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Abstract

The aim of this paper is to develop a hybrid metaheuristic based on Variable Neighbour-
hood Search and Tabu Search for solving the Feature Subset Selection Problem in classification.
Given a set of instances characterized by several features, the classification problem consists of
assigning a class to each instance. Feature Subset Selection Problem selects a relevant subset
of features from the initial set in order to classify future instances. The proposed hybrid meta-
heuristic is compared with a Genetic Algorithm proposed in the literature. Although he hybrid
metaheuristic and the genetic algorithm had a similar performance according to the accuracy
percentages, the hybrid metaheuristic provided a higher reduction in the set of features.

1 Introduction

The purpose of a classification problem is to classify instances, that are characterized by a set
of features, by determining the class to which each instance belongs. In order to achieve this
classification, a set of cases or instances of a known class is given.

The aim of the feature subset selection problem is to determine the subset of features that
optimally carry out the classification task. Selecting the optimal feature subset is an NP -hard
optimization problem [15]. Thus it is impossible to explore the whole solution space. Metaheuristics
provide procedures for finding solutions with reasonable efficacy and efficiency. The application of
evolutive procedures such as Genetic Algorithms [] are described in the literature. In this work
a hybrid metaheuristic (VNSTS) based on variable neighbourhood search (VNS) and tabu search
(TS) is developed to solve the feature subset selection problem. It is then compared with a genetic
algorithm proposed in the literature.

Variable Neighborhood Search [11], [12] is a recent metaheuristic for solving combinatorial and
global optimization problems based upon a simple principle: systematic changes of neighborhood
within the search. When a local minimum is reached, a shake procedure performs a random search.
This determines a new starting point for running an improvement method. Basic Tabu Search
(TS) [9] maintains a selective history H of the states encountered during the search, and replaces
the neighborhood of the current solution N(s) by a modified neighborhood, which may be denoted
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N(H, s). History therefore determines which solutions may be reached by a move from the current
solution, selecting s′ from N(H, s).

Next section introduces the feature selection problem with a formal description of the problem
and the most common solution strategies. Section 3 describes the main elements of the Variable
Neighborhood Search and Tabu Search metaheuristics in the application to this problem. The
outcomes of the computational experience are shown in section 4 for several data sets and motivate
our conclusions, summarized in section 5.

2 The Feature Subset Selection Problem

The paradigms of learning Instance-Based Learning and Bayesian Learning [17] are considered in
order to perform the classification task. Instance-Based Learning uses the nearest examples to
predict the label of the instance, given a set of examples and an instance to be classified. In this
work, the instance-based algorithm called IB1 [2], which classifies each instance with the label
of the nearest example, is used. For this purpose, IB1 considers all the features, although, in
general, only a few of them are highly relevant. Bayesian Learning uses probability as an approach
for classification. The Naive Bayes classifier, which is based on the Bayes theorem, estimates “a
posteriori” probabilities of all possible classifications. For each instance, the classification with the
highest “a posteriori” probability is chosen.

With the purpose of selecting the subset of features, both the wrapper approach and the filter
approach can be considered. The first strategy applies a different methodology in the training
and test phases. The main disadvantage of this procedure is that it ignores the effect of the
subset of features in the induction algorithm. In this approach, there are two relevant algorithms:
FOCUS [3], which examines the entire subset of features selecting those that minimize the number
of features among those classifying correctly all of the training instances, and RELIEF [14], which
is a random algorithm that assigns a weight to each feature based on the two nearest instances.
The wrapper strategy applies the same algorithm in the entire process. Two well known wrapper
approaches are Sequential Forward Selection (SFS) and Sequential Backward Elimination (SBE)
[5]. SFS starts with an empty subset of features and, at each step, adds the feature that improves
the most the classification. This process is iterated until no improvement is possible. In SBE the
initial subset consists of all the available features and, at each step, the worst feature is eliminated
from the subset. As in SFS, this process is repeated until no improvement is possible. The VNSTS
metaheuristic proposed in this work is based on the wrapper approach.

Let A be a set of given instances characterized by d features X = {Xj : j = 1, . . . , d}, which
are either a nominal or a linear attribute. An attribute is linear if the evaluation of the difference
between two of its values has sense (being discrete or continuous); otherwise it is nominal. With
the purpose of carrying out the classification task, we consider as training instances the subset of
instances T ⊂ A in which labels are known, and as validation instances the subset V = A \ T
of instances to be classified. The aim of the classification problem is to obtain the label of the
instances using only a subset of features. Therefore the objective of our problem is to find the
subset of features S ⊆ {Xj : j = 1, . . . , d} with the highest accuracy percentage.

In order to estimate the accuracy percentages of a subset of features S on a given set of instances
B ⊆ A, we consider the method widely used in the literature called k-fold cross validation. This
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method divides the set of instances B at random into k disjoint subsets of equal size B1, B2, . . . , Bk

and performs k executions. In the execution i, Bi is considered as test set and the union of the
other subsets Ti = B \ Bi as training set. In each trial i, the test instances Bi are classified using
the learning algorithm. The estimated accuracy percentage of the classifier is the average of the
accuracy percentages over all the trials. The estimated accuracy percentage of a subset of features
S on a given set of instances B using cross-validation is stated as follows:

fB(S) = 100
|a ∈ B : c̃a = ca|

|B| (1)

where ca is the class of each instance a and c̃a is the class assigned by the classifier.

For the purpose of guiding the search for the best subset of features (training) and measuring
the effectiveness of a particular subset of features after the search algorithm has chosen it as solution
of the problem (validation), the function (1) for 2-fold cross-validation is used. To guide the search,
fT (·) is considered and to measure the effectiveness, fV (·) is used. In training and validation, we
consider 5× 2 cross-validation (5× 2cv) [6] that consists of dividing the set V into 2 folds and then
conducting two trials. This is done for 5 random arrangements of V .

3 Application of VNS and TS to the Feature Subset Selection
Problem

The aim of this section is to describe the characteristics of the proposed hybrid metaheuristic
applied to the Feature Subset Selection Problem.

Variable Neighborhood Search (VNS) [11], [12] is a recent metaheuristic for solving combinato-
rial and global optimization problems based upon the simple principle of systematically changing
the neighborhoods within the search. Let Nk, (k = 1, . . . , kmax) be a finite set of neighborhood
structures, and Nk(s) be the set of solutions in the kth neighborhood of a solution s. Neighborhoods
Nk may be induced from metric functions introduced into a solution space S. If d(., .) is this distance
then take increasing values dk, k = 1, ..., kmax and set Nk(s) = {s′ ∈ S : d(s, s′) ≤ dk}. Most local
search heuristics use only one neighborhood structure N . Therefore a series of nested neighbor-
hoods are obtained from a single neighborhood by taking N1(s) = N (s) and Nk+1(s) = N (Nk(s)),
for every solution s. This means that a move to the k-th neighborhood is performed by repeating
k times a move to the original neighborhood. A solution s′ ∈ S is a local minimum with respect to
Nk if there is no solution s ∈ Nk(s′) ⊆ S better than s′ (i.e., such that f(s) < f(s′) where f is the
objective function of the problem).

A usual strategy with two neighborhoods consists in performing local searches using the first
neighborhood from points s′ that belong to the second neighborhood of the current solution (i.e.
s′ ∈ N2(s)). The Basic Variable Neighborhood Search (BVNS) method uses deterministic changes
in the neighborhood structure for perturbation or shaking. Its steps are given in Figure 1. The
stopping condition may be the maximum cpu time allowed, the maximum number of iterations, or
the maximum number of iterations between two improvements.

Basic Tabu Search (TS) [11], [12] maintains a selective history H of the states encountered
during the search, and replaces the neighborhood of the current solution N(s) by a modified
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Initialization.

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax.

Find an initial solution s.

Choose a stopping condition.

Iterations.

Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1.

(2) Repeat the following steps until k = kmax:

(a) Shaking.
Generate a point s′ at random from the kth neighborhood of s (s′ ∈ Nk(s)).

(b) Local search.
Apply some local search method with s′ as initial solution; denote as s′′ the obtained
local optimum.

(c) Move or not.
If this local optimum is better than the incumbent, then s ← s′′, and continue the
search with N1 (k ← 1); otherwise, set k ← k + 1.

Figure 1: Basic Variable Neighborhood Search.

neighborhood, which may be denoted N(H, s). History therefore determines which solutions may
be reached by a move from the current solution, selecting s′ from N(H, s).

In the TS strategies based on short term considerations, N(H, s) characteristically is a subset
of N(s), and the tabu classification serves to identify elements of N(s) excluded from N(H, s). In
the intermediate and longer term strategies, N(H, s) may contain solutions not in N(s), generally
consisting of selected elite solutions (high quality local optima) encountered at various points in
the solution process. Such elite solutions typically are identified as elements of a regional cluster
in intermediate term intensification strategies, and as elements of different clusters in longer term
diversification strategies.

TS also uses history to create a modified evaluation of currently accessible solutions. This
may be expressed formally by saying that TS replaces the objective function f(s) by a function
f(H, s), which has the purpose of evaluating the relative quality of currently accessible solutions.
It is provided by the use of frequency based memory. The relevance of this modified function
occurs because TS uses aggressive choice criteria that seek a best s′; i.e., one that yields a best
value of f(H, s), over a candidate set drawn from N(H, s). Moreover, modified evaluations often
are accompanied by systematic alteration of N(H, s), to include neighboring solutions that do not
satisfy customary feasibility conditions.

For large problems, where N(H, s) may have many elements, or for problems where these ele-
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ments may be costly to examine, the aggressive choice orientation of TS makes it highly important
to isolate a candidate subset of the neighborhood, and to examine this subset instead of the entire
neighborhood. Because of the significance of the candidate subset, we refer to it explicitly by the
notation N ′(H, s).

Therefore, the Tabu Search procedure, instead of simply selecting the best neighbor s′ of s with
respect to f as the greedy local search does, selects the solution in N ′(H, s) that minimizes f(H, s).
The selected solution s′ is called a highest evaluation candidate.

3.1 Initialization

In order to perform the initialization step of the hybrid metaheuristic, the neighborhood structure
and the procedure that generates the initial solution must be defined.

The kth neighborhood of the solution S, Nk(S), consists of all the solutions that can be reached
from S by exchanging k features in the solution with k features out of the solution. Let d(S, S′) be
the distance between the solutions S = {X1, ..., Xr} and S′ = {X ′

1, ..., X
′
r} defined as follows.

d(S, S′) = r − |{X1, ..., Xr}
⋂
{X ′

1, ..., X
′
r}|

Then the kth neighborhood of the solution S, Nk(S), is stated as follows.

Nk(S) = {S′ : d(S, S′) ≤ k}

In this work, the initial solution S for the VNSTS procedure has been generated using the
Sequential Forward Selection (SFS) and the Sequential Backward Elimination (SBE) algorithms,
which are executed one after the other until no improvement is achieved. We proposed to initial-
ization methods to develop the VNSTS, obtaining the hybrid metaheuristics called VNSTS+ and
VNSTS, respectively. The first one selects the solution provided by running the SFS and the SBE
algorithms one after the other until no improvement in achieved. The second one selects a solution
generated at random, which has the maximum number of features between the number of features
of the SFS-SBE solution and the 10% of the total number of features.

The Sequential Forward Selection (SFS) and the Sequential Backward Elimination (SBE) algo-
rithms are stated as follows.

Sequential Forward Selection (SFS )

1. Initialize the set of features S = Ø;

2. For each feature Xj /∈ S, calculate f(S
⋃{Xj}). Let j∗ be such that f(S

⋃{Xj∗}) =
maxj{f(S

⋃{Xj})} and S∗ = S
⋃{Xj∗}. If f(S∗) > f(S), take S = S

⋃{Xj∗} and repeat
step 2. Otherwise, stop.

Sequential Backward Elimination (SBE )

1. Initialize the set of features S = Xj : j = 1, ..., d;
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2. For each feature Xj ∈ S, calculate f(S\{Xj}). Let j∗ be such that f(S\{Xj∗}) = maxj{f(S\
{Xj})} and S∗ = S\{Xj∗}. If f(S∗) > f(S), take S = S\{Xj∗} and repeat step 2. Otherwise,
stop.

3.2 Shaking procedure

This procedure generates a solution S′ at random from the kth neighborhood of S (S′ ∈ Nk(S)).
Let Xi(1), ..., Xi(k) be k features in the solution S chosen at random and Yi(1), ..., Yi(k) k features
out of the solution S also chosen at random. The solution S′ is then stated in the following way.

S′ = S \ {Xi(1), ..., Xi(k)}
⋃
{Yi(1), ..., Yi(k)}

In this step, the features {Xi(1), ..., Xi(k)}
⋃{Yi(1), ..., Yi(k)} involved in the shaking procedure

are added to a tabu list, whose elements cannot be used in the shaking procedure in the next
iteration. An iteration is defined as the performance of the shaking procedure and the local search.

Since in each iteration there are 2k tabu features, which cannot be used for shaking purposes,
the stopping condition is met when the number of features to be exchanged, k, is greater than the
minimum between the number of non-tabu features in the solution and the number of non-tabu
features out of the solution.

3.3 Improvement method

The improvement method applied to the solution S′ in this metaheuristic is the execution of the
Sequential Forward Selection and the Sequential Backward Elimination algorithms one after the
other until no improvement is achieved. The local optimum reached by running the SFS and SBB
is compared with the best solution obtained by the procedure changing then either to the (k +1)th

neighborhood structure if there has not been improvement or to the first structure otherwise.

4 Computational Results

The objective of the computational experiments is to show the performance of the hybrid meta-
heuristic (VNSTS) in searching for a reduced set of features with high accuracy. Firstly, we execute
the hybrid procedures VNSTS and VNSTS+ explained above. Then these procedures are compared
with a Genetic Algorithm using two standard classifiers (IB1 and Naive Bayes). The data showed a
superiority of the VNSTS strategies over the genetic algorithm in reducing the number of features
used for the classification task. Moreover, the computational experience carried out corroborates
that the comparisons of the VNSTS strategies and the genetic algorithm is similar when using any
of these classifiers, although Naive Bayes provides a higher reduction of the number of features.

Although the optimal selection of parameters is still an open problem on Genetic Algorithms,
guided by the recommendations of Bäck [26], the probability of crossover is set to 1.0 and the
mutation probability to 1/d being d the number of variables of the domain (these values are so
common in the literature). Fitness proportionate selection is used to select individuals for crossover.
The population size is set to 1000 and the new population is formed by the best members from both
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the old population and the offspring. The criterion for halting the genetic search is the following:
stop when in a sampled new population of solutions no individual is found with an evaluation
function value that improves the best individual found in the previous generation. Thus the best
solution of the previous population is returned as the result of the genetic search. These parameters
were already used in feature subset selection by Inza et al. (2001) [25].

The data sets considered in our computational experiments were obtained from the UCI repos-
itory [18], from which full documentation about all data sets can be obtained. We chose them
taking into account their size and use in machine learning research. The selected data sets have
more than 200 instances because small data sets can motivate overfitting. An induction algorithm
overfits the data set if it models the training examples too accurately and its predictions are poor.
Table 1 summarizes the characteristics of the chosen data sets. The first two columns correspond
to the name of the data sets as it appears in the UCI repository and the identifier (Id) used in
forthcoming tables. The intermediate three columns show the total number of features, the number
of nominal features and the number of (numerical) linear features. Finally, the last two columns
summarize the number of instances and classes in the data set.

Table 1: Characteristics of the data sets
DataBase Id Features Instances Classes

All Nom Lin

Anneal anneal 38 29 9 798 5
Audiology audiology 70 70 0 226 24
Horse Colic colic 21 14 7 368 2
Credit Approval credit-a 15 9 6 690 2
Glass glass 9 0 10 214 7
Heart (Cleveland) heart-c 13 7 6 303 2
Heart (Disease) heart-h 13 7 6 294 2
Ionosphere ionosphere 34 0 34 351 2
Sonar sonar 60 0 60 208 2

In order to analyze the effectiveness of the hybrid metaheuristics proposed in this work, we
solved several problems with both hybrid algorithms and with the genetic algorithm using the IB1
and Naive Bayes classifiers. Table 2 shows the results obtained with VNSTS, VNSTS+ and Genetic
Algorithm using the classifier IB1. For these three procedures we show the accuracy percentages,
the standard deviations over 10 runs. In addition, for the hybrid strategies we report the p-values
obtained using the statistical test explained below. This test compares each hybrid procedure with
the genetic algorithm.

As said before, we use the 5 × 2 cross-validation method to measure the accuracy percentage
of the resulting subset of features selected by the algorithms. With the purpose of performing the
comparisons between methods we used the 5× 2 F test, which performs 5 replications of the 2-fold
cross validation. In each replication, the data set is divided into two equal-sized sets. We apply
the F -test proposed by Alpaydin in 1999 [1] that consists in the following.

The value p
(j)
i is the difference between the error rates of the two classifications on fold j = 1, 2 of

replication i = 1, ..., 5. The average on replication i is pi = (p(1)
i +p

(2)
i )/2 and the estimated variance

is s2
i = (p(1)

i − pi)2 + (p(2)
i − pi)2. Under the null hypothesis that there is not difference between

the classifier procedures p
(j)
i is the difference between tho identically distributed proportions.
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Ignoring the dependence between the proportions, p
(j)
i can be treated as approximately nor-

mal distributed with zero mean and unknown variance σ2 (see Dietterich 1998 [6]). Then p
(j)
i /σ

is approximately unit normal and (p(j)
i /σ)2 can be treated as a chi-square with one degree of

freedom. Ignoring now that the s2
i are not independent, the statistics M = (1/σ2)

∑5
i=1 s2

i

and N = (1/σ2)
∑5

i=1

∑2
j=1(p

(j)
i )2 are approximately chi-squared distributed variables with 5

and 10 degrees of freedom, respectively. Therefore, assuming that they are independent, F =
(N/10)/(M/5) ∼ F10,5. We use the approximated p-values of this statistic for testing the equality
of the percentages of the classification methods in each data set. Note that, due to the approxima-
tions made, the true p-value would be even better when the hypothesis is rejected.

Table 2: Accuracy and standard deviations using IB1
IB1

VNSTS VNSTS+ GA

Id. f σ p-val f σ p-val f σ

anneal 96.57 ±1.76 0.53 96.43 ±1.50 0.78 96.37 ±2.40
audiology 66.28 ±4.94 0.41 65.04 ±6.25 0.57 69.03 ±4.60
colic 80.60 ±1.52 0.23 81.09 ±2.92 0.12 83.48 ±2.98
credit-a 80.96 ±2.33 0.75 80.03 ±5.47 0.67 80.58 ±3.00
glass 66.16 ±3.38 0.07 67.94 ±5.41 0.56 67.57 ±4.01
heart-c 74.85 ±3.67 0.43 72.22 ±8.62 0.58 75.71 ±4.18
heart-h 74.56 ±4.84 0.72 73.54 ±9.41 0.53 75.24 ±5.07
ionosphere 87.57 ±2.55 0.54 88.03 ±2.70 0.77 87.98 ±2.30
sonar 78.56 ±5.34 0.53 77.60 ±4.10 0.41 80.77 ±3.48

Table 3 reports the number of features and standard deviations obtained for the three procedures
using the classifier IB1.

Table 3: Number of features and standard deviations using IB1
IB1

VNSTS VNSTS+ GA

Id. f σ f σ f σ

anneal 9.3 ±0.8 8.9 ±1.0 15.2 ±2.5
audiology 12.5 ±3.5 11.8 ±3.1 31.0 ±4.4
colic 8.2 ±3.4 6.2 ±2.6 7.4 ±2.4
credit-a 5.9 ±2.1 4.0 ±2.1 5.2 ±1.7
glass 4.9 ±1.1 4.4 ±1.1 4.8 ±0.6
heart-c 6.2 ±0.9 5.8 ±2.5 6.9 ±1.9
heart-h 6.1 ±2.5 3.4 ±1.5 4.8 ±1.9
ionosphere 7.8 ±2.7 5.5 ±2.4 8.5 ±2.3
sonar 13.3 ±3.1 10.5 ±2.8 20.0 ±4.1

The results reported in Table 2 show that there are not significant differences in the accuracy
percentages between the hybrid metaheuristics and the genetic algorithm using the classifier IB1.
However, the results summarized in Table 3 show that the hybrid metaheuristics proposed in this
work provide a higher reduction in the set of features than the genetic algorithm. Moreover, the
metaheuristic VNSTS+, in which the initial solution is obtained running SFS and SBE until no
improvement is achieved, provides the smallest numbers of features.
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Although the computational CPU times have not been reported in this work because are not
considered a crucial subject in learning, the computational times provided by the hybrid meta-
heuristics is a level of magnitude smaller than the provided by the genetic algorithm.

The accuracy percentages obtained using the classifier Naive Bayes reported in Tables 4 and
5 are similar to the accuracy percentages obtained using IB1. However, the Naive Bayes classifier
reduces more the number of features selected to perform the classification.

Table 4: Accuracy and standard deviations using Naive Bayes
Naive-Bayes

VNS-TS VNS-TS+ GA

Id. f σ p-val f σ p-val f σ

anneal 90.51 ±2.00 0.38 88.13 ±1.31 0.19 92.18 ±2.51
audiology 69.38 ±4.50 0.64 69.11 ±4.67 0.61 69.73 ±2.20
colic 83.75 ±2.41 0.65 83.37 ±2.71 0.53 83.70 ±1.76
credit-a 85.51 ±1.34 0.58 84.78 ±1.41 0.55 85.18 ±1.34
glass 58.90 ±6.67 0.53 57.29 ±7.00 0.30 59.44 ±6.28
heart-c 80.86 ±2.88 0.53 77.56 ±4.01 0.39 80.14 ±2.87
heart-h 81.48 ±2.33 0.13 81.09 ±2.64 0.52 81.36 ±3.03
ionosphere 90.20 ±3.36 0.33 89.86 ±3.55 0.33 91.45 ±2.52
sonar 70.67 ±4.40 0.30 68.94 ±5.50 0.73 69.33 ±4.76

Table 5: Number of features and standard deviations using Naive Bayes
Naive-Bayes

VNS-TS VNS-TS+ GA

Id. f σ f σ f σ

anneal 7.6 ±1.4 3.2 ±2.7 13.3 ±2.8
audiology 10.0 ±3.0 6.6 ±2.6 14.7 ±2.2
colic 3.9 ±1.4 4.5 ±1.6 5.8 1.23
credit-a 5.2 ±0.9 3.8 ±2.6 5.3 ±1.4
glass 3.8 ±0.6 3.6 ±1.1 4.0 ±0.7
heart-c 5.4 ±1.7 3.8 ±2.7 5.5 ±1.8
heart-h 4.5 ±0.9 3.1 ±1.5 4.4 ±0.8
ionosphere 7.4 ±2.6 5.8 ±2.3 11.1 ±2.6
sonar 4.9 ±1.6 3.8 ±2.1 15.2 ±5.1

5 Conclusions

In this paper, we propose two hybrid procedures based on the variable neighborhood search and tabu
search metaheuristics to solve the Feature Subset Selection Problem. These two hybrid algorithms
are obtained by combining the characteristics of both metaheuristics and generating initial solutions
for the variable neighborhood search in two different ways.

The obtained computational results corroborate the effectiveness of our hybrid procedures when
compared to a genetic algorithm. They both get accuracy percentages similar to the genetic
algorithm using the classifiers IB1 and Naive Bayes. However, the hybrid metaheuristics proposed
in this work provide a higher reduction in the set of features than the genetic algorithm. In addition,
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the metaheuristic VNSTS+ provides the smallest numbers of features. Finally, the Naive Bayes
classifier reduces more the number of features selected to perform the classification.
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