
GRASP/VNS hybrid for the Strip Packing Problem

Jesús David Beltrán, Jose Eduardo Calderón, Rayco Jorge Cabrera,
José A. Moreno Pérez and J. Marcos Moreno-Vega

Departamento de E.I.O. y Computación
Escuela Técnica Superior de Ingenieŕıa Informática,

Universidad de La Laguna. 38271 La Laguna SPAIN.
e-mail: jamoreno@ull.es, jmmoreno@ull.es

April 23, 2004

Abstract

In this work we consider and hybrid metaheuristc approach to solve the Strip Packing Problem.
The hybrid combines features of the GRASP and the VNS heuristics. We experimentally compare
two kind of stopping rules: dependent and independent of the problem, and compare them.

Keywords: Metaheuristics, GRASP, VNS, Strip Packing Problem

1 Introduction

Metaheuristic searches are general solution procedures for solving problems. They are characterized by
their wide applicability and by their good performance in many cases. Thus, ideally, they provide high
quality solutions consuming moderate resource (time).

In this work we describe We formulate for the Strip Packing Problem (SPP) and compare
them. Consider a strip of fixed width w and infinite height, and a finite set of rectangles, with at least
one of their sides less than w. The SPP consists of packing the rectangles in the strip minimizing the
height of the packing (see figure 1). In this problem the rectangles can be rotate at 90 degrees and the
cuttings can be non guillotine. A cutting is guillotine if it goes from a side of the object to the front side.
In a non-guillotine cut this can not be true.

The rest of the paper is structured as follows. In the section 3 we formulate the Strip Packing
Problem In the next section we describe the Metaheuristics In section 5 we do an experimental
comparative study of the metaheuristic searches to solve the problem. Finally, in the section 6 we
enumerate the conclusions of our computational experience.

2 The Strip Packing Problem

The Strip Packing Problem (SPP) [8] is formulated as follows. Let w be the width of the strip with
infinite height and let R = {R(wi, hi) : i = 1, . . . , n} be a set of n rectangles. Each rectangle R(wi, hi)
has width wi and height hi verifying min{wi, hi} ≤ w, for each i = 1, . . . , n.

The problem is to establish the optimal placing (ri, ai, bi) of the rectangles R(wi, hi), i = 1, . . . , n.
Here ri is a binary variable that represents if the i-th rectangle is rotated or not, and (ai, bi) are the
coordinates of the position of the bottom-left corner of the rectangle R(wi, hi) with respect to the origin
of coordinates (this origin is fixed at the bottom-left corner of the strip). If ri = 1 then the i-th rectangle
is rotated at 90 degrees; otherwise ri = 0 and it is not rotated. The placing of each rectangle is feasible
if the following two conditions are verified: the rectangle is completely included in the strip and it does
not overlap with any other rectangle already placed. Therefore,

1

Figure 1: Solution of a Strip Packing Problem, SPP).

• If ri = 0 then 0 ≤ ai ≤ w − wi, 0 ≤ bi and the position of no other rectangle R(wj , hj) verifies
ai < aj < ai + wi and bi < bj < bi + hi.

• If ri = 1 then 0 ≤ ai ≤ w − hi, 0 ≤ bi and the position of no other rectangle R(wj , hj) verifies
ai < aj < ai + hi and bi < bj < bi + wi.

The objective function to be minimized is the maximum height h reached by the rectangles that is
computed by:

h = max{max
ri=0

(bi + hi),max
ri=1

(bi + wi)}
Equivalently, the objective is to minimize the area of the strip used that is the product of its width w by
the maximum height h; h · w.

Some infinite set of equivalent feasible solutions could be obtained by shifting horizontally or vertically
some rectangles when it is possible. To avoid it, only solutions obtained by introducing successively all
the rectangles following a given placement strategy are considered. We use the following usual bottom-left
strategy: each rectangle is placed at the deepest location and, within it, in the most left possible location.
So, each feasible solution of the problem is determined by the order in which the rectangles are introduced
in the strip. Therefore, the space of solutions consists of the permutations of the numbers [1, . . . , n] with
a binary vector [r1, . . . , rn] that represents if each rectangle is rotated or not.

The solution represented in figure 3 is obtained by introducing the five rectangles labelled with numbers
1 to 5 in this order, following the above strategy. In this solution, it is possible that some rectangles
have been rotated at 90 degrees. The figure shown may be the configuration corresponding to a partial
solution where some rectangles are not placed yet. There we can see two important elements: the space
closed by the rectangles 2, 3 and 4, that is an area wasted, and the shape of the upper contour of the
set of rectangles, that constraints the possible location of the next rectangles. Observe that, if it is a
complete solution, the area between the upper contour and the maximum height reached by a rectangle
is also wasted see figure 3.

3 Greedy Randomized Adaptive Search Procedure

In a constructive method an element is iteratively added to an initially empty structure until a solution
of the problem is obtained. The choice of the item to be included in the partial solution is based on
one or several heuristic evaluations that measure the convenience of considering the item as belonging to
the solution. The heuristic functions depend on the problem and also on the knowledge of the decision
maker about the problem. If the evaluation of an element depends on the items already in the solution,
the function and the method are adaptive.

2

1 2

3

4
5

W

W

h

?

6

w¾ -

Figure 2: Total Waste of a solution with 5 packed rectangles

In addition to the heuristic function, it is necessary a strategy to select the elements. One of the most
known strategy is the greedy rule: select the element that optimizes the heuristic function. However, this
strategy shows poor performance in most cases. An alternative strategy is to randomly select one of the
best elements. The set of best elements is called Restricted Candidate List (RCL).

GRASP (Greedy Randomized Adaptive Search Procedure) [?] is a constructive heuristic consisting
of two phases. In the constructive phase, a solution is iteratively constructed randomly selecting one
element of the restricted candidate list. Then, in the post-processing phase, it is attempted to improve
this solution using a improved method (generally, a descent local search). These steps are repeated until
a stopping rule is satisfied. The best overall solution is kept as the result.

The elements which completely determine a GRASP are: the heuristic function, the way in which
restricted candidate list is built, the improved method and the stopping rule. In our proposal, the search
terminates when a maximum number of local searches, niter, is reached. In the post-processing phase,
the best placement of the k last rectangles into the solution is determined. For this, we use the VNS
procedure.

3.1 Contour

La inclusión de un rectángulo cualquiera en el objeto, determina un contorno superior rectangular como el que
se muestra en la figura ??. Además, es posible que se obtengan áreas no aprovechables, llamadas desperdicios,
como el que se obtiene al incluir el rectángulo 4 en el objeto de la figura ??. El contorno, C, puede represen-
tarse por medio del conjunto de segmentos horizontales (tomados de izquierda a derecha) que lo forman. Es
decir:

C = {(y1, x1
1, x

1
2), (y

2, x2
1, x

2
2), . . . , (y

c, xc
1, x

c
2)}

con
yi ≡ altura del i-ésimo segmento
xi

1 ≡ punto inicial del i-ésimo segmento
xi

2 ≡ punto final del i-ésimo segmento
.

Además, x1
1 = 0 y xc

2 = w. Nótese que, intuitivamente, es preferible un contorno formado por pocos niveles a
otro con muchos niveles. Esto es aśı, ya que, en general, la posibilidad de obtener desperdicios aumenta con
el número de niveles.

3.2 Restricted candidate list

Let t be the current iteration of the constructive phase and we suppose that R = R1 ∪ R2, where R1

is the set of rectangles into the partial solution and R2 = R \ R1. Let C(t) be the contour determined

3

by R1. Evaluaremos la conveniencia de incluir un rectángulo de R2 en el objeto por la forma que tendrá el
contorno C(t) tras su inclusión. Las diferentes evaluaciones que proponemos pretenden aprovechar mejor el
espacio disponible y suavizar el contorno.

• Restricted candidate list: let (yi, xi
1, x

i
2) be the lowest segment of the contour. Given α1 ∈ [0, 1],

the restricted candidate list is built as:

RCL = {R(wj , hj) ∈ R2 :
(0 ≤ xi

2 − xi
1 − wj ≤ α1) ∨

(0 ≤ xi
2 − xi

1 − hj ≤ α1)}.

The list is formed by the rectangles that better fit to the width of the lowest segment of the contour.
The adjustment is given by the value of the parameter α1.

If the list RCL is empty, we take from R2 the rectangle that better fits to (yi, xi
1, x

i
2). If such rectangle

does not exist, we rebuild the contour C(t) replacing the segments (yi, xi
1, x

i
2) and (yi+1, xi+1

1 , xi+1
2) by a

new segment (yi+1, xi
1, x

i+1
2). The area between xi

1, xi
2, yi and yi+1 is wasted.

4 Variable Neighbourhood Search

Variable neighborhood search (VNS) [6], [7] is a recent metaheuristic based on systematic change of the
neighbourhood in an heuristic search. Usual heuristic searches are based on transformations of solutions
that determine a neighborhood structure on the solution space. First VNS algorithms where based upon
a simple idea: change the neighborhood structure when a local search is trapped on a local minimum.

An VNS can be implemented by the combination of series of random and improving (local) searches.
The random and the improving searches are usually based on neighbourhood structures. When the
improving local search stops at a local minimum, a shake procedure performs a random search for a new
starting point for a new local search. The improving local search and the random shake procedure are
usually based on a standard moves that determines the neighbourhood structures. A basic local search
consists of applying an improving move until no such move exists. A simple shake procedure consists of
applying a number of random moves. Many extensions have been made, mainly to allow solution of large
problem instances. In most of them, an effort has been made to keep the simplicity of the basic scheme.

A neighborhood structure on the space solution X is function N : X → 2X that associates, to each
solution x ∈ X, a neighborhood of solutions N (x) ⊂ X, that are named neighbors of X. Let us denote
with Nk, k = 1, . . . , kmax, a finite set of neighborhood structures on the solution space X. Neighborhoods
Nk may be induced from one or more metric functions introduced into the solution space X. An improving
local search changes the current solution by another better solution in its neighborhood, therefore it is
trapped in a local minimum.

A local search iteratively seeks for a better solution in the neighborhood of the current solution.
The classic greedy descent search consists in replacing the current solution by the best solution of its
neighborhood, while an improvement is obtained. The Variable Neighborhood Descent (VND) method is
obtained if change of neighborhoods is performed each time a local optimum (minimum) is reached. The
steps of the VND with the greedy strategy are presented on next Figure.

The final solution provided by the algorithm should be a local minimum with respect to all kmax

neighborhoods, and thus chances to reach a global one are larger than by using a single structure.
The Reduced Variable Neighborhood Search (RVNS) method is obtained if random points are selected

from Nk(x), without being followed by descent, and its steps are presented on the next figure
The Basic Variable Neighborhood Search (BVNS) method combines random moves and improving

(local) searches. Its steps are given on the next figure.
The Local search step (2b) of the BVNS may be replaced by VND. The resulting search method

applies two (possibly different) series of neighborhoods; one for the shaking and one for the descent. The
steps of this General Variable Neighborhood Search (GVNS) method are shown in next figure.

4

Initialization

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used in the descent;

Find an initial solution x;

Iterations

Repeat the following sequence until no improvement is obtained:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:

(a) Exploration of neighborhood
Find the best solution x′ in the k-th neighborhood of x (x′ ∈ Nk(x));

(b) Move or not
If the solution thus obtained x′ is better than x, set x ← x′ and k ← 1; otherwise, set
k ← k + 1.

Figure 3: Steps of the basic VND

The stopping condition may be e.g. maximum cpu time allowed, maximum number of iterations, or
maximum number of iterations between two improvements.

The GVNS led to the most successful applications of VNS metaheuristic recently reported. Several of
those applications use the same set of neighborhood structures for shaking and descent. The neighbour-
hoods are often nested and based on a single standard move. Given a base neighborhood structure N
the series of nested neighborhood structure is defined as follows. The first neighbourhoods are the base
ones, N1(x) = N (x) and the next neighborhoods are defined recursively by:

Nk(x) =
⋃

y∈N1(x)

Nk−1(y).

In other words Nk(x) consists of the solutions that can be obtained from x by a series of k base moves.
Then the VNS comprises the following steps:

VNS algorithm

1. Initialization:

Find an initial solution x. Set x∗ = x and k = 1.

2. Repeat the following until the stopping condition is met:

(a) Shake:
Generate at random a solution x′ in Nk(x).

(b) Local Search:
Apply a local search in N (x′) until a local minimum x′′ is found.

(c) Improve or not:
If x′′ is better than x∗, do x∗ = x′′ and k = 1. Otherwise do k = k + 1. Set x = x∗.

If the local search uses the greedy strategy then at step 2b an iterative procedure tests all the base
moves, and that providing the best solution is made until no improving move exists The shake consists
of applying a number k of random base moves. This number of random moves is the size of the shake.
The base move for problems where the solutions are represented by permutations is the interchange move
that consists in the interchange of the position of two elements of the permutation.

The random generation of solutions is performed by successively selecting one of the remainder ele-
ments with the same probability.

5

Initialization

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used in the search;

Find an initial solution x;

Choose a stopping condition;

Iterations

Repeat the following sequence until no improvement is obtained:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:

(a) Shaking
Generate a point x′ at random from the k-th neighborhood of x (x′ ∈ Nk(x));

(b) Move or not
If this point x′ is better than the incumbent x, move there x ← x′ and continue the search
with N1 (k ← 1); otherwise, set k ← k + 1.

Figure 4: Steps of the Reduced VNS

5 The Hybrid Approach. Variable Neighborhood Search as
Post-processing phase in GRASP

In figure ?? is shown one of the anomalies which can occurs when the previous constructive method is
applied. Let us consider the position of the rectangle 6. The method pack it as figure ?? indicates.
The goodness of this new situation depends on instant in which it occurs. In the first iterations, it is
recommendable. However, in the last iteration, it is preferable packing it as figure ?? shows. Thus, we
propose the following improvement method.

Improvement method: extract the last k (parameter) rectangles of the solution. Let us assume,
by simplicity, that are {R1, R2, . . . , Rk}. Apply VNS on the solution space consisting of all the
permutations of the rectangles {R1, R2, . . . , Rk}. Return the best obtained solution.

6 Computational Experience

To analyze the performance of the proposed hybrid procedure we solve different instances of the Strip
Packing Problem. The instances used are those corresponding to the categories C1, C2, . . . , C7 of Hopper
and Turton [8] (available at: mscmga.ms.ic.ac.uk/jeb/orlib/stripinfo.html). Each category consists of 3
instances with the following characteristics. The instances in C1 have n = 16 or 17 rectangles, the strip
has width w = 20 and the optimal height is hopt = 20. The category C2 consists of 3 instances with
n = 25 rectangles, w = 40 and hopt = 20. The instances of C3 have 28 or 29 rectangles, width w = 20
and optimal height hopt = 20. The three instances of C4 have 49 rectangles and width and the optimal
height are equal to 60. Category C5 consists of 3 instances with n = 72 or 73, w = 60 and hopt = 90.
Category C6 consists of 3 instances with n = 97 rectangles, the strip has width w = 40 and the height of
the optimal solution is hopt = 20. Finally, the category C7 has 3 instances with n = 196 or 197 rectangles,
w = 160 and hopt = 240.

Tables show the results obtained with the VNS and GRASP metaheuristics and with the hybrid.
In the first column is the category of instance in the Hopper and Turton repository. We consider the
stopping rule by fixing four values for the percentage of total waste W (X): 0.20%, 0.15%, 0.10% and
0.05%. The next four pairs of columns of the table show the corresponding counter and the objective

6

Initialization

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used in the search;

Find an initial solution x;

Choose a stopping condition;

Iterations

Repeat the following sequence until no improvement is obtained:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:

(a) Shaking
Generate a point x′ at random from the k-th neighborhood of x (x′ ∈ Nk(x));

(b) Local Search
Apply some local search method with x′ as initial solution; denote with x′′ the so obtained
local optimum;

(c) Move or not
If this local optimum x′′ is better than the incumbent x, move there x ← x′′ and continue
the search with N1 (k ← 1); otherwise, set k ← k + 1.

Figure 5: Steps of the Basic VNS

value when the solution obtained reach each one of these percentages. They are average values on the 3
instances in each category that have been solved 10 times with each metaheuritic. However, we stop the
search when the counter is 1000 even if it has not reach the smallest percentage. Therefore, in several
cases, the average values are obtained for less than 30 executions (this number is indicated between round
brackets). The last column indicates the average objective function obtained with the independent of the
problem stopping rule that uses the corresponding counter.

7 Conclusiones

We obtain the following conclusions from the analysis of the computational result:

1. The problem dependent and problem independent stopping rules are adequately formalized using
fuzzy sets.

2. The problem dependent fuzzy stopping rule was more effective than the problem independent
stopping rule for the same problem. With the problem independent stopping rules the executions
of the same metaheuristics for the problems in the same category obtain very different objective
values, even for the same problem, but with similar computational time. However, with the problem
dependent stopping rules, the executions of each metaheuristics for the problems in each category
obtain similar objective values but with different computational time.

3. As better is the metaheuristic more recommendable is the use of the problem dependent fuzzy
stopping rule. In heuristics that provide low quality solutions, like the Pure Random Search, is
unlike to find a solution that fulfill the stopping condition of the problem dependent fuzzy stopping
rule. The opposite occurs for the GRASP, that can find solutions that fulfills the stopping condition
of the problem dependent fuzzy stopping rule in very few iterations.

¿From the trade-off between the wasted areas among the rectangles and the wasted area between the
upper contour and the maximum height it seems that for the high quality solutions, the interior waste is
more important than the superior waste. This would be analyzed in a forthcoming research.

7

Initialization

Select the set of neighborhood structures Nk, for k = 1, . . . , kmax, that will be used in the shaking;

Select the set of neighborhood structures N ′
j , for j = 1, . . . , jmax, that will be used in the descent;

Find an initial solution x;

Choose a stopping condition;

Iterations

Repeat the following sequence until no improvement is obtained:

(1) Set k ← 1;

(2) Repeat the following steps until k = kmax:

(a) Shaking
Generate a point x′ at random from the neighborhood Nk(x);

(b) Descent
Apply the VND method with the neighborhood structures N ′

j , for j = 1, . . . , jmax; denote
with x′′ the so obtained local optimum;

(c) Move or not
If this local optimum x′′ is better than the incumbent x, move there x ← x′′ and continue
the search with N1 (k ← 1); otherwise, set k ← k + 1.

Figure 6: Steps of the General VNS

1 2

3

4
5

(y1, x1
1, x1

2)

(y2, x2
1, x2

2)

(y3, x3
1, x3

2)

y1

y2

y3

x1
1 x1

2 = x2
1 x2

2 = x3
1 x3

2(a) Upper contour

1 2

3
4

5 6

(b) Improvement method i)

1 2

3
4

5

6

(c) Improvement method ii)

Figure 7: Upper contour and improvement method

8

