The aim of the method is to add to the solution those characteristics that
improve it. All the solutions reached by the ImproveSolutions method are
recorded in a set, ImpSolSet, which is then used to update the reference set.

11

3.6 UpdateReferenceSet

Finally, after obtaining all the improved solutions, RefSet is updated accord-
ing to intensity and diversity criteria. First of all, we select the |RefSet|/2
best solutions from RefSet∪ImpSolSet. Then, RefSet is updated according
to the diversity criterium by applying the procedure explained in 3.2.

4 Parallel Scatter Search

Although metaheuristics provide quite effective strategies for finding approx-
imate solutions to combinatorial optimization problems, the computational
times associated with the exploration of the solution space may be very large.
With the proliferation of parallel computers, parallel implementations of meta-
heuristics appear quite naturally as an alternative to speedup the search for
approximate solutions. Moreover, parallel implementations also allow solving
larger problems or finding improved solutions, with respect to their sequential
counterparts, due to the partitioning of the search space.

Therefore, parallelism is a possible way not only to reduce the running time
of local search algorithms and metaheuristics, but also to improve their ef-
fectiveness and precision. The first parallelization of Scatter Search has been
proposed by Garćıa et al. [8]. The authors considered three parallel strategies
in order to reduce the running time of the algorithm and increase the explo-
ration in the solution space. Moreover, some of these strategies improved the
quality of the solutions.

In this paper, we consider another straightforward parallel strategy to improve
the precision of the Scatter Search metaheuristic without increasing the run-
ning time. We can obtain more precise implementations of Scatter Search by
using different combination methods and parameter settings at each proces-
sor, leading to high quality solutions for different classes of instances of the
same problem, without too much effort in parameter tuning and with the same
execution time as the sequential algorithm.

Figure 6 shows the pseudocode of our parallel implementation. Our paral-
lel Scatter Search (PSS) applies a different combination method (denoted by
CombineSolutionsr) at each processor (r = 1, . . . , npr). Since we have devel-
oped two alternative combination methods, in the computational experience
presented in section 5, npr = 2.

The development of several combination methods for the Scatter Search meta-
heuristic has been utilized in previous works. For example, Campos et al. [4]

12

designed different combination methods for a sequential implementation of
Scatter Search for the linear ordering problem. They also assessed the rela-
tive contribution of each method to the quality of the final solution. Based
on the results obtained, they used the combination method that presented a
better performance. However, in this paper we run two combination methods
simultaneously by using two processors. Scatter search requires high compu-
tational times, complicating the sequential execution of several consecutive
combination methods. The goal of the proposed parallelization is to achieve
an improvement of the quality of the solution, using the same computational
time used by the sequential algorithm.

procedure Parallel Scatter Search
begin

CreatePopulation(Pop, PopSize);
GenerateReferenceSet(RefSet, RefSetSize);
repeat

repeat
SelectSubSet(SubSet, SubSetSize);
for each processor r = 1, . . . , npr do in parallel
begin

CombineSolutionsr(SubSet, CurSolr);
ImproveSolutions(CurSolr, ImpSolr);

end;
until (StoppingCriterion1);
UpdateReferenceSet(RefSet);

until (StoppingCriterion2);
end.

Fig. 6. Parallel Scatter Search Pseudocode

5 Computational Results

The objective of the computational experiments is to show the performance
of the Scatter Search in searching for a reduced set of features with high
accuracy. Firstly, we compared a Scatter Search with a Genetic Algorithm
using three standard classifiers (IB1, Naive Bayes and C4.5). The data showed
a superiority of the Scatter Search over the Genetic Algorithm. Moreover, the
computational experience carried out corroborates that the comparisons of the
Scatter Search metaheuristic and the Genetic Algorithm is similar when using
any of these classifiers. This means that any of the three considered classifiers
(IB1, Naive Bayes and C4.5) can be used to analyse the efficiency of these
metaheuristics. Then, we designed an experiment to find the suitable values
for the parameters of our Scatter Search implementation. Finally, we compared
both sequential Scatter Search algorithms with the parallel procedure using

13

the parameters obtained.

The datasets considered in our computational experiments were obtained from
the UCI repository [15], from which full documentation about all datasets can
be obtained. We chose them taking into account their size and use in machine
learning research. The selected datasets have more than 300 instances because
small datasets can motivate overfitting. An induction algorithm overfits the
dataset if it models the training examples too well and its predictions are
poor. Table 1 summarises the characteristics of the chosen datasets. The first
two columns correspond to the name of the datasets as it appears in the UCI
repository and the identifier (Id) used in forthcoming tables. The intermedi-
ate three columns show the total number of features, the number of nominal
features and the number of (numerical) linear features. Finally, the last two
columns summarise the number of instances and classes in the dataset.

Table 1
Summary of general characteristics of datasets.

DataBase Id Features Instances Classes
All Nom Lin

Heart(Cleveland) HC 13 7 6 303 2
SoybeanLarge SbL 35 29 6 307 19
V owel V w 10 0 10 528 11
CreditScreening Cx 15 9 6 690 2
PimaIndianDiabetes Pm 8 0 8 768 2
Anneal An 38 29 9 798 5
Thyroid(Allbp) TAb 28 22 6 2800 2
Thyroid(Sick − Euthyroid) TSE 25 18 7 3163 2
BreastCancer BC 9 0 9 699 2
Ionosphere Io 34 0 34 351 2
HorseColic HoC 21 14 7 368 2
WiscosinBreastCancer WBC 30 0 30 569 2

We use the 5× 2 cross-validation method to measure the accuracy percentage
of the resulting subset of features selected by the algorithms. However, in
order to increase the efficiency of the search, during the learning process only
1 × 2 cross-validation was considered. To perform the comparisons between
classifiers we used the F test (see [1]) at statistical significance level of 0.95.
The F test is a better test than the classical two-tailed t test for comparing
classifiers.

In order to analyse the influence of the classifiers in the performance of the
metaheuristic algorithms, we solved several problems with both algorithms
using the IB1, Naive Bayes and C4.5 classifiers. Table 2 shows the results
obtained with Sequential Scatter Search Greedy Combination (SSS-GC) and
Genetic Algorithm. The data shown in the table correspond to values of the
parameters |L| = d/2 and |RefSet| = 5 in the SSS-GC. The Genetic algo-

14

rithm applied is that provided by Weka [20] with rank-based selection strategy
and the parameter setting proposed by Yang and Honavar [21]. Namely, the
values of the parameters are: population size 50, number of generations 20,
probability of crossover 0.6, probability of mutation 0.001 and probability of
selection of the highest ranked individual 0.6. For each method, we show aver-
age accuracy percentages, average number of features and standard deviations
over 10 runs for each dataset. We also report the average results over all the
datasets considered.

The results shown in this table are similar for both metaheuristics. In both
cases, the classifier that selects the smallest number of features is C4.5 and IB1
provides the smallest reduction in the set of features. The classifier that shows
the best percentages is Naive Bayes, but the differences are not significant (at
95% level). These are known properties of the classifier and do not depend
on the subset of selected features. Therefore, the conclusions would be similar
using any classifier. We use only the IB1 classifier to carry out the remaining
experiments.

Note that the results in Table 2 corroborate that Sequential Scatter Search
Greedy Combination (SSS-GC) has a better performance than Genetic Al-
gorithm, getting always a significantly smaller number of features for each
classifier (at 95% level). The same results were achieved when using Sequen-
tial Scatter Search Reduced Greedy Combination (SSS-RGC).

Table 2
Accuracy and number of features for each classifier with the genetic algorithm (GA)
and the Scatter Search (SS)
Scatter Search (SSS-GC)

IB1 Naive-Bayes C4.5
Accuracy Features Accuracy Features Accuracy Features

Cx 80.67± 2.10 6.60± 1.43 85.30± 1.41 5.10± 2.28 83.94± 2.17 4.7± 1.89
Hoc 81.63± 3.26 7.20± 2.25 82.83± 3.06 4.60± 0.70 83.75± 3.12 4.00± 1.49
Io 88.88± 3.30 6.50± 2.92 90.36± 3.16 8.30± 2.58 87.07± 3.81 5.00± 2.62
An 95.72± 1.71 11.40± 1.78 92.36± 2.43 9.40± 2.27 91.45± 2.19 8.40± 1.35

86.72 7.92 87.71 6.85 86.54 5.25

Genetic Algorithm (GA)
IB1 Naive-Bayes C4.5

Accuracy Features Accuracy Features Accuracy Features
Cx 79.94± 2.87 7.30± 1.83 85.04± 1.05 6.50± 1.65 83.51± 1.26 5.60± 1.17
Hoc 80.49± 2.69 11.30± 2.83 82.01± 2.48 7.20± 2.25 83.86± 2.33 5.40± 1.71
Io 86.26± 2.94 9.60± 3.89 90.77± 1.59 12.70± 2.63 88.43± 2.19 10.8± 2.39
An 95.75± 1.54 18.90± 2.85 94.21± 1.22 20.70± 2.00 92.43± 2.03 15.90± 3.25

85.61 11.77 88.00 11.77 87.08 9.42

Table 3 summarises the results obtained by modifying the values of some of the

15

key parameters of the sequential Scatter Search procedures. The considered
parameters are the size of the reference set, |RefSet|, and the size of the list,
|L|, used in the constructive phase. We fixed |L| = 3, d/2 and |RefSet| = 5, 10,
if |L| = 3, and |RefSet| = 5, 10, d2, if |L| = d/2. The application of the F-
test over the results in Table 3 corroborate that there is not significative
difference (at 95% level) between the percentages for the different parameter
combinations. However, the number of features selected is significantly smaller
(at 95% level) for |RefSet| = d2. Therefore, in the rest of the computational
experiments, we only consider |L| = d/2 and |RefSet| = d2.

Table 3
Accuracy and number of features with the several values of the parameters for both
combinations

|L| = 3 |L| = d/2
|RefSet| 5 10 5 10 d2

Sequential Scatter Search with Greedy Combination
Accuracy

Cx 78.64± 2.46 79.82± 3.33 80.67± 2.10 79.71± 2.82 83.28± 3.12
Hoc 81.03± 3.66 81.85± 3.24 81.63± 3.26 80.50± 4.04 76.69± 3.49
Io 89.17± 2.60 87.18± 2.12 88.88± 3.30 87.86± 1.86 87.75± 1.37
An 94.41± 4.88 94.68± 4.75 95.72± 1.71 95.63± 1.91 94.14± 3.16

85.80 85.88 86.82 85.91 85.46
Number of features

Cx 6.20± 0.79 6.60± 1.07 6.60± 1.43 6.50± 1.65 3.40± 1.43
Hoc 7.30± 1.49 8.80± 2.20 7.20± 2.25 8.30± 2.06 7.40± 2.41
Io 6.90± 2.28 7.00± 2.36 6.50± 2.92 7.10± 1.80 6.10± 1.37
An 9.90± 2.47 10.50± 2.17 11.40± 1.78 12.70± 2.21 8.90± 2.89

7.57 8.22 7.92 8.65 6.45

Sequential Scatter Search with Reduced Greedy Combination
Accuracy

Cx 80.46± 2.83 79.51± 3.30 80.35± 2.23 79.68± 3.44 83.91± 3.27
Hoc 80.71± 3.50 80.71± 3.53 78.59± 6.16 79.51± 3.94 77.94± 2.96
Io 87.98± 2.78 88.03± 2.47 87.23± 2.12 87.24± 2.37 87.12± 1.24
An 94.25± 4.84 95.14± 3.05 88.78± 16.63 95.86± 2.37 92.98± 2.68

85.85 85.84 83.73 85.57 85.48
Number of features

Cx 6.80± 1.32 7.10± 1.29 6.60± 3.12 6.80± 1.40 4.50± 2.27
Hoc 8.30± 1.34 8.40± 1.71 7.30± 1.89 7.90± 1.73 6.30± 2.16
Io 6.00± 1.83 6.90± 2.47 5.40± 2.17 7.20± 1.14 5.70± 1.06
An 9.90± 2.51 10.80± 2.39 10.20± 3.16 11.60± 1.40 8.20± 2.66

7.75 8.30 7.37 8.37 6.17

Table 4 shows a comparison between the accuracy of the Sequential Scatter
Searches (SSS-GC and SSS-RGC) and the Parallel Scatter Search (PSS) using
the IB1 classifier. For each method, we provide average accuracy percentages

16

and standard deviations over 10 runs for each dataset. The first average and
standard deviation for each dataset show the results obtained using all the
features. We also report, at the bottom, average results over all the datasets
considered. From the results obtained, the following observations can be made.
First of all, IB1 with all the features provides the best accuracy percentages,
but the difference is not significant (at 95% level) in most datasets. Secondly,
PSS has higher precision than both SSS-GC and SSS-RGC.

Table 4
Accuracy percentage and standard deviation in validation

Id. All SSS-GC SSS-RGC PSS
HC 75.98± 3.10 74.99± 5.31 74.99± 5.68 74.91± 2.85
SbL 85.02± 4.18 82.41± 3.49 83.65± 3.65 80.53± 1.92
V w 95.29± 1.66 93.58± 1.39 93.58± 1.39 93.64± 1.34
Cx 81.54± 2.31 83.28± 3.12 83.91± 3.27 83.39± 2.74
Pm 69.71± 2.68 67.92± 2.35 67.66± 2.42 68.10± 2.43
An 93.59± 1.09 94.14± 3.16 92.98± 2.68 91.49± 2.19
TAb 95.86± 0.24 95.53± 0.33 95.44± 0.44 95.44± 0.43
TSE 92.67± 0.68 95.09± 2.76 95.12± 2.78 93.58± 2.20
BC 95.48± 0.70 95.22± 1.07 94.88± 1.45 95.11± 0.90
Io 85.75± 1.30 87.75± 1.37 87.12± 1.24 87.35± 1.56
HoC 75.60± 1.99 76.69± 3.49 77.94± 2.96 76.96± 3.79
WBC 95.61± 0.82 94.66± 1.51 93.57± 2.23 93.67± 2.36
Average 86.84± 1.73 86.77± 2.45 86.74± 2.52 86.18± 2.06

Finally, we analyse the number of features selected by the algorithms. Table
5 shows the total number of features of each dataset and the average number
of features selected with each algorithm and their standard deviations. At the
bottom we give the average of these numbers over all the datasets considered
and the reduction percentages. Both sequential Scatter Search procedures have
a similar behavior. However, PSS uses a smaller number of features and its
standard deviation is the lowest of all the considered algorithms. Moreover, the
parallel SS reduces significantly (at 95% level) the set of features selected by
each sequential SS to classify for some datasets. For example, for TSE dataset,
the number of features is reduced from 5.10 to 1.90 in average. Considering
the number of features of the best solution obtained by each algorithm, we
conclude that PSS is the algorithm that performs better.

6 Conclusions

In this paper, we propose a Scatter Search metaheuristic for solving the Fea-
ture Subset Selection Problem. We develop two combination methods: the
Greedy Combination and the Reduced Greedy Combination. For the pur-

17

Table 5
Number of features selected for each algorithm

Id All SSS-GC SSS-RGC PSS

HC 13 6.30± 1.64 6.20± 2.10 5.56± 1.60
SbL 35 15.0± 2.71 16.5± 2.22 12.80± 1.81
V w 10 7.70± 0.68 7.70± 0.68 8.00± 0.94
Cx 15 3.40± 1.43 4.50± 2.27 2.80± 2.62
Pm 8 4.10± 0.99 4.00± 0.94 4.20± 1.14
An 38 8.90± 2.89 8.20± 2.66 6.30± 2.06
TAb 29 2.80± 1.48 2.70± 1.83 2.00± 1.05
TSE 25 5.10± 2.47 5.10± 2.42 1.90± 1.20
BC 9 5.20± 1.62 4.78± 1.48 5.40± 1.71
Io 34 6.10± 1.37 5.70± 1.06 3.90± 0.88
HoC 21 7.40± 2.41 6.30± 2.16 4.50± 1.51
WBC 30 6.80± 2.53 5.50± 1.43 6.00± 2.63
Average 22.25 6.57± 1.85 6.43± 1.77 5.28± 1.60
Reduction 100.00% 70.47% 71.10% 76.27%

pose of using both combination methods simultaneously and increasing the
exploration of the solutions space, a parallelization of the Scatter Search is
developed. The parallelization consists of running each combination method
at a different processor.

The obtained computational results corroborate the effectiveness of our par-
allelization. The parallel SS achieves values of accuracy percentage similar to
both sequential SS algorithms, but uses a smaller subset of features. Moreover,
the parallel algorithm is more precise than sequential algorithms.

References

[1] E. Alpaydin, Combined 5 × 2cv f test for comparing supervised classification
learning algorithms, Neural Computation 11 (1999) 1885–1892.

[2] D. W. Aha, D. K. amd M. K. Albert, Instanced-based learning algorithms,
Machine Learning 6 (1991) 37–66.

[3] J. R. Anderson, M. Matessa, Explorations of an incremental, bayesian algorithm
for categorization, Machine Learning 9 (1992) 275–308.

[4] V. Campos, F. Glover, M. Laguna, R. Mart́ı, An experimental evaluation of a
scatter search for the linear ordering problem, Journal of Global Optimization
21 (2001) 397–414.

[5] P. Devijver, J. Kittler, Pattern Recognition: A Statistical Approach, Prentice
Hall, 1982.

18

[6] T. G. Dietterich, Approximate statistical test for comparing supervised
classification learning algorithms, Neural Computation 10 (7) (1998) 1895–1923.

[7] F. Ferri, V. Kadirkamanathan, J. Kittler, Feature subset search using genetic
algorithm, in: IEE/IEEE Workshop on Natural Algorithms in Signal Processing,
IEE Press, 1993, p. Essex.

[8] F. Garćıa-López, B. Melián-Batista, J. Moreno-Pérez, J. M. Moreno-Vega,
Parallelization of the scatter search for the p-median problem, Parallel
Computing 29 (2003) 575–589.

[9] L. Hyafil, R. L. Rivest, Constructing optimal binary decision trees is np-
complete, Information Processing Letters 5 (1) (1976) 15–17.

[10] I. Inza, P. Larrañaga, R. Etxeberria, B. Sierra, Feature subset selection by
bayesian networks based optimization, Artificial Intelligence 123 (2000) 157–
184.

[11] K. Kira, L. Rendell, The feature selection problem: Traditional methods and
a new algorithm, in: In Tenth National Conference Conference on Artificial
Intelligence (AAAI-92), MIT, 1992, pp. 129–134.

[12] R. Kohavi, G. H. John, Wrappers for feature subset selection, Artificial
Intelligence 97 (1-2) (1997) 273–324.

[13] M. Laguna, R. Mart́ı, Scatter Search: Metodology and Implementations in C,
Kluwer Academic Press, 2003.

[14] T. Mitchell, Machine Learning, Series in Computer Science, McGraw-Hill, 1997.

[15] P. M. Murphy, D. W. Aha, Uci repository of machine learning.
URL http://www.ics.uci.edu/ mlearn/MLRepository.html

[16] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.

[17] W. Siedlicki, J. Sklansky, A note on genetic algorithm for large-scale feature
selection, Pattern Recognition Letters 10 (1989) 335–347.

[18] H. Vafaie, K. D. Jong, Robust feature selection algorithms, in: Proceedings of
the 5th IEEE International Conference on Tools for Artificial Intelligence, IEE
Press, 1993, pp. 356–363.

[19] D. R. Wilson, T. R. Matinez, Improved heterogeneous distance functions,
Journal of Artificial Intelligence Research 6 (1997) 1–34.

[20] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations, Morgan Kaufmann, 2000.

[21] J. Yang, V. Honavar, Feature Subset Selection using a Genetic Algorithm.
Genetic Programming 1997: Proceeding of the Second Annual Conference,
Morgan Kaufmann, 1997.

19

